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ABSTRACT

Variational Data Assimilation and Adjoint Equation Method are presented here as a general 
methodology designed to improve the quality of computational simulation when are given the dynamics 
and a set of observation of the system under study. The mathematical foundations the procedures 
to obtain the adjoint of a given computational program, a fundamental task in order to apply the 
methodology, are carefully examined.
Keywords: Variational Data Assimilation, Adjoint Equations, Adjust of Trajectories.

RESUMO: ASSIMILAÇÃO VARIACIONAL DE DADOS: FUNDAMENTOS MATEMÁTICOS 
E UMA APLICAÇÃO
A Assimilação Variacional de Dados e o método das Equações Adjuntas são aqui apresentados como 
uma metodologia geral, desenvolvida para melhorar a qualidade das simulações computacionais, 
quando a dinâmica e um conjunto de observações do sistema em estudo são conhecidos. Os fundamentos 
matemáticos e os procedimentos para se obter o adjunto de um dado programa computacional, uma 
tarefa fundamental para a aplicação da metodologia, são cuidadosamente  examinados.
Palavras-chave: Assimilação Variacional de Dados, Equações Adjuntas, Ajuste de Trajetórias

1. INTRODUÇÃO

In the second half of the eighties, in the confluence of the 
spreading in West Europe of of the work made by G. I. Marchuk 
on Adjoint Equation Method applied to Geophysical Flux 
Dynamics issues, and under the strong influence of the results 
obtained by J. L. Lions as to systematic use of the Optimal Control 
Theory to systems governed by partial differential equations, in 
particular, in Atmospheric Flows (Talagrand, 1997), they appeared 
numerical methods which would become the Variational Data 
Assimilation operational in less than 10years.

Sensitivity Analysis, through the adjoint formalism, 
quickly became useful in a wide variety of research areas 
(Thomas et al, 2002 , 2005, Kamien and Schwartz, 1981, 
Reuther et al, 1996). Nevertheless, only in recent years, the Data 
Assimilation technique has been exploited in computational 
simulations not related to Numerical Weather Prediction 
(Elbern et al., 2007), although the method can be invaluable in 
computational simulations, since observations of the systems 

act on the numerical model as restriction which the solution 
must verify. One of the possible explanations for this situation 
might be that the high complexity of the numerical experiments 
of atmospheric and oceanic flows and the many peculiarities 
of those flows make the experiments rather accessible to 
the computational simulation community. Besides, with the 
exception of a few articles (Le Dimet and Talagrand, 1986) 
and books (Kalnay, 2002, Daley, 1993), the mathematical 
formalism is not always clearly presented. This situation is 
not appropriated to the development of the Variational Data 
Assimilation method, since important aspects for its future 
plans, for example, Adaptive Observations, must be placed in 
solid theoretical foundations.

Therefore, this work is intended to present a rigorous 
mathematical formulation not only for Variational Data 
Assimilation but also Adjoint Equation Method as well, and, 
as an algorithm to perform the variational assimilation of data 
was developed, which is also described here, both formulations 
can be perfectly understood.
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In order to realize the numerical control of the space-
time evolution of a system involving a geophysical flow it is 
necessary to know its initial condition, which is, the numerical 
counterpart of the real initial state or the initial configuration 
of the system under study. In the case of geophysical flows, the 
dimension and the geographic location of the spatial domain 
problems make the distribution of an observational network 
difficult, what causes a scarcity of data about the phenomenon 
studied or even turns the intial configuration unavailable for 
computational simulations (Talagrand, 1997). As in those 
flows are presented phenomena of difficult representation in a 
numerical model, and even in analytical models, being, in certain 
situations, processes highly sensitives to initial conditions 
variations (Lorenz, 1963), to establish an initial condition 
adequated for simulations, in this case, is of the paramount 
importance for the results.

For an adequate initial condition of the numerical 
experiment, one means that one which generates the numerical 
model states that fit, in accordance with the desired precision, 
the available observations. In order to decide whether or not 
an initial condition is appropriated to certain simulation, one 
should consider, in additon to the flow dynamics, the full set of 
observations of the system being studied. That is exactly what 
is performed by the methodology known as Data Assimilation 
(Le Dimet and Talagrand, 1986), approach in which all the 
knowledge on a system being analyzed, its dynamics and 
observations, is combined in order to produce an initial 
condition that minimize the error between the model generated 
configurations and the correspondent known configurations, in 
a sense to be precised later.

A problem involving geophysical flows in its discrete 
form produce sa very high number of variables, so that, 
straight away, Variational Data Assimilation is a metodology 
computationally intractable. A solution for this difficulty can 
be obtained with the use of the Adjoint Equation Method, 
which adequately insert the problem of the initial condition 
determination to simulations of geophysical flows in the domain 
of Optimal Control Theory (Lions, 1971), and its mathematical 
foundations are analyzed here with the necessary accuracy. A 
second consequence of the resulting metodology of combining 
Variational Data Assimilation with Adjoint Equation Method is 
the transformation of a minimization problem with restrictions, 
as originally proposed by the Variational Data Assimilation 
formalism, in a minimization problem without, what makes 
it possible the use of more agile routines, as L-BFGS (Liu 
and Nocedal, 1989), in the determination of an optimal initial 
condition.

The efficency of that metodology, confirmed by 
numerical wheather prediction operational models (Parrish and 
Derber, 1992), has produced, on the one hand, a tremendous 

increase in the scope of its applications (Elbern et al, 2007), 
(Kamien and Schwartz, 1981), (Reuther et al, 1996), on the other 
hand a continous clarification of its theoretical basis, which is 
necessary for the improvement of the already existing models, 
and for the rise of others more precise. 

In the first section of this work, the mathematical 
foundations of two crucial methods are presented, Variational 
Data Assimilation and Adjoint Equation Method. In the second 
section, in order to fix ideas, one works with a unidimensional 
model which permits the exploration of several aspects of the 
methods used and also to develop explicitly the adjoint of a 
given equation. Finally, in the third section, one describes a 
bidimensional numerical experiment, showing with some detail 
(i) an algebraic formalism, fundamental in the development of 
a computational program to perform the experiment, formalism 
that has already produced, in the Computational Linear Algebra 
domain, a new line of investigation, known asAutomatic 
Differatiation (Kaminski et al, 2003) and as Automatic Adjoint 
Generation (Giering et al, 2005), and (ii) the structure of a 
FORTRAN code, created by the authors, in order to realize 
the Variational Data Assimilation of a flow described by the 
bidimensional advection-diffusion equation.

2. MATHEMATICAL FORMULATION

Definition: Let A be an open set in nRI e RIf:A →  a 
differentiable function. Then, Ax∈∀  , the differential of f
in x  is the linear functional tal que, n  RIv∈∀ , 

As df(x)  is a linear functional in                   , the dual vector 
space of nRI , it follows form Linear Algebra the existence and 
the uniqueness of the nRI  vector, f(x)∇ , such that

where <,> is the canonical inner product in nRI . 

2.1.The Data Assimilation Method

Let S be an evolutionary system, observed during 
the time interval [t1,t2], from which is available a set of 
observations, all of them colected in the same time interval and 
distributed in the spatial domain of interest on S. Besides, it is 
known the dynamics of S. Based on those pieces of information, 
one wants to determine the initial condition of the modelled S, 
or the numerical representation of the configuration of S at the 
time t1 , the starting moment for a computational simulation of 
S generates configurations to approach, within an acceptable 
precision, to the available observations of S at correspondent 

.
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instants of time, in order to obtain a configuration of the model 
at tf > t2 which reproduces the real configuration of S at time 
tf, also within an acceptable pricision. From a conceptual point 
of view, this process is similar to the Best Linear Unbiased 
Estimation (Sorensen, 1980) of the configuration of S at  tf, given 
the S  configurations within [t1,t2], here solved in a deterministic 
approach as an optimal control problem, in which the initial 
conditions is the control data. 

At first, one considers the continuous version of 
the Variational Data Assimilation problem, which admits 
the appropriate mathematical treatment. In this case, the 
mathematical objects are: 

(i) the system observations: S, Z:[t1,t2]×VgV, such 
that, ]t,[tt 21∈∀ , VVZt →:  is a differential operator 
defined on the vector space V provided with the inner product 
<,>, where [t1,t2] is the assimilation interval or assimilation 
window.

(ii) the dynamics of the system S, described by 

Where  X:[t1,t2]×V gV is the system S trajectory during the 
assimilation interval, [t1,t2], E={Y;Y:[t1,t2] ×V gV and Y ∈  
C2} and EF:E → is a differential operator. 

(iii) the  “weight” function W:[t1,t2]gL(V), where L(V) is 
the vector space of the linear operators in V,  that results from the 
statistics information of the instruments used to collect the data on 
S , and that, each t∈ [t1,t2], associate the injective linear operator

W(t): VV →
(iv) the quadratic functional 

where D =                                .
Then the Variational Data Assimilation problem is to find 

a trajectory of the system states S, X:[t1,t2]×V gV such that 
X be the solution of Equation 2 which minimize the functional 
Equation 3, in other words, the following minimization problem 
with constrait:

Problem MR: find the solution of Equation 2 minimizing 
Equation 3

As the solution of the Data Assimilation will be 
numerically obtained, it is necessary to solve its discrete 
version. However, this implies another difficulty: the number of 
resulting variables of discrete version of the equation modelling 
the S dynamics and its space-time domain is excessively high. 
Therefore, from the computational point of view, it would be 
very economic (and, in many problems, the only feasible way) 
if instead of the solution X ∈E one searches the solution X1∈

X F(X),
t

∂
=

∂
                                                                                                (2)
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X W(t)(X(t x) Z(t x)),W(t)(X(t x) Z(t x)) dD

→
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

                                                                                                (3)

E1, where E1 = {X1;
11 1 1 { }{X ; t VE X X ×= = , X ∈E and X ∈  C2} 

isomorph to the set of operators in V, which could be called 
the space of the initial configurations of S, that minimizes the 
restriction of the functional  J to E1. The difficulty here is the 
non existence of a relation between J and X1, because J is not 
a function of X. However, if the problem in Equation 2 is well 
posed, then the knowledge of  X and the knowledge X1 are 
equivalent. The Adjoint Equation Method provides, from the 
relation between X and X1, the differential of the restriction of 
J to E1. 

2.2.The Adjoint Equation Method

One rewrites the functional in Equation 3 as

where

As the differential of J in  X  ∈ E is a linear functional in the 
Hilbert space E with the inner product

by using the Riesz’ Representation Theorem (Kreyszig, 1989), 
one obtains, ∀ H∈E,

where JX∇ e TX∇ , are the gradient of J and of T, respectively
Now, one considers the linear version of the Equation 2:

resulting from the substitution of the operator F for its first 
order approximation in an equilibrium point, ommited from 
the equation, and in which it was used the notation  

  
      for its 

differential, and its adjoint equation:

where *)
X
F(
∂
∂

 is the adjoint of the operator )
X
F(
∂
∂

. Then one 
obtains the following result:

Theorem 1: Given a solution X∈  E of MR, X1 ∈  E1, 
X1 = V}t{ 1|X × , is the solution of the following unconstraint 
minimization problem:

Problem MS: find 1EX∈δ  minimizing >∇< XJX δ,
1

.
Proof: Let Y: [t1, t2] ×V gV be the solution of (7) 

such that Y(t2) = 0 and δX ∈  E1 a perturbation of any solution 
of Equation 6. Then it follows that:

1 2{( , ); [ , ], }t x t t t x V∈ ∈
 

,
D
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∫



                                                                                                   (4)

1( , ) , , , ,
2

T : E IR

X W( )(X( ) Z( )),W( )(X( ) Z( ))

→

⋅ ⋅ < ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ >

( , ) ( , ) , ,E
D

X ,Y W( )(X( )),W( )(Y( )) dD< ⋅ ⋅ ⋅ ⋅ > = < ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >∫

, ,X E X
D

dJ(X) H J(X),H T(X(t x)),H(t) dD⋅ =< ∇ > < ∇ >∫
                                                                                                   (5)

0X F X
t X

∂ ∂
− =

∂ ∂
                                                                                                   (6)

)
X
F(
∂
∂

0*
X

X F( ) X T
t X

∂ ∂
+ +∇ =

∂ ∂
                                                                                                   (7)



436	 Silva et al.	 Volume 26(3)

The meaning of Equation 8 must be clear: the right 
side of the equality is the expression of the differential of  J 
(relative to X), dJ(X). As X1 is the projection of  X onto E1, the 
left side of Equation 8  is the expression of the differential of 
the restriction of  J (relative to X1) to E1. By the uniqueness of  
the representation of the last differential as an inner product in  
E1, it follows that Y1 is precisely the gradient of the restriction 
of the funtional  J to E1, that is, Y1 is the projection of JX∇
onto E1. Then, one obtains

Therefore, using the Adjoint Equation Method, one 
projects the solution set C2([t1,t2] ×V ,V) onto C2({t1} ×V 
,V), which represents, from the computational viewpoint,a 
considerable reduction in the number of variables in the discrete 
problem. Besides, this projection transforms a constraint 
minimization problem in one unconstraint problem, namely, 
the problem of minimizing Equation 3 with the restriction 
Equation 2, becomes

The problem MR, involving the quadratic functional  J, 
defined in Equation 3, has the existence of its solution guaranteed 
but not its uniqueness. In order to obtain the uniqueness of the 
solution of MR, and of MS, one redefines the problem using the 
following quadratic functional: 

                      
, (3’)

where, Xb is an available estimate of the initial configuration 
of X, and B ∈L(V) is the operator determined by the available 
statistical information on the estimate of  Xb and

Then, one obtains the following result:
Theorem 2: Given the Problem MR’: find the solution 

of  Equation 2 that minimizes  Equation 3’.
There exists a unique solution of MR’ and X1 = 1

|EX  ∈  E1 is 
the solution of the following unconstrait minimization problem:

Problem MS’: find 11 EX ∈δ  that minimizes

1 1,    ,Y X Xδ δ< > = < >
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Proof: It is only necessary to redefine the inner product 
on  E as:

and  use all the development that preceeds Theorem 1.
Let Xb be the available estimate of the initial configuration 

of  X. The problem of  optimal solution will be iteratively solved 
by shearching the perturbation 11 EX ∈δ  of EX ∈δ  such that 
(Xb + Xδ ) will be the solution of MS´.

3. ONE UNIDIMENSIONAL EXAMPLE:

Definição: Given { }2121
2 tttexx;xRI(x,t)D <<<<∈=  and 

Ã  the border of D, one defines:
•	
•	
•	                                                  ,  the inside border, that 

is, the locus of the inside data of  D
•	
•	
•	                                             , the outside border, that 

is, the locus of the outside data of D.
•	 )R(D,ICEI 2= , the set of functions R If:D →  twice    

derivable.
•	 ∫=

D
EI t)dDu(x,t)v(x,u,v , the inner product on 

•	 };|{0 EIuuEI
e

∈= Γ , the set of functions of EI  
restricted to the inside border of D.

•	 ∫=
e

EI
Ã

eee t)dÃu(x,t)v(x,,vu
0

, the inner product on EI 0

One considers the following situation: a fluid (water) 
flowing in a river or a channel of lenght l = x2 –x1, where the 
window of assimilation is  [t1,t2] . A certain amount of pollutant 
is spilled in the channel in x<x1 in the instant t1. By hypothesis, 
the transport of the pollutant is described by the advection-
diffusion unidimensional equation.

with the initial and contour conditions:

where                is the water velocity, k  is the diffusivity 

11 1 EX X,'J >δ∇<
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( , ) ( , )

, ,
E

E
D

B X t B Y t
X ,Y

W( )(X( )),W( )(Y( )) dD

< ⋅ ⋅ > +
< ⋅ ⋅ ⋅ ⋅ > =

< ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >∫

{ }2
1 2 1 2D (x,t) IR ; x x x et t t= ∈ < < < <

2
2 1 2{(x,t) IR ; x x e t t t }∪ ∈ = < <

2
1 1 2{(x,t) IR ;t t e  x x x }∪ ∈ = < <

• }tt tex;xRI{(x,t)s 211
2

<<=∈=  
2

2 1 2{(x,t) IR ; x x e  t t t }∪ ∈ = < <
2

2 1 2{(x,t) IR ;t t e x x x }∪ ∈ = < <

2

2 0c c ca k
t x x
∂ ∂ ∂

+ − =
∂ ∂ ∂

1 1 2

1 1 2

2 1 2

c(x,t ) f(x), x x x
c(x ,t) g(t), t t t
c(x ,t) h(t), t t t

= < <
 = < <
 = < <

                                                                                                  (11)

a(x,t)(x,t)
RIDa:



→



Setembro 2011	 Revista Brasileira de Meteorologia	 437

coefficient and                    is the pollutant concentration in D.
Let us supose the availability of a set of channel 

observations, RI:Dc →~ , during the time interval [t1,t2]. The Data 
Assimilation problem consists in finding a solution of Equation 
11 that minimizes the functional

that is, one has the following problem:

Obtaining the solution of Equation 13, one can determine 
the instant of time when the pollutant will reach the position  x 
> x2, and this solves the problem of the deterministic prediction 
of the pollutant trajectory along the channel. If one is interested 
just in the position x of the front of the oil stain in relation to a 
reference point in one of the the channel shore, the geometry 
of the problem is one-dimensional.

I n  t h e  s e t s }tt tandx;xRI{(x,t) 211
2 <<=∈  a n d 

}tt tandx;xRI{(x,t) 212
2 <<=∈ , one can determine the border 

conditions of the problem, while in }xx xandt;tRI{(x,t) 211
2 <<=∈  

one determines the initial conditions of the problem. In the set 
}xx xandt;tRI{(x,t) 212

2 <<=∈  one establishes the behavior of 
the solution of  (16) at instant 2t ,the final instant of time of the 
assimilation window. Then, for all c  and äc )R(D,IC 2∈ , where 

cä  is a perturbation of c ∈ )R(D,IC 2 , let J be functional defined 
in Equation 10. By definition, one obtains:

                                                                        =

Therefore, again by using the Riesz’ Representation 
Theorem 

The gradient of the restriction of the functional J to the 
inside border of EI , eÃ , 

eÃe JJ = , is given by one expression of 
the form:

One shows now that the process by which it is obtained 
Equation 16 starting in Equation 14 is exactly the integration 
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by parts method, with the border conditions appropriate for the 
current purpose. 

Usiyng in (14) the fact that ccJ(c) ~−=∇ , one obtains one 
solution c  of Equation 11 and a perturbation äc  of c , which:

Defining

for all äc ∈ EI  perturbation of c ∈  EI  and such that  L(c) = 0, 

Let EIc∈′δ be. Then,

Integring by parts the terms of the second item of 
Equation 17, one obtains
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Then, by taking cδ ′  as solution of the non homogeneous 
adjoint equation,                                           the initial 
condition 0),( 2 =′ xtcδ , ],[ 21 xxx∈∀ , and the border conditions 

0),(),( 21 =′=′ xtcxtc δδ , ],[ 21 ttt ∈∀ , one obtains:

So, the gradient de J  with respect to initial and border 
conditions, in other words, restrict to the space eÃ , is:

Therefore, in the iterative resolution, by means of a 
minimization routine, using the gradient of the functionl J, of 
problem in Equation 13,, one considers the problem:

what represents a considerable gain in the necessary 
computations.

4.Results

4.1.Implementing the Adjoint Equation Method

Another interesting and also important feature of 
the implementation of Variational Data Assimilation is 
the development of automatic routines to perform the data 
assimilation using the Adjoint Equation Method. Nowadays, 
due to the several academic and industrial application of the 
method and considering the extension of the work needed to 
produce such computational routine, the automatic generation 
of the adjoint to a given code can be realized by computational 
codes developed for this task (Faure and Papegay, 1998). As a 
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good knowledge of the rules used in the preparation of the linear 
and the adjoint programs to a given computational code precede 
the correct use of such automatic routines, it is presented here 
some illustrative examples of the rules to be followed when 
manually generating these codes. Of course, the rules are the 
same used by automatic routines. 

A computational code in, exempli gratia, FORTRAN 
language is nothing but an ordered sequence of command lines 
and sometimes one or more subroutines or functions, which 
are also made of an ordered sequence of command lines. One 
begins defining a rule to obtain the adjoint instruction to a 
given command line, and, in the sequel, it is derived the adjoint 
instruction to the instruction resulting of two consecutive 
command lines. Let one consider the following FORTRAN 
command line,

which can be identified with the fuctio

or even with the function

a very useful process in order to clarify the many stages in 
the work out of the adjoint instruction and its implementation, 
decreasing the possibility of errors when writing the 
computational code. 

Although Equation 20 and Equation 21 are mathematically 
equivalents, notation in Equation 21 is much more convenient 
to write the computational codes.

 As g is a nonlinear operator and nonlinear operators do 
not posses adjoints, when a command line is equivalent to one 
nonlinear operation, the first action to do is to take the linear 
version of the nonlinear. This can be achieved simply taking the 
differential of the operator, or in matricial notation, much more 
useful for the adjoint process, considering the jacobian matrix 
of the operator. In the case of function g, its jacobian is given by

Then the linear of the instruction represented by g, dg, is:

where  the subscripts o and i denote, respectivelly, outside and 
inside amounts stored in the variables, just after and before the 
execution of the command line, that is,

2

32
f : IR IR

(x, y) x y
→

+
                                                                                                  (20)

3 3

32
g : IR IR

(x, y,z) (x, y, x y )
→

+                                                                                                  (21)

, where z = f(x,y),

Z = 2*X + Y**3,

, where z = 2x + y3,

2

1 0 0
0 1 0
2 3 0y

 
 
 
 
 

                                                                                                  (22)

2

1 0 0
0 1 0
2 3 0io i

dx dx
dy dy
dz y dz

    
    =    
    
    

                                                                                                  (23)
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in this way, the adjoint instruction is obtained by the matrix  in  
Equation 21:

From operation in Equation 25 one obtens the adjoint 
instruction to the instruction in expression (19):

By associating each instruction line of one code to a 
funciton, therefore,  this means that a program is a composition 
of  functions. So, the linear version of the given program is 
obtained by using the Chain Rule of the Calculus, while the 
adjoint of a given code, by multipliyng the reverse order the 
adjoint matrices that correspond to each command line. The 
processes, although simple, demands careful, since one outside 
variável in a command line can or not be defined using the same 
variable (in this case, seem as na inside variable), as it will be 
considered later.

Let the instructions be:

Which will be refered as i1 and i2 respectively.
The following functions are associated with the previous 

instructions:

                                   and

To make clearer the processes of taking the linear and 
the adjoint of a given instruction, as well as the writting of 
the correspondent instructions in FORTRAN, one adopts the 
following convention: i1

~
E:Ef e →  e si E:Ef →2

~ , where eE , 
ini

E
= )(Ef i1

~  and sE = )(Ef in2
~ are, respectivelly, the inside space, the 

intermediate space and the outside space, all isomorphs to 
4RI . Then

                                    

and 

22 3

o i
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dx dx
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dz dx y dy
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 = +
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                                                                                                  (26)

Z = X + 2*Y

W = Y + Z**2,

4 4
1

2
f : IR IR

(x, y,z,w) (x, y,x y,w)
→

+

4 4
2

2

f : IR IR
(x, y,z,w) (x, y,z, y z )

→

+

where , 

vI = (x,y,z,w) is a vector of inside data and vO = f
~  (ve), is a vector 

of outside data, resulting of the action of the instructions in the 
vector of inside data vi. Given a perturbation di of the vector of 
inside data, one obtains the correspondent perturbation do in the 
vector of outside data, in order words, d f

~  (v) di = do, which, by 
the Chain Rule, it is expressed by                                     , where 
vin = 1

~
f  (vi) is the vector of intermediate data.

Computing              and            , in the case vi = (x,y,z,w) 

eE∈ e vin = (x,y,x+2y,w) 
inE∈ , tem-se:

Therefore, given any direction, di = (dxi, dyi, dzi, dwi) 
eE∈ , one obtains:

that is:

Leaving the inside and outside índexes (which are not 
written in a real code) and discarding the unchanged variables, 
as dx = dx and dy = dy, the linear instruction of instructions i1 
and i2 above are the following FORTRAN instructions:

as it was expected.
Considering that ie E:Ef →1

~
 and si E:Ef →2

~
, the 

adjoint to the instructions i1 and i2 are ei
* E:Ef →1

~
 and , 

ei
* E:Ef →1

~

from it follows that                                                                 , 
where:

                                             and 
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Then, given ssssss E),dw,dz,dy(dxd ∈= , one obtains:

that is:

Considering that vs = (xe+2ye) and leaving the índices, 
one obtains the adjoint instruction in FORTRAN as:

And now consider the case in which one of the variables 
appears in one command line as an outside variable and as an 
inside variable. So, let i3 and i4 be the instructions:

Y = X*Y**2

Y = Y**3*X**2

To attain the necessary clarity in the development of the 
adjoint code, one defines the functions associated with the above 
instructions using the already introduced notation of inside, 
intermediate and outside spaces, eE , iE  and sE , respectively, 
in this case, all isomorphs to 2RI :

such that, to the inside vector ve = (x,y), the two instructions 
produce the outside vector vs given by:

For the Chain Rule, the linear of the composition of 
the instructions is given by                             , where de is a 
perturbation in the inside vector, ds , and the correspondent 
perturbation in the outside vector is vi = 1

~
f  (ve) = (x,xy2).

Therefore, given de = (dxe, dye), one obtains

and

Then, ds = (dxs, dys) is given by


















++

++

=





































==

0
0

42
2

0000
0000

4210
2101

~

sss

sss

s

s

s

s

s

s

s

*

seeee

zdwdzdy

zdwdzdx

dw

dz

dy

dx

z

z

)(d)](vf[d),dw,dz,dy(dx

 

2
2 4

e s s s s

e s s s s

dx dx dz z dw
dy dy dz z dw

= + +
 = + +

2 2
2 4 2

dX dX dZ * (X Y)dW
dY dY * dZ * (X Y*) dW

= + + +
= + + +

1
2

e if : E E
(x, y) (x,xy )

→



2
2 2 2 3

i sf : E E
(x,xy ) (x,x (xy ) )

→


and

2 1

e s

e s e

f : E E

v v (f f )(v )

→

=



  
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that is

or

So, in FORTRAN, the linear of the commands i3 and 
i4 is given by:

dY = Y**2*dX + 2*X*Y*dY
Y = X*Y**2
dY = 2*X*Y**3*dX + 3*Y**2*X**2*dY
Y = Y**3*X**2

and the adjoint of the instructions is obtained from , 

where de and ds, respectively, are perturbations in the inside and 
outside vectors, tha is:

Therefore, in FORTRAN, the adjoint instructions to i3 
and i4 are given by:

I0 = Y
Y = X*Y**2
I1 = Y
Y = Y**3*X**2

Y = I1
dX= dX + 2*X*Y**3*dY
dY = 3*Y**2*X**2*dY

Y = I0
dX = dX + Y**2*dY
dY = 2**Y*X*dY

4.2 Numerical experiment

One studied the oil stain trajectory determination in a 
region whose hydrodynamics were known and a set of oil spot 
observation within the time interval [t1,t2] was available. It was 
also supposed that all observations were incomplete, so that, at any 
time t1 < t < t2, the avalilable observation Z(t) can not reproduce 
integrally the oil spot, and, therefore, could not be used as an 
“initial condition” in the integration of the numerical model.

2 2 3 2 2 2

4 6 4 4

1 0
2 3

1 0
2 3

idf (v )
x(xy ) x (xy )

x y x y

 
= = 
 

 
=  
 







+=

=

ees

es

dyyxdxyxdy

dxdx
5564 65

1  

4 6 5 55 6dy x y dx x y dy= +

1 2
* * *

e e s e i sd [df(v )] (d ) [df (v )] [df (v )] (d )= = ⋅  

2 2 3

2 2 2

4 6

4 6

4 6

5 5

1 1 2
0 2 0 3

1 5
0 3

5
6

s
e e

s

s
e e

s

e s s

e s

dxy x(xy )
(dx ,dy )

dyxy (xy ) x

dxx y
(dx ,dy )

dyx y

dx dx x y dy
dy x y dy

   
= ∴   

   
  

∴ = ∴  
  

 = +
∴

=


















++

++

=





































==

0
0

42
2

0000
0000

4210
2101

~

sss

sss

s

s

s

s

s

s

s

*

seeee

zdwdzdy

zdwdzdx

dw

dz

dy

dx

z

z

)(d)](vf[d),dw,dz,dy(dx

 

2 2 3 2 2 2

4 6 4 4

1 0
2 3

1 0
2 3

idf (v )
x(xy ) x (xy )

x y x y

 
= = 
 

 
=  
 



4 6 4 4 2

1 0 1 0
2 3 2

e
s s

e

dx
(dx ,dy )

dyx y x y y xy
   

=    
   

1 2

1 0
2edf (v )

y xy
 

=  
 





Setembro 2011	 Revista Brasileira de Meteorologia	 441

The first step of the experiment was to simulate an oil 
spillage in spatial domain of 6000m× 4400m, discretized by 
means of bidimensional grid of  21× 21 nós, where ∆ x = 300m, 
∆ y = 220m and the  time interval of analysis was [0,30000] in 
seconds, with ∆ t = 300s. It was taken the velocity of the medium 
as u = 0.1× 10-1 m/s-1 and v = 0.0, C was the concentration 
of oil, and D was the variable coefficient of diffusivite. The 
transport of the oil spot was described by the bidimensional 
advection-diffusion 

which is the universal transport model of oil in the sea surface 
(Lehr and Cekirge, 1980). In Figure 1, one sees the flow chart 
to the Data Assimilation using the Adjoint Equation Method.

One has integrated then the Equation 27 using as initial 
condition the artificial oil spill (Figure 2) and, with the integration 
of Equation 27 (in G(U)), were storage, as system observations, 
the configurations obtained at the times t = 10× i, i = 1,...9. In 
Figures 3 and 4, are shown the partial configurations of the oil 
spot for t = ∆ t× 20 and t = ∆ t× 90. One aletory perturbed the 
initial configuration, shown in Figure 2, by using the RAND 
function from the FORTRAN 90 Library, and it was obtained 
the perturbed initial configuration (Figure 5) , which was the 
begining of the Variational Data Assimilation process , and after 

2 2

2 2 0C C C C Cu v D( ) ,
t x y x y

∂ ∂ ∂ ∂ ∂
+ + − + =

∂ ∂ ∂ ∂ ∂
                                                                                                 (27)

Figure 1 - General flux

Figure 2 - Inital configuration

the first integration of Equation 27, in order to generate the (toy) 
observations, the Equation 27 is then integrated with an initial 
condition obtained from the minimization routine, and the error 
between the model generated configurations and the observations 
are measured in J(G(U)). If the value measured is above the 
tolerance, the main program calls the subroutine D(G(U))*, in 
order to obtain the integration backward in time of the adjoint 
Equation 7, which gives the gradient of the functional J in relation 
to the initial conditions of the problem, which is then sent to 
the minimization subroutine (L-BFGS), giving a new initial 
configuration U which, after integration  in G(U), will decrease 
the value of J(G(U)). When the error generated by the two 
configurations, model generated and observations, measured in 
J(G(U)), is bellow the tolerance, the process of  Data Assimilation 
stopped, producing the optimal initial condition (Figura 6).

In the considered example, the optimal initial condition 
(Figura 3) was obtained, recovering the initial condition of the 
problem with an error less than 2%. 

5.CONCLUSIONS

Data Assimilation, process in which observations 
of the studied systems are considered as conditions to the 
computational simulation must verify, together with Adjoint 
Equation Method, produce a methodology to obtain reliable 
and highly accurate computational configurations of a system 

Figure 3 - Configuratio for t = Δt x 20

Figure 4 - Configuration for t = Δt x 90
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Figure 5 - Random perturbation Figure 6 - Initial configuration Incial

at a feasible computational cost and within a time interval that 
allows na effective decision in an oil spill.

A further question, also in the realm of the formalism 
presented here, is the optimal location of measurement 
instruments, enhancing an existing network.
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