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Abstract
The prediction, as well as the estimation of precipitation, is one of the challenges of the scientific community in the
world, due to the high spatial and seasonal variability of this meteorological element. For this purpose, methodologies
that allow the accurate interpolation of these elements have fundamental importance. Thus, we seek to evaluate the effi-
ciency of the interpolation methods in the mapping of rainfall and compare it with multiple linear regression in tropical
regions. The interpolation methods studied were inverse distance weighted (IDW) and Kriging. Monthly meteorological
data rainfall from 1961 to 1990 was obtained from 1505 rainfall stations in the Southeast region of Brazil, provided by
the National Institute of Meteorology. The comparison between the interpolated data and the real precipitation data of
the surface meteorological stations was performed through the following analyzes: accuracy, presicion and tendency.
The mean PYEAR, for summer, autumn, winter, and spring are 596 mm seasons−1 (s = ±118 mm), 254 mm seasons−1

(s = ±52 mm), 114 mm seasons−1 (s = ±54 mm) and 393 (s = ± 58 mm) mm seasons−1, respectively. The Kriging high-
light accuracy slightly high in relation to IDW. Since the MAPEKRIGING was of 2% while the MAPEIDW was of 3%. The
IDW and Kriging methods were accurate and, with low trends in precipitation estimation. While multiple linear regres-
sion showed low accuracy when compared with interpolation methods. Despite the lower accuracy the regression linear
is more practical and easy to use, as it estimates the rain with only altitude, latitude and longitude, input variables that
commonly known input variables. The largest errors in estimating the spatial distribution of precipitation occurred in
Winter for all interpolation methods.

Keywords: spatial prediction, big data, geostatistics, climate modeling.

Técnicas de Interpolação Espacial Para Mapear Precipitações em Regiões
Tropicais

Resumo
A previsão, assim como a estimativa de precipitação, é um dos desafios da comunidade científica no mundo, devido à alta
variabilidade espacial e sazonal deste elementometeorológico. Para tanto, metodologias que permitam a interpolação pre-
cisa desses elementos são de fundamental importância. Assim, buscamos avaliar a eficiência dos métodos de interpolação
no mapeamento de chuvas e compará-la com regressão linear múltipla em regiões tropicais. Os métodos de interpolação
estudados foram distância inversa ponderada (IDW) e Krigagem. Dadosmeteorológicosmensais de chuva de 1961 a 1990
foram obtidos de 1.505 estações pluviométricas da região Sudeste do Brasil, fornecidos pelo InstitutoNacional deMeteor-
ologia. A comparação entre os dados interpolados e os dados reais de precipitação das estações meteorológicas de super-
fície foi realizada através das seguintes análises: acurácia, precisão e tendência. A média PYEAR para verão, outono,
inverno e primavera foram 596 mm estações−1 (s = ±118 mm), 254 mm estações−1 (s = ±52 mm), 114 mm estações−1

(s =±54mm) e 393mm (s=±58mm)mmestações−1, respectivamente. A precisão daKriging é um pouco alta em relação
ao IDW. Já o MAPEKRIGING foi de 2% enquanto o MAPEIDW foi de 3%. Os métodos IDWe Krigagem foram precisos e
com baixas tendências na estimativa de precipitação. Enquanto a regressão linear múltipla apresentou baixa acurácia
quando comparada aosmétodos de interpolação. Apesar damenor precisão a regressão linearmúltipla émais prática e fácil
de usar, pois estima a chuva apenas com altitude, latitude e longitude, variáveis de entrada que todos conhecem.Osmaiores
erros na estimativa da distribuição espacial da precipitação ocorreram no inverno para todos osmétodos de interpolação.
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1. Introduction

Rainfall is is one of the most important processes of
the hydrological cycle (Alvares et al., 2013), considering
that its distribution and spatial variability is the most
effective component in the regionalization of climatic
conditions and also in vegetation growth (Javari, 2017).
Rainfall is the most difficult meteorological element to
model (Moraes et al., 2020; Chahine, 1992) and for this
reason, it requires more efficient prevision methodologies
which allow the inference of a value that represents the
rainfall of the area of interest (di Piazza et al., 2011;
Javari, 2016).

Interpolation is a spatialization technique used to
estimate a certain numerical variable (Apaydin et al.,
2004) for a particular unstamped geographical position,
from nearby sampled areas (Lanza et al., 2001; Tveito
et al., 2008; di Piazza et al., 2011; Borges et al., 2016). In
interpolation, the estimator methods can be divided into
two categories: deterministic and stochastic. The first one
is based only on geometric criteria and it does not provide
measures of uncertainty, such as the Inverse Distance
Weighting Method (IDW). In stochastic methods, the col-
lected values are interpreted as results of random pro-
cesses and stochastic methods are capable of quantifying
the uncertainty to the estimator, as the geostatistical mo-
dels, such as the Kriging Method (Yamamoto and Landim,
2015).

The choice of the method depends on the objective
of the study, on the territorial context of the area in ques-
tion and the available data set and its correlation (Renard
and Comby, 2006; Tveito et al., 2008; Wackernagel, 2013;
Borges et al., 2016). Several researches compared diffe-
rent methods (IDW, Kriging, and Cokriging) to monthly
precipitation in various parts of the world (di Piazza et al.,
2011; Keblouti et al., 2012; Javari, 2016). There are few
evidences of which method is more suitable on account of
a variety of conditions (Borges et al., 2016).

Some authors point out the Kriging Method as the
most accurate (Carvalho and Assad, 2005; Viola et al.,
2010), while others show that the IDW Method presents a
better performance (Keblouti et al., 2012; Gong et al.,
2014). Mello and Oliveira (2016) emphasized that kriging
was the method that showed the best results in all valida-
tion parameters, generating an annual average rainfall of
2,130.1 mm for Joinville, with no trend and minimal vari-
ance (Baú et al., 2006; Carvalho et al., 2012). In the inter-
polation by IDW, the weight of each point is the inverse of
a distance function (Shepard, 1968). The main factor that
affects the precision of IDW is the energy parameter value.
As the increase of distance, there is a reduction in weight,
especially when the energy parameter increases (Borges
et al., 2016). Closer stations have greater weight and
therefore have a greater impact on the estimate (Isaacs and
Srivastava, 1989; Nalder and Wein, 1998).

These methods have as limitations the use only of
the observations of the localities and not the covariables
(Barbulescu, 2016), since the precipitation is correlated
with environmental information, such as longitude, lati-
tude and altitude (Cantet, 2017). However, the use of se-
veral variables can make the model complex and hinder
the use of the model by most users, so multiple linear
regression is generally performed to relate precipitation to
physical predictor variables.

The novelty of this research work is highlighted by
the following points. Southeast Brazil is one of the main
regions of agricultural importance in the country, thus,
meteorological elements with precipitation is one of the
main limitations in agricultural production. However,
there are limited studies evaluating the spatial spread of
rain in the region and the most appropriate interpolator for
heating the matrix images of precipitation at non-sampling
points. As each season has its own climatological charac-
teristics, we need to find out the spatial interpolation
method more suitable for making maps. In addition, works
in the literature are limited to small areas or with reduced
meteorological points, limiting themselves to using the
standard power for the IDW method and modeling the
variogram only for annual rain. In this work, we evaluated
the interpolation of rain with a base of 1,505 rain points at
different times of the year. In this way, we reinforce the
statement of (Dirks et al., 1998), who found that the
results of an interpolation are dependent on the sampling
density of meteorological stations and, in some cases, the
precision of complex methods such as kriging is not
greater than the of simple algorithms like IDW and can
even be less than that. Finally, the interpolators used were
compared by an in-depth assessment of the results of the
cross-validation, with different parameters for modifying
the models.

In Brazil, there are few meteorological stations
spread across the country and 30% of the installed stations
need maintenance for an accurate collection of climatic
elements.. These issues make it very difficult, especially
the collection of precipitation data, due to the high spatial
variability of the climatic element.. One way out is to use
data from nearby stations and interpolate the rainfall data
using an interpolation model that promotes smaller errors.
Thus, we seek to evaluate the efficiency of the interpola-
tion methods in the mapping of rainfall and compare it
with multiple linear regression in tropical regions.

2. Material and Methods

2.1. Study area
The monthly precipitation, which is measured in unit

millimeters (mm), between 1961 and 1990 were obtained
from 1505 pluviometric stations to reach out all the South-
east Brazil (Latitude: -14.215/-25.271, Longitude:
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-53.121/-39.674). The database came from the Instituto
Nacional de Meteorologia (INMET) and and the spatial
distribution of weather stations cover the entire southeast
region (Fig. 1). We do not apply any homogenization
technique to the station data.

We evaluated the influence of altitude on precipita-
tion. When an air mass approaches a mountain (or group
of mountains) it is forced to rise reaching lower tempera-
tures, which causes precipitation. The altitude information
for the region was obtained through the TOPODATA pro-
ject (Valeriano and Rossetti, 2008), which culminates in
an extensive march of processing of the original data from
the Shuttle Radar Topography Mission (SRTM), available
for South America and refined by interpolation models for
the entire Brazilian territory, with spatial resolution of
30 m. TOPODATA images are arranged in squares com-
patible with the articulation in the scale of 1: 250,000 of
the Brazilian Cartographic System, being in sheets 1° lati-
tude by 1.5° longitude. After obtaining the squares, the
mosaic of the entire area obtained was performed to cut
out the shape file of the study area.

2.2. Spatial prediction methods
Spatial interpolation to assess rainfall variability in

the southeastern region of Brazil was compared using the
deterministic and geostatistical method. The deterministic
approach was carried out using the Inverse Distance
Weighting (IDW) (Eq. (1)).

Z(x)=

Pnx

i= 1
ωi Z(xi)

Pnx

i= 1
ωi

ð1Þ

where Z xð ) is the value of the point for which the inter-
polation is desired; nx is the quantity of the closest points
used in the interpolation of the point x; Z (xiÞ is the value
of the point xi, and ωi is the weight of xi on the point x.

We determine ωi the following equation is used
Eq. (2).

ωi=
1

h x; xið Þ
p ð2Þ

Figure 1 - Spatial distribution of meteorological stations in southeastern Brazil with their respective altitudes. Black dots = weather stations.
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where h x; xið Þ is the distance between the point x and the
point xi; and p is the power parameter, generally equal to
two.

This method assumes that the variable being mapped
decreases its influence with the distance from its sampled
location (Ding et al., 2020; Watson and Philip, 1985). The
IDW depends mainly on the inverse of the distance raised
to a mathematical power. When defining the power of the
point, the influence of the surrounding points is defined, so
that as the power increases, the interpolated values begin
to approach the value of the nearest sample point (Shi
et al., 2020; Li et al., 2012).

The determination of the best power adjustment with
the sampled points was made by evaluating the p value
equal to 2, 4, 6, 8 and 10. The best adjustment was deter-
mined by the RMSE accuracy of the real and measured
points.

The IDW assumes that the surface has a local varia-
tion, and works best if the sampling points are evenly dis-
tributed across the area, without being concentrated in a
specific location (Maleika, 2020), so the technique does
not evaluate the prediction of errors, as with methods
geostatistical, producing small areas that differ from the
general smoothing of the variable (Lu and Wong, 2008).

Kriging (Eq. (3)) is a geostatistical technique, gen-
eralized least squares regression (Krige, 1951), which
takes into account the spatial dependence between obser-
vations.

Ẑ xð Þ−m xð Þ=
Xn xð Þ

i= 1
λi xð Þ Z x1ð Þ−m xið Þ½ � ð3Þ

where λi xð Þ is observation weights Z x1ð Þ; Z x1ð Þ is inter-
preted as the realization of VAZ (xÞ; VAZ (x) is Semivar-
iogram modeling m xð Þ, is the expected value of Z xð Þ at
the point x; n xð Þ, is the number of data inside a neighbor-
hood x.

This method assumes that the distance or direction
between the sample points reflects a spatial correlation
that can be used to explain the variation in the surface,
according to the variogram modeling, in the special fore-
cast (Rata et al., 2020; Oliver, 1990). Thus, geostatistical
techniques not only have the capacity to produce a fore-
cast surface, but also provide some measure of the cer-

tainty or accuracy of the predictions (Ryu et al., 2020, Sen
and Sahin, 2001). Modeling the variogram is a funda-
mental step between the description and the spatial fore-
cast of kriging (Rata et al., 2020). Thus, a theoretical
model must be adjusted to this variogram. We adjust dif-
ferent models, selecting spherical, exponential and Gaus-
sian. The best models were determined by the cross-
validation obtained by the accuracy of the RMSE.

2.3. Regression linear models
To compare the interpolation methods, a multiple

linear regression (RLM) was adjusted to estimate the spa-
tial variability of the rainfall (Eq. (4)). The independent
variables used in the construction of the models RLM
were altitude (ALT, meters), latitude (LAT, kilometers) and
longitude (LON, kilometers) (Cantet, 2017). The depen-
dent data were the rainfall of each season of the year. The
applied method was the Ordinary Least Squares (OLS)
which seeks to minimize the sum of the squares of the
errors of the model (Draper and Smith, 1980), through the
optimization system called “Generalized Reduced Gra-
dient” (GRG2) (Lasdon and Waren, 1982).

RAINFALL=CLþ a×ALT:þ

b×LAT:þ c× LON:þ ε ð4Þ

where, RAINFALL is the rainfall of each season of the year
(mm seasons−1); a, b, and c, are the parameters of the
model (weight), ALT is altitude (m), LAT is latitude (°) and
LON is longitude (°), CL is the linear coefficient (constant
term) and ε the random error.

2.4. Criteria for comparison
The differences between the observed and measured

values were used to assess the performance of the inter-
polators through cross-validation. This parameter allows
the samples (± 30%) to be excluded temporarily, estimat-
ing the value at z from the remaining points. Thus, the real
and measured values are obtained in the interpolation.
Different numerical indices were used to measure this
approximation, including: The Pearson correlation coeffi-
cient (r) was used to assess the linearity of the correlated
between the interpolated data and the real precipitation
data from the surface meteorological stations (Eq. (5)).

r=
Xn

i= 1
Yobsi − Yobs
� �

×
Yesti − Yest
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1
Yobsi − Yobs
� �2 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1 Yesti − Yest
� �2

qs ð5Þ

where Yesti: interpolated variable; Yobsi: observed vari-
able; n: number of data; Yobs: mean of the observed vari-
able; Yest: mean of the interpolated variable.

The % explained variance derived from the adjusted
coefficient of determination (adjR2) allows a realistic
comparison of different models as an increased number of
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parameters are penalized (Eq. (6)). adjR2 compares the
sum of squared prediction errors to the sum of squared
deviations of Y about its mean.

adjR2 = 1−
1−R2
� �

× n− 1ð Þ

N − k − 1

� �

ð6Þ

where R2: coefficient of determination; n : number of data,
and k: number of independent variables in the regression.

The Random Error (Ea) is random variations in
measurements from factors that can not be controlled or
which, for some reason, have not been controlled
(Eq. (7)).

Ea=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1
Yesti − Y
� �2

N

v
u
u
u
t

ð7Þ

where Yesti : interpolated variable; Y : mean of the variable;
N : number of data.

The accuracy of interpolated precipitation data per-
formance was analyzed using the following quantitative
metrics: The Mean Squared Errors (MSE) metric is
defined as the average squared error between interpolated
data and the real precipitation data from the surface
meteorological stations (Eq. (8)); Root Mean Squared
Error (RMSE) is the difference between values predicted
by the model and values actually observed from the envir-
onment being modeled (Eq. (9)); The Mean Absolute
Error (MAE) expresses the accuracy in the same unit as
the original data, helping us to conceptualize the amount
of error (Eq. (10)); The Mean Absolute Percentage Error
(MAPE) is the accuracy as a percentage of the error
(Eq. (11)).

MSE=

Pn

i= 1
Yobsi − Yestið Þ

2

N
ð8Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1
Yobsi − Yestið Þ

2

N

v
u
u
u
t

ð9Þ

MAE=

Pn

i= 1
Yobsi − Yestij j

N
ð10Þ

MAPE(%)=

Pn

i= 1

Yesti −Yobsi
Yobsi

�
�
�

�
�
�× 100

� �

n
ð11Þ

where Yesti: interpolated variable; Yobsi: observed vari-
able; n: number of data.

We used the Willmott's Concordance index (d) ran-
ges from 0 to 1, with precision being greater the closer to 1
and less precise when closer to 0. The index d is defined
by Eq. (12).

d = 1−

Pn

i= 1
Yobsi − Yestið Þ

2

Pn

i= 1
Yesti − Y
�
�

�
�þ Yobsi − Y
�
�

�
�

� � ð12Þ

where Yesti: interpolated variable; Yobsi: observed vari-
able; n: number of data; Y : mean of the variable.

The tendency, the degree of deviation, between the
estimated average value and the actual values of inter-
polated precipitation data was analyzed using the follow-
ing quantitative metrics: The Systematic Error (Es)
indicates the tendency of interpolated precipitation values
to express results systematically above or below the actual
value and what the expected amplitude of this variation
(Eq. (13)) and Maximum Absolute Error (EAmax) is the
largest forecasted error, expressed in the same units as the
dependent series (Eq. (14)).

Es=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1
Yobsi − Y
� �2

N

v
u
u
u
t

ð13Þ

EAmax=max Yobsi − Yestij jð Þ
n
i= 1 ð14Þ

where Yesti : interpolated variable; Yobsi : observed variable;
n: number of data; Y : mean of the variable.

Reliability was determined by the Confidence Index
(C) proposed by Camargo and Sentelhas (1997), it is
represented by Eq. (15).

C= r:d ð15Þ

where r is Pearson correlation coefficient; d is accuracy
(Willmott's Concordance index).

The criterion adopted to interpret the performance
by the Confidence Index by Camargo and Sentelhas
(1997) is represented in Table 1.

The precipitation data were stratified and standar-
dized by seasons of the year for a more detailed analysis
(Table 2).

We performed the descriptive statistical analysis
whose objective was to identify the variations of the col-
lected data set, in which they were represented by box-
plot.
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2.5. Software
We used Arcgis through the Geostatistical Analyst

extension to calculate the values of the experimental var-
iograms and the theoretical models that were adjusted for
kriging, as well as the power value for the IDW method.
The input of the fields was the precipitation. Through the
exploratory analysis provided by the program, it was also
verified the normality of the data and the effect of global

and anisotropic trend. The maps for the different seasons
of the year between the evaluated interpolators were also
produced using ArcGIS, by obtaining the adjusted matrix
images while the graphics were produced using Python's
Matplotlib library.

3. Results and Discussion
The Southeast Brazil region showed great spatial

variability for annual precipitation (PYEAR) (Fig. 2). The

Table 1 - Confidence Index C established by Camargo and Sentelhas
(1997).

Value of “C” Performance

> 0.85 Excellent

0.76 to 0.85 Very good

0.66 to 075 Good

0.61 to 0.65 Median

0.51 to 0.60 Bad

0.41 to 0.50 Very bad

< 0.40 Terrible

Table 2 - Precipitation convention for the seasonal period

Season Period

P≻summer DEC/21 + JAN + FEB + MAR/20

P≻autumn MAR/21 + APR + MAY + JUN/20

P≻winter JUN/21 + JUL + AUG + SEP/23

P≻spring SEP/24 + OCT + NOV + DEC/20
Legend: PSUMMER: Precipitation in summer, PAUTUMN: Precipitation in
autumn, PWINTER: Precipitation in winter; PSPRING: Precipitation in
spring. DEC/21 is data collection from December 21 onwards

Figure 2 - Spatial variability of annual precipitation of Southeast Brazil. Legend: Red dots = weather stations with rainfall ranging from 746-1,000 mm
y−1; Orange dots = weather stations with rainfall ranging from 1,001-1,300 mm y−1; Yellow dots = weather stations with rainfall ranging from
1,301-1,600 mm y−1; Green dots = weather stations with rainfall ranging from 1,601-1,900 mm y−1; Light blue dots = weather stations with rainfall ran-
ging from 1,901-2,100 mm y−1; Dark blue dots = weather stations with rainfall ranging from 2,101-2,400 mm y−1 and, Black dots = weather stations with
rainfall ranging from 2,401-2,900 mm y−1.
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mean PYEAR for the Brazilian Southeast is 1,379 mm
year−1 with a standard deviation (s) of ± 220 mm year−1.
The smallest PYEAR were of 790 mm year−1 and occurred
in the North/Northeast of Minas Gerais and the highest
PYEAR were of 2,869 mm year−1 and occurred mainly in
São Paulo coast. In most of the Southeast, the PYEAR
shows a variation between 1,200 and 1,600 mm year−1.
This spatial variability of PYEAR was also described by
other authors, such as Alvares et al. (2013) and Aparecido
et al. (2018).

The mean PYEAR, for summer, autumn, winter, and
spring are 596 mm seasons−1 (s = ±118 mm), 254 mm
seasons−1 (s = ±52 mm), 114 mm seasons−1 (s = ±54 mm)
and 393 (s = ±58 mm) mm seasons−1, respectively
(Fig. 3). The States of São Paulo (SP), Minas Gerais
(MG), Rio de Janeiro (RJ), and Espírito Santo (ES), that
compose the Southeast region of Brazil have distinct sea-
sonal precipitations (Fig. 3), since the PYEAR of SP, MG,
RJ, and ES for the summer were of 613 mm seasons−1;
604 mm seasons−1; 542 mm seasons−1 and 406 mm sea-
sons−1 and for the winter were of 143 mm seasons−1;
84 mm seasons−1; 143 mm seasons−1 and 158 mm sea-
sons−1, respectively (Fig. 3).

The relationship between rainfall and altitude in the
southeastern region was weak (Table 3). The Pearson cor-
relation with the exception of winter was positive between
the seasons, with a higher value in the summer (0.50) and

R2 of 0.25 and a lower value in the autumn, with r of 0.09
and R2 of 0.01. This relationship, being positive, shows
that high altitudes correspond to values of high rain and
low altitudes correspond to values of low rain. However,
the low correlation coefficients, as well as the determina-
tion between the seasons, can limit the use of altitude
information in mapping rainfall in this region.

The power value for interpolation by precipitation
IDW according to the RMSE is defined in Fig. 4. The p
value that presents the greatest accuracy is p4, with the
lowest RMSE in autumn (13.0) and highest spring (19.1).
P10 obtained the lowest performance among all para-
meters. This result can be explained, because as the power
value increases, more emphasis can be placed on the near-
est points. However, distant points lose weight in the
interpolation, which may increase the prediction error.
Therefore, due to the accuracy obtained from the RMSE,
the ideal power value for rain interpolation in the south-
eastern region is equal to 4.

The variogram model adjusted for precipitation is
observed in Fig. 5. The exponential model showed the
highest performance in all seasons, with RMSE of 12.16,
8.56, 12.31 and 14.86 in summer, autumn, winter and
spring, respectively. The Gaussian model had the lowest
performance, with RMSE values reaching 19.54 in the
spring. We also observed that the errors obtained between
the actual and measured values in the different models
show a trend of greater negative error, that is, with over-
estimated values as greater precipitation values occur.
Based on the experimental variogram, the exponential
mode was selected for rain spatialization in southeastern
Brazil.

The spatialization of pluvial precipitation for each
season of the year in Southeast Brazil, performed by dif-

Figure 3 - Boxplot of the rains for each season of the year in south-
eastern Brazil. Legends: SP is São Paulo; MG is Minas Gerais; RJ is Rio
de Janeiro; ES is Espírito Santo states. (Boxplot = • is average, ─ is
median, ⬚ is 50% of values, I is 90% of values and, * is values
extremes).

Table 3 - Coefficients of determination (R2) and correlation (r) between
precipitation (mm) in different seasons and altitude (m).

Summer Autumn Winter Spring

r 0.50 0.09 -0.26 0.35

R2 0.25 0.01 0.07 0.13

Figure 4 - Determination of the RMSE value (accuracy) of power p
using the IDW interpolator for different seasons in the southeastern
region of Brazil.
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ferent methods of interpolation in this study (IDW and
Kriging), it was observed that both methods followed the
spatial tendency of the real precipitation data. The pre-
cipitation in spring (PSPRING) that occurs in the Northeast

of MG shows values close to 235-242 mm, and the meth-
ods interpolated and estimated values between 243-
295 mm (IDW) and 244-296 mm (Kriging), respectively
(Fig. 6 D).

Figure 6 - Rainfall interpolation with IDWand kriging methods for each season of the year in southeastern Brazil in the period from 1961 to 1990. Legend:
A1 is Rain interpolation for summer with IDWmethod; A2 is Rain interpolation for summer with Kriging method; B1 is Rain interpolation for autumn with
IDW method; B2 is Rain interpolation for autumn with Kriging method; C1 is Rain interpolation for winter with IDW method; C2 is Rain interpolation for
winter with Kriging method; D1 is Rain interpolation for spring with IDWmethod and, D2 is Rain interpolation for spring with Kriging method.
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The interpolation methods IDW and Kriging
demonstrated high accuracy to estimate the precipitation
for all seasons of the year in Southeast region of Brazil
(Fig. 7) since the R2 was above 0.84 and the MAPEs
below 6% for all seasons (Table 3). By the Confidence
Index C, established by Camargo and Sentelhas (1997),
both estimation methods were considered “excellent” for
all the seasons of the year, since they show a perfor-
mance index of 0.85.

The Kriging highlight accuracy slightly high in rela-
tion to IDW. Since the MAPEKRIGING was of 2% while the
MAPEIDW was of 3%. Considering that the mean PYEAR
of Southeast is of 1,379 mm year−1, this difference
between the errors (MAPEKRIGING - MAPEIDW) of 0.5%,
represents a difference in PYEAR of just ± 7 mm. Carvalho
and Assad (2005); Viola et al., (2010); Das (2019) also
deem the Kriging method more accurate in comparison
with the IDW

The methods were more accurate in the interpolation
of precipitation in summer (PSUMMER) and less accurate in
the interpolation of precipitation in winter (PWINTER). The
best accuracy was observed in the interpolation of
PSUMMER by the Kriging method, where it was observed
the following statistical indices: r = 0.99; R2 = 0.98;
d = 1.00; C = 0.99; Ea = 15; Es = 1; EAmax = 103;
MSE = 102; RMSE = 12; MAE = 4, and MAPE = 1%. The
low accuracy was the interpolation of PWINTER using the
IDW method, since the following statistical indices were
revealed: r = 0.86; R2 = 0.81; d = 0.90; C = 0.91; Ea = 20;
Es = 8; EAmax = 295; MSE = 278; RMSE = 17;
MAE = 11, and MAPE = 6% (Table 4). Bargaoui and
Chebbi (2009) showed a high accuracy in rainfall inter-
polation for Kriging. Pellicone et al. (2018) evidenced the
maps obtained with the IDW showed a distribution with
punctual areas corresponding to high or low rainfall input
data values.

Figure 7 - Performance between real and estimate rainfall by the interpolation methods of IDW and Kriging. A) Summer; B) Autumn; C) Winter;
D) Spring.
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According to the distributions of the errors (PREAL -
PINTERPOLATED) in function of the rainfall variability for
each season of the year (Fig. 8). The interpolation of
PSUMMER and PAUTUMN obtained the highest errors with

high rainfall, above 700 mm for PSUMMER and above
400 mm for PAUTUMN, for both methods (Fig. 6 (A,B)). In
PWINTER and PSPRING, the highest deviations occurred for

Table 4 - Statistical indices used to evaluate the accuracy of the interpolation methods of IDW and Kriging for the estimate of rainfall in the period from
1961 to 1990.

Statistical indices Summer Autumn Winter Spring Average
*

IDW Kriging IDW Kriging IDW Kriging IDW Kriging IDW Kriging

r 0.99 0.99 0.96 0.98 0.86 0.97 0.94 0.95 0.94 0.97

R2 0.98 0.98 0.93 0.96 0.84 0.93 0.89 0.90 0.91 0.94

d 0.99 1.00 0.98 0.99 0.90 0.98 0.97 0.97 0.96 0.99

C 0.99 0.99 0.95 0.97 0.91 0.95 0.91 0.92 0.94 0.96

Ea 16 15 13 10 20 13 18 19 17 14

Es 5 1 7 1 8 6 8 5 7 3

EAmax 103 104 144 110 295 201 267 205 202 155

MSE 218 102 204 1,010 278 208 384 363 271 196

RMSE 17 12 14 11 17 14 20 19 17 14

MAE 9 4 6 4 11 6 9 7 9 5

MAPE 2 1 2 1 6 5 2 2 3 2
*
Means of the parameters for all seasons of the year.

Figure 8 - Distribution of deviations for each interpolation method of the rainfall of the seasons of the year in Southeast Brazil in the period from 1961 to
1990.
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low rainfall (100 mm seasons−1) and higher rainfall
(700 mm seasons−1) (Fig. 8 (C,D)).

The performance of RLM to estimate the rainfall
showed a mean accuracy in the rainfall estimates, with
MAPEs of 13%, 13%, 30%, and 11% for Summer,
Autumn, Winter, and Spring, respectively (Fig. 9). A value
of MAPE of 11% as observed in Spring is considered low,
taking into account that for average rainfall of 500 mm an
error of approximately ± 53 mm can happen. The RLM
obtained less efficient results in spatial estimates of pre-
cipitation in Southeast Brazil, in comparison with the
interpolation methods studied, whereas the mean MAPEs
for IDW and Kriging were 3% and 2% (values considered
low), while the mean MAPE of RLM was of 17%.

The variable with greater weight in RLM was the
latitude, showing inverse relation and coefficients of
−14.6; −10.3; −13.4, and −0.3, for Summer, Autumn,
Winter, and Spring, respectively (Table 5).

4. Final Considerations
These results are important for the scientific com-

munity to know which interpolator to use to spatially esti-

mate the rainfall values for the southeastern region of
Brazil.

Comparing the methods of IDW and Kriging, both
were accurate, and with low tendencies for precipitation
estimate. The accuracy in estimating rainfall level by
methods interpolation (IDWand Kriging) in terms of r, R2,
d, C, Ea, Es, EAmax, MSE, RMSE, MAE, and MAPE,
varies according to the season of the year. For example, R2
in the winter were 0.86 and 0.97 mm for IDW and Kriging
and summer were 0.99 and 0.99 mm for IDWand Kriging,
respectively.

The multiple linear regression (MLR) demonstrated
low accuracy in comparison with the interpolation meth-
ods IDW and Kriging. For example, the average MAPE
for IDW and Kriging were 3 and 2%, respectively and for
MLR it was 16.75%. Despite the lower accuracy the
regression linear is more practical and easy to use, as it
estimates the rain with only altitude, latitude and long-
itude, input variables that everyone knows.

The biggest errors in the estimate of the spatial dis-
tribution of precipitation occurred in Winter for all the
interpolation methods (IDW, Kriging, and RLM). For
example, MAPE was 6, 5 and 30% for IDW, Kriging, and
RLM, respectively. The spatial information about rainfall

Figure 8 (cont.) - Distribution of deviations for each interpolation method of the rainfall of the seasons of the year in Southeast Brazil in the period from
1961 to 1990.
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Figure 9 - Performance between real and estimated rainfall in the period from 1961 to 1990 by multiple linear regression for the season's summer (a),
autumn (b), winter (c), and spring (d).

Table 5 - Parameters of the multiple linear regression models with their statistical indices for the estimate of rainfall in the period from 1961 to 1990.

Multiple linear regression (coefficients)

Summer Autumn Winter Spring

Intersection -157.9 34.2 -65.5 741.7

Altitude 0.2 -0.0 -0.1 0.1

Latitude -14.6 -10.3 -13.4 -0.3

Logitude -6.7 1.1 1.5 7.6

Statistical metrics

Summer Autumn Winter Spring

p-value 0.05 0.05 0.05 0.05

r 0.65 0.54 0.63 0.56

R2 0.42 0.29 0.40 0.31

D 0.77 0.65 0.74 0.68

C 0.50 0.35 0.47 0.38

Ea 59 21 26 37

Es 69 32 32 55

EAmax 491 327 364 430

(continued)
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is an important factor in terms of formation of governing
character. Southeast of Brazil demonstrated average
annual rainfall for summer, autumn, winter, and spring are
596 mm seasons−1 (s = ±118 mm), 254 mm seasons−1

(s = ±52 mm), 114 mm seasons−1 (s = ±54 mm) and 393
(s = ±58 mm) mm seasons−1, respectively. As future
works, we suggest testing the same interpolators through-
out Brazil, covering specific regions such as the Pantanal
and the Amazon rainforest.
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