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ABSTRACT
In this article is carried out a comparison between Lagrangian and Eulerian modelling of the turbulent 
transport of pollutants within the Planetary Boundary Layer (PBL). The Lagrangian model is based on 
a three-dimensional form of the Langevin equation for the random velocity. The Eulerian analytical 
model is based on a discretization of the PBL in N sub-layers; in each of the sub-layers the advection-
diffusion equation is solved by the Laplace transform technique. In the Eulerian numerical model the 
advective terms are solved using the cubic spline method while a Crank-Nicholson scheme is used for 
the diffusive terms. The models use a turbulence parameterization that considers a spectrum model, 
which is given by a linear superposition of the buoyancy and mechanical effects. Observed ground-level 
concentrations measured in a dispersion field experiment are used to evaluate the simulations.
Keywords: atmospheric pollutant modelling, turbulence parameterization, model evaluation.

RESUMO: UMA ANÁLISE GLOBAL DA MODELAGEM DA POLUIÇÃO ATMOSFÉRICA.
Neste trabalho é realizada uma comparação preliminar entre as modelagens Lagrangeana e Euleriana 
para descrever o transporte turbulento de poluentes dentro da Camada Limite Planetária (CLP). O 
modelo Lagrangeano é baseado na forma tridimensional da equação de Langevin para a velocidade 
aleatória. O modelo Euleriano analítico é baseado na discretização da CLP em N subcamadas, onde 
em cada uma das subcamadas a solução é obtida pela técnica de transformada de Laplace. O modelo 
Euleriano numérico é composto por um conjunto de equações unidimensionais dependentes do 
tempo, onde os termos advectivos são resolvidos usando um método baseado em uma interpolação 
cúbica enquanto um esquema de Crank-Nicholson implícito é utilizado para os termos difusivos. 
Os modelos utilizam uma parametrização da turbulência que considera um modelo do espectro de 
turbulência, o qual é considerado como uma superposição dos efeitos térmico e mecânico do campo 
turbulento. Concentrações observadas ao nível da superfície em um experimento de dispersão são 
utilizadas para avaliar as simulações..
Palavras-chave: modelagem da poluição atmosférica, parametrização da turbulência, avaliação 
de modelos.

1. INTRODUCTION

The pollutant dispersion is usually investigated by two 
main approaches: Eulerian and Lagrangian. While the Eulerian 
reference system is fixed in relation to earth the Lagrangian 
system follows the atmospheric movement. Each one of these 
models presents advantages and disadvantages, which have 
been intensively investigated along last twenty years by the 
scientific community.

In this paper it is carried out a comparison between a 
Lagrangian stochastic particle model and the numerical and 
analytical solutions of the time dependent Eulerian equation 
to describe the turbulent transport of pollutants emitted in a 
Planetary Boundary Layer (PBL).  The Lagrangian model is 
based on a three-dimensional form of the Langevin equation 
for the random velocity field.  The Eulerian analytical model 
is based on a discretization of the PBL in N sub-layers; in each 
sub-layers the advection-diffusion equation is solved by the 
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Laplace transform technique, considering an average value 
for eddy diffusivity and wind speed. In the Eulerian numerical 
model the time dependent Eulerian equation is splitted in a 
set of one-dimensional time-dependent equations, then the 
advective terms are solved using the cubic spline method and 
a Crank-Nicholson implicit scheme is used for the diffusive 
terms.

A fundamental issue in all kind of dispersion modelling is 
the parameterizations of PBL turbulence. This is very important 
as they define the dispersion properties, that is how pollutant 
is transported inside the PBL. The main question is thus to 
relate the pollutant spreading with the spectral characteristic 
of the PBL turbulence when it is generated by the two forcing 
mechanisms: buoyant and mechanical. In this work we utilize 
a formulation for turbulence spectra functions, which take into 
account these concepts. 

In this study, we perform a comparison between models 
first, then a comparison with measured crosswind-integrated 
concentrations obtained from the well-known Copenhagen field 
experiment. This is used to compare observed and predicted 
concentrations. The results are evaluated through a statistical 
analysis suggested by Hanna (1989).

2. DESCRIPTION OF THE MODELS

2.1 Eulerian Numerical Model

A typical problem in air pollution studies is to seek the 
solution for the cross-wind (y direction) integrated concentration 
of pollutant emitted by a continuous source (being lateral 
concentration distribution usually assumed Gaussian), that is:
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where Sq = Qδ(x)δ(z – Hs) is the source term, δ is the Dirac 
delta function, Q is the emission rate, Hs is source height, U, 
V, W are mean wind velocity components and Kx, Ky, Kz are 
the eddy diffusivities.
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is the cross-wind integrated concentration.
A further simplification is obtained by considering 

longitudinal diffusion much smaller than longitudinal advection 
that is: ∂ ∂( ) ∂ ∂( )x K C xx  << U C z∂ ∂( )  and W C z∂ ∂( )≡ 0  
so the Eq. (1) can be written as:
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The coefficients U and Kz of Eq. (3), are functions of 
the different parameters characterising the turbulent regimes 
of the PBL.

We will derive the full 2-D numerical scheme for the 
eq.1 and then the equivalent scheme for eq.3. This is not trivial 
because of numerical noises generates non-physical results. 
The difficulties stem from the radically different character 
of the advection and the turbulent diffusion operators. Even 
though Eq. (1) is formally parabolic in most PBL flows, 
transport is dominated by advection, leading to hyperbolic like 
characteristic.

The 2-D numerical algorithm consists in splitting Eq. (1) 
into a set of Locally One-Dimensional (LOD) time dependent 
equations (Yanenko, 1971; Rizza et al., 2003):

∂
∂
= +

C

t
C Cx zΛ Λ 				    (4)

where

Λx x x xA D U
x x

K
x

= + =−
∂
∂
+
∂
∂

∂
∂

		  (5a)
	

Λz z z zA D W
z z

K
z

= + =−
∂
∂
+
∂
∂

∂
∂

		  (5b)

This allows to reduce the magnitude of computational 
task and to transform the multidimensional problem into a 
sequence of one-dimensional equations. In this context, the 
numerical code is easier to develop and each single operator 
may be or not switched off. The matrices arising from the one-
dimensional spatial discretization are usually tridiagonal, so the 
cost of using stable implicit procedures is small.

Using Crank-Nicholson time integration we have
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or equivalently
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where I is the unity matrix. To obtain second order accuracy, it is 
necessary to reverse the order of the operators at each alternate 
step to cancel the two non-commuting terms. Therefore, it is 
possible to replace the scheme (7) with the following double-
sequence equations
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In order to develop a scheme that preserves peaks, 

retains positive quantities, and does not severely diffuse sharp 
gradients, a filtering procedure must be applied after each 
advective step. This is necessary in order to damping out the 
small-scale perturbations before they completely corrupt the 
basic solution. The general 2-D numerical scheme may be 
written as following:
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where the operator f represents the filter operation described 
by Forester et al. (1979). In our case, as a consequence of 
hypothesis leading to Eq. (4), the effective 2-D scheme is:
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The advective term (operator Ax), which is usually 
plagued by numerical noises is here solved using a method based 
on cubic spline interpolations, while a Crank-Nicholson implicit 
scheme is used for the diffusive term Dz (Rizza et al., 2003).

2.2. Eulerian Analytical Model

The mathematical description of the dispersion problem 
represented by the Eq. (3) is well defined when it is provided 
by initial and boundary conditions. It is indeed assumed that at 
the beginning of the contaminant release the dispersion region 
is not polluted, this means:

C x z( , , )0 0=   at  t = 0				    (11)
The boundary conditions are zero flux at ground and 

PBL top:
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where h is the PBL height.
Bearing in mind the dependence of the Kz coefficient 

and wind speed profile U on variable z, the height zi of a PBL is 
discretized in N sub-intervals in such a manner that inside each 
interval Kz and U assume an average value. Therefore the solution 
of Eq. (3) is reduced to the solution of N problems of the type:
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for m = 1:N.
The analytical solution is obtained by using the Laplace 

Transform method (Vilhena et al., 1998; Moreira et al., 2004). 
Indeed the solution can be readily written as:
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Now, given a closer look to the solution in equation 
(14), we promptly realize that 2N integration constants are 
present. Therefore, to determine these integration constants, 
we impose (2N-2) interface conditions, namely the continuity 

of concentration and flux concentration at the interface. These 
conditions are expressed as:
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Finally, applying the interface and boundary conditions we 
obtain a linear system for the integration constants. Henceforth the 
concentration is obtained inverting numerically the transformed 
concentration C

_
 by Gaussian quadrature scheme:
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where H (z – Hs) is the Heaviside function. The solution is only 
valid for x > 0 and t > 0, as the quadrature scheme of Laplace 
inversion does not work for x = 0 and t = 0. The values of ai, aj 
(weights) and pi, pj (roots) of the Gaussian quadrature scheme 
are tabulated in the book by Stroud and Secrest (1966) and k and 
v are the quadrature points. In this work was utilised k, v = 8, 
because these values provides the required accuracy with small 
computational effort (Moreira et al., 2004).

2.3. Lagrangian Particle Model

Lagrangian stochastic particle model are based on a three-
dimensional form of the Langevin equation for the random velocity 
(Thomson, 1987). The velocity and the displacement of each 
particle are given by the following equations (Rodean, 1996):
du a t dt b t dW ti i ij j= +( , , ) ( , , ) ( )x u x u 		  (17)
and

d dtx U u= +( ) ,					     (18)
where i, j = 1, 2, 3, x is the displacement vector in the directions 
(x, y, z), U is the mean wind velocity vector (U, V, W) in each 
direction, u is the Lagrangian velocity vector in each direction 
(u, v, w), ai(x, u, t)dt is a deterministic term and bij(x, u, t)dWj(t) 
is a stochastic term and the quantity dWj(t) is the incremental 
Wiener process. The Wiener process is a continuous but not 
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differentiable time integral of the “white noise”, ξ(t). ξ(t) is 
a hypothetical stationary, Gaussian, stochastic process with 
constant spectral density on the real frequency axis.

Thomson (1987) considered the Fokker-Planck equation 
as Eulerian complement of the Langevin equation to obtain the 
deterministic coefficient ai(x, u, t):
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subject to the condition
φ → 0 when u → ∞.				    (20)
where PE(x, u, t) is the non-conditional PDF of the Eulerian 
velocity fluctuations. While in the two horizontal directions 
the PE is considered to be Gaussian, in the vertical direction the 
PDF is assumed to be non-Gaussian (to deal with non-uniform 
turbulent conditions and/or convection). For the vertical direction 
the Gram-Charlier PDF has been chosen. Gram-Charlier PDF is 
a particular type of expansion that uses orthonormal functions 
in the form of Hermit polynomials (Kendall and Stuart, 1977; 
Anfossi et al., 1997; Ferrero and Anfossi, 1998).

Comparing the Lagrangian velocity structure functions 
obtained from Langevin equation with that determined according 
to Kolmogorov’s theory of local isotropy in the inertial subrange, 
Thomson (1987) determined b Cij ij= δ ε0 , where C0 is a 
Kolmogorov constant and ε is the rate of turbulence kinetic 
energy dissipation. The product (C0ε)½ can also be written as a 
function of the turbulent velocity variance σ2

i and the Lagrangian 
decorrelation time scale τLi (Hinze, 1975):
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The discretization of the Eqs. (17) and (18) is necessary 
for their practical application. The present model uses an 
explicit Euler scheme for velocities and an implicit scheme for 
displacement (Flash and Wilson, 1995). The concentration field 
is determined by counting the particles in a cell or imaginary 
volume in the position x, y, z.

3. TURBULENCE PARAMETERIZATION

The Eulerian models [Eqs. (10a and 10b) and (16)] and 
the Lagrangian model [Eqs. (17 and 18)] depend on turbulent 
parameters like the eddy diffusivities, Lagrangian decorrelation 
time scales and wind velocity variances. In this section we 
present the derivation of these parameters using a model for 
the turbulence spectra. These are modelled by a superposition 
of a buoyancy-produced part and a shear-produced part, 

neglecting the interaction between them through the localness 
hypothesis (Hinze, 1975, p. 232; Højstrup, 1982; Frisch, 1995, 
p. 105). The linear superposition of the two mechanisms occurs 
only when there is statistical independence between their 
Fourier components; this happens when the energy-containing 
wavenumber ranges of the two spectra are well separated 
(Mangia et al., 2000).

On the basis of Taylor´s theory, Batchelor (1949) 
proposed the following time-dependent relationships for the 
eddy diffusivities:
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where α = x,y,z, i = u,v,w, n is the frequency, FE
i (n) is the 

Eulerian spectrum normalized by the Eulerian velocity variance 
σ2

i ,  sin2 (nπt/βi)/n2 is a low-pass filter function that accounts for 
the travel time of the plume and βi is the ratio of the Lagrangian 
to the Eulerian integral timescales of the turbulence field. 
According to Wandel and Kofoed-Hansen (1962), βi can be 
written as

β
π
σi

i

U
=










16

2

2

1 2

					     (23)

where U
_
 is the mean wind.

For large diffusion times, the low-pass filter function in 
Eq. (22) selects the characteristic frequency (n → 0) describing 
the energy-containing eddies. In this case, FE

i (n) ≈ FE
i (0) so that 

the eddy diffusivity becomes independent of the travel time 
from the source and can be expressed as a function of the local 
properties of turbulence:

K
Fi i i

E

α

σ β
=

( )2 0

4
.				    (24)

From the Eq. (24) we can also determine the Lagrangian 
decorrelation time scale, given by:

T
K F

Li
i

i i
E

= =
( )α

σ

β
2

0

4
.				    (25)

Assuming the hypothesis of linear superposition of 
the buoyancy and mechanical process, we can model the 
dimensional Eulerian spectra as:

S n S n S ni
E

ib
E

is
E( )= ( )+ ( ) ,				    (26)

where the subscripts b and s indicate buoyancy and shear 
production terms, respectively.

The adimensional Eulerian spectra is obtained 
normalising the dimensional Eulerian spectra with its total 
variance (σi

2 = σ2
ib + σ2

is):

F n
S n S n S n S n

i
E ib

E
is
E

i

ib
E

is
E

ib is

( )=
( )+ ( )

≡
( )+ ( )
+σ σ σ2 2 2

.		  (27)
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It is important to point out that when dealing with 
both components (buoyancy and shear) sometimes it is 
easier to normalise each spectral component with own 
variance, as suggested by Degrazia et al. (2000) (Eq. 12, 
page 3577), but this is not possible as in this case it would be 

[( ) ( )]S S dnib
E

ib is
E

isσ σ2

0

2 2+ =
∞

∫ .

According to Olesen et al. (1984), SE
ib(n) can be given 

by

nS n

w

c f z h

f
f

f

ib
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i b

m i

m i

( ) .
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∗

∗
∗
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
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5 3
,			   (28)

where w* is the convective velocity scale, Ψεb = εbh/w3
* 

is the nondimensional molecular dissipation rate function 
associated to buoyancy production, εb is the buoyant rate of 
TKE dissipation given by Højstrup (1982), h is the convective 
PBL height, f = nz/U is the reduced frequency, (fm

* )i = z/(λm)i is 
the reduced frequency of the convective spectral peak, (λm)i is 
the peak wavelength of the turbulent velocity spectra obtained 
according to Kaimal et al. (1976) and ci = αiαu(2πκ)–2/3 with 
αu = 0.5 ± 0.05 and αi = 1,4/3,4/3 for u, v and w components, 
respectively.

Following Degrazia and Moraes (1982), SE
is(n) can be 

written as

nS n

u
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 3Φε 			   (29)

where u* is the local friction velocity, φεs
 = (εs

 κz)/u3
* is the 

dissipation rate function associated to mechanical production, 
εs is the mechanical rate of TKE dissipation given by Højstrup 
(1982), κ is the Von Karman constant and (fm)i is the reduced 
frequency of the neutral spectral peak obtained according to 
Olesen et al. (1984). The values of (fm)i, (λm)i, εb  and εs are 
found in the appendix.

By considering Eqs. (24) and (25) and assuming 
the hypothesis of linear superposition given by Eq. (26), 
the expressions for the eddy diffusivities and Lagrangian 
decorrelation time scales for large travel times (diffusion regime) 
can be obtained as:

K S Si
ib
E

is
E

α

β
= ( )+ ( )
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0 0 				    (30)

and
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Taking the limit of the Eqs. (28) and (29) when n → 0, 
we can obtain the expressions for the dimensional spectra near 
the origin SE

ib (0) and SE
is (0):
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and
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By analytically integrating the Eulerian spectra given 
by Eqs. (28) and (29) over whole frequency domain, we can 
obtain the buoyant and mechanical wind velocity variance 
components:
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and
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From which we get the total variance σ2
i = σ2

ib + σ2
is.

In Figure 1 a-b it is depicted the vertical profiles of eddy 
diffusivities coefficients and Lagrangian decorrelation time 
scales. Figure 1a is obtained by inserting Eqs. (32a) and (32b) 
into Eq. (30). Figure 1b is obtained by using again Eqs. (32a) 
and (32b) and total variance into Eq. (31). This figure shows a 
tipical PBL profile for both quantities.

4. RESULTS

In this section we report numerical simulations 
and comparisons with measured data. In a first step a 
comparison between the models is done considering two source 
configurations, as it is usually done in air pollution context that is 
for low and tall sources. As second step we compare the models 
with Copenhagen data set. We consider this test particularly 
suited for this validation, since the tracer experiments were 
performed in Copenhagen area under neutral to convective 
conditions. The profiles of eddy-diffusivity coefficient and 
Lagrangian decorrelation time scale were calculated according 
the Eqs. (30) and (31), respectively. Wind speed profile has 
been parameterized following the classical logarithmic profile 
(Berkowicz et al., 1986).

4.1. Comparisons Between the Models

Figure 2 a-b shows the longitudinal profiles of Cy as 
predicted by the three models for an elevated (115 m ) and low 
source (30 m), respectively. If we consider the location and the 
value of maximum Cy, we can see that the three models are 
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Figure 1 - Nondimensional eddy diffusivities (a) and Lagrangian decorrelation time scales (b) according to Eqs. (31) and (32), respectively, for 
unstable condition.

a)                                                                                                          b)

Figure 2 - Comparison between longitudinal profiles of ground-level cross-wind integrated concentrations (Cy) as predicted by the Eulerian nume-
rical, Eulerian analytical and Lagrangian models for an elevated source (115 m ) (a) and low source (30 m) (b).

a)                                                                                                          b)

in very good agreement in both cases. These results are very 
important in sense that the maximum concentration is one of the 
most significant parameter in air quality assessment.

4.2. Comparisons with Copenhagen Experiment

The performance of the models has been evaluated 
against experimental ground-level concentration measured in 
Copenhagen (Gryning and Lyck, 1984) diffusion experiment. 
Copenhagen experiment was carried out in the northern part 
of Copenhagen. The pollutant (SF6) was released without 
buoyancy from a tower at a height of 115 m and collected at the 

ground-level positions in up to three crosswind arcs of tracer 
sampling units. The sampling units were positioned 2-6 km 
from the point of release. The site was mainly residential with 
a roughness length of 0.6 m. All the available data were used 
to create the input for the simulations.

The models performance is shown in Table 1 and 
Figure 3. Table 1 shows the result of the statistical analysis 
made with observed and predicted values of ground-level 
cross-wind-integrated concentration (Cy). Figure 3 shows the 
scatter diagram between observed and predicted ground-level 
cross-wind integrated concentrations. The statistical indices are 
suggested by Hanna (1989):
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NMSE C C C Co p o p= −( ) /2

(Normalized Mean Square Error)

FB C C C Co p o p= − +( ) /( . ( ))0 5
(Fractional Bias)

F FS o p o p= −( ) +( )2 σ σ σ σ
(Fractional Standard Deviation)

R R C C C Co o p p o p= − −( )( ) /σ σ
(Correlation Coefficient)

FA C Co p2 0 5 2= ≤ ≤.
(Factor 2)

where C is the analyzed quantity (concentration) and the 
subscripts “o” and “p” represent the observed and the predicted 
values, respectively. The overbars in the statistical indices 
indicate averages. The statistical index FB indicates if the 
predicted quantity underestimates or overestimates the observed 
one. The statistical index NMSE represents the quadratic error 

of the predicted quantity in relation to the observed one. The 
statistical index FS indicates the measure of the comparison 
between predicted and observed plume spreading. The 
statistical index FA2 provides the fraction of data for which 
0.5 ≤ Co / p ≤ 2. As nearest zero are the NMSE, FB and FS and 
as nearest one are the R and FA2, better are the results.

Analysing the statistical indices in Tables 1 it is possible 
to notice that the model simulates quite well the observed 
concentrations, with NMSE, FB and FS values relatively near 
to zero and R and FA2 very close to 1. Fractional bias (FB in 
Table 1) shows under-prediction for Lagragian model and over-
prediction for Eulerian models. This also confirmed by visual 
inspection of Figure 3. For the other statistical indices, there 
are not considerable differences between the results. All the 
values for the indices are within ranges that are characteristics 
of those found for other state-of-the-art models applied to other 
field datasets, thus showing that the models and the turbulence 
parameterizations are quite effective.

5. CONCLUSIONS

We utilized both Eulerian and Lagrangian approaches 
to air pollution problems to make a comparison between these 
different techniques. Furthermore the Eulerian conservation 
equation for a passive contaminant has been solved both 
numerically than analytically. A fundamental recipe in all kind 
of modelling is the parameterization of turbulent quantities 
describing the dispersion properties of PBL. We proposed a 
new parameterization for eddy diffusivity and Lagrangian 
decorrelation time scales that properly model both generation 
mechanisms of PBL turbulence. A sensitivity analysis has 
been conducted between the three models first and then 
with experimental data. Such comparison show an excellent 
agreement between the three models showing that they can 
be incorporate in a global modelling system for air-quality 
estimates. This work is just preliminary. A more detailed 
comparison will be made using more concentration datasets in 
different PBL stability conditions.

6. APPENDIX

Physical Constraints
The convective velocity scale w* is given by:

w u
h

L∗ ∗= −






κ

1 3

.

The values of the reduced frequency of the neutral 
spectral peak are (Table 1 of Olesen, 1984):
(fm)u = 0.045                   (fm)v = 0.16                   (fm)w = 0.35.

The spectral peaks depending on height and stability are 
determined according Caughey and Palmer (1979):

Figure 3 - Scatter diagram between observed and predicted ground-
level cross-wind integrated concentrations (Cy) for the Copenhagen 
data set.

Table 1 - Statistical indices of the model performances for the 
Copenhagen experiment.

Model NMSE FB FS R FA2
Eulerian – Numerical 0.07 -0.06 0.26 0.86 0.96
Eulerian – Analytical 0.08 -0.15 0.04 0.88 0.96
Lagrangian 0.07 0.12 0.27 0.89 1.00
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The buoyancy-shear ensemble average rates of 
dissipation of TKE are from Højstrup (1982):
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