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Resumo
Pela grande atividade econômica e densidade populacional, a região sudeste do Brasil vivencia processos acelerados de
mudanças no uso e cobertura do solo, que contribuem para modificações no balanço de radiação (BR) na superfície.
Neste estudo, avaliamos os componentes do BR de diferentes conjuntos de dados de alta resolução, última geração,
nesta região do país em dois períodos (fev/2005-jan/2006 e mar/2015-fev/2016). Em geral, todos os conjuntos de dados
representaram adequadamente a sazonalidade dos componentes do BR (exceto albedo). O ERA5-Land apresenta com o
menor erro relativo médio para representar o albedo (≈ 15%), radiação de onda longa atmosférica (DLWR ≈ 4,5%) e
radiação de onda longa da superfície (ULWR ≈ 3,6%). Na estimativa de radiação de ondas curtas, o GLASS foi o me-
lhor (≈ 14%). As incertezas neste último podem estar associadas à dificuldade para representar a variabilidade de
cobertura de nuvens no período chuvoso. As falhas na estimativa do albedo devem-se à incapacidade de simular as pro-
priedades da superfície. DLWR e ULWR apresentaram os melhores desempenhos e suas incertezas estiveram relaciona-
das a problemas no cálculo das temperaturas do ar e da superfície, respectivamente. ERA5-Land e GLASS são
adequados para estimar os componentes da BR no sudeste do Brasil.

Palavras-chave: ERA5-Land, GLASS, GLDAS, Sudeste do Brasil, balanço de radiação.

Estimativas do Balanço de Radiação no Sudeste do Brasil: Observações,
Satélite e Reanálise

Abstract
Due to the high economic activity and population density, the southeast region of Brazil experiences accelerated pro-
cesses of changes in land use and cover, which contribute to modifications in the radiation balance (RB) at the surface.
In this study, we evaluated the RB components from different state-of-the-art high resolutions datasets over this region
of the country during two periods (Feb/2005-Jan/2006 and Mar/2015-Feb/2016). In general, all datasets adequately
represented the seasonality of the RB components (except albedo). The ERA5-Land has the lowest mean relative error
to represent albedo (≈ 15%), downwelling longwave radiation (DLWR ≈ 4.5%) and upwelling longwave radiation
(ULWR ≈ 3.6%). In the case of the downwelling shortwave radiation estimation, GLASS was the best (≈ 14%). Uncer-
tainties in the latter may be associated with the difficulty in representing the variability of cloud cover during the rainy
season. Failures in estimating albedo are due to the inability to simulate surface properties. DLWR and ULWR presented
the best performances and their uncertainties were related to problems in the computation of air and surface tempera-
tures, respectively. ERA5-Land and GLASS are adequate to estimate RB components in southeastern Brazil.
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1. Introduction

Brazilian southeast region (SE) is the main driver of
economic development in the country, since it concentra-
tes around 42% of the population and produces approxi-
mately 56% of the gross domestic product (IBGE, 2018).
All this development lead to large changes in land cover.
Urban areas, pastures and crops - such as coffee, soy and
sugarcane - replaced areas of native vegetation in the
Atlantic Forest and Cerrado biomes, leaving them with a
low proportion of remaining native vegetation and biodi-
versity highly threatened (Alvarenga et al., 2016; Dias
et al., 2016; Grecchi et al., 2014; Sano et al., 2010).

Microclimate studies of biomes associate deforesta-
tion with potential impacts on the climate system, primary
caused by changing the components of radiation balance
(RB) (Conte et al., 2019; Macdougall and Beltrami, 2017).
Estimates of the amount of solar energy received, reflected
and emitted by the Earth's surface and the atmosphere,
plays a prominent role to the understanding of past
weather, long-term features and future climate (Wild,
2016, 2020). Moreover, the study of the radiation balance
on the earth's surface is relevant to solve some scientific
questions, such as the practical viability of solar energy,
the reaction of plants to the wavelengths necessary for
photosynthesis, the potential consumption of water and
productivity of crops/ecosystems, among others. (Green
et al., 2017; Mercado et al., 2009; Wild et al., 2015).

Observations of the RB components have been car-
ried out for some decades through net radiometers (Drie-
mel et al., 2018; Wild et al., 2017). However, this
instrumentation besides having a high cost and requiring
special techniques of operation and calibration, provides
measurements that are representative only for small areas
that cannot be used at larger scales (Ferreira et al., 2020).
In most case in Brazil meteorological stations only mea-
sures shortwave component (Xavier et al., 2016), while
the longwave component is restricted to individual micro-
meteorological experiments or recent networks of specia-
lized stations, such as SONDA (INPE, 2021).

Remote sensing and reanalysis appear as alternatives
to solve the absence and limitations of surface measure-
ments of the RB components. There are two types of re-
mote sensing algorithms, those that use only information
from satellite sensors (Bisht et al., 2005; Ramírez-Cuesta
et al., 2018), and others that combine on-board sensors
with surface station data (Amatya et al., 2015; Carmona
et al., 2015; Ferreira et al., 2020; Silva et al., 2015). Ho-
wever, previous methodologies has been restricted to
cloudless days. Bisht and Bras (2010, 2011) proposed a
model to estimate the RB components (instantaneous and
daily) for all sky conditions, which uses only MODIS sen-
sor information. Although useful, this methodology com-
puted the daily RB from only two measurements, which
are insufficient to capture cloud dynamics, especially for

latitudes higher than 30°, where the MODIS's passage is
1-2 days (Wolfe et al., 2002). On the other hand, reana-
lyses offer temporal high resolution and consistency, as
well as data under all sky conditions. These are frequently
used for atmospheric model validation, and have con-
tributed to clarify the relative importance of the data
assimilation improvements versus observational improve-
ments for numerical weather prediction over the last deca-
des (Bengtsson et al., 2007). However, caveats result from
their coarse resolutions (> 100 km) and assimilation of
data obtained from atmospheric profiles and measure-
ments, which cause systematic biases in the RB products
(Jia et al., 2018; Slater, 2016; Zhang et al., 2016).

To overcome the problems mentioned above, studies
have combined satellite and reanalysis data to determine
the RB components at global (Verma et al., 2016) and
regional scales (Moukomla and Blanken, 2017; Oliveira
et al., 2016; Yu et al., 2014). In addition, with the recent
advances in data assimilation, increment in the quality and
quantity of observed data, increase in spatial resolutions
(< 30 km) and improvements in the parameterization of
models, blended datasets have been made available for
involving different meteorological parameters, such as the
RB components (Muñoz-Sabater et al., 2021; Rodell et al.,
2004; Zhang et al., 2019). Nevertheless, it is crucial to
assess the reliability of each dataset, and to identify the
strengths and underlying biases associated, before using
them (Dolinar et al., 2016).

In this context, the present study focuses on evalua-
ting the performance of state-of-the-art high-resolution
datasets (reanalyses and satellite), that can suitably fill the
lack of observation in Brazil as an alternative for monito-
ring the RB components. The paper is structured as fol-
lows. Section 2 introduces the study area, climate datasets
and methods. Section 3 details and discusses the perfor-
mance in estimating the RB components based on diffe-
rent datasets, while the section 4 presents the concluding
remarks.

2. Materials and Methods

2.1. Study area
The study area corresponds to the southeast region

of Brazil, located between latitudes 14° S and 25° S and
longitudes 54° Wand 39° W (Fig. 1). The region has a ter-
ritorial extension of 924,620 km2 (approximately 10 times
the Portugal surface area, or 1.6 times of the Iberian
Peninsula), formed by the States of Minas Gerais (MG),
São Paulo (SP), Espirito Santo (ES) and Rio de Janeiro
(RJ). In addition, it has a population of approximately
88.6 million people. The region is covered by Mata Atlân-
tica (Atlantic Forest), Cerrado (Savanna) and Caatinga
(Fig. 1b). Mata Atlântica is concentrated mainly in the east
of the territory, while Cerrado is present in the interior of
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SP and west of MG. Caatinga biome corresponds to small
portion of the north of the region. The seasonal cycle of
precipitation, humidity and circulation are determined by
the South Atlantic Convergence Zone (SACZ) during the
spring and summer seasons, while the frontal systems
dominate the winter season, which is predominantly dry
(Bernardino et al., 2018; Zilli et al., 2017). The relief,
which varies from sea level to altitudes above 1800 m, has
an influence on the region temperature, decreasing it as the
elevation increases (Cavalcanti et al., 2009).

2.2. Observed data for validation
Measurements of the RB components from three

different surfaces were used to validate the dataset out-
puts, as described below. These stations are representative
of three different environment conditions, in terms of
vegetation and land cover changes. The short data collec-
tion periods (one year) are because the all stations were
part of short-term academic projects.

2.2.1. USR station

This is an experimental sugarcane field belonging to
Power Plant Santa Rita (USR) located in the State of SP
(Fig. 1c). This station measures (latitude 21°38’13” S,
longitude 47°47’25” W), downward shortwave radiation
(DSWR), albedo (α), downward longwave radiation
(DLWR) and upward longwave radiation (ULWR) that
were collected between February-2005 and January-2006.
This place has an average altitude of 552 m and corre-
sponds to sugarcane plants in the first cycle of regrowth
(Oliveira et al., 2018; Silva et al., 2015).

2.2.2. PDG station

This station is installed in the reserve Pé-de-Gigante
(PDG) within the Vassununga State Park (Instituto Flores-
tal) located in the State of SP (Fig. 1c). The station (lati-
tude 21°37’9.26” S, longitude 47°37’56.38” W) measured
DSWR and α between February-2005 and January-2006 as

Figure 1 - Study area characteristics and localization of stations.
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well. This place corresponds to an area of 1,213 hectares
of undisturbed woody savanna vegetation called Gleba
Cerrado Pé-de-Gigante, with an average altitude of 710 m
(Oliveira et al., 2018; Silva et al., 2015).

2.2.3. Marambaia station

Located in the permanent preservation area at Barra
de Guaratiba, State of RJ (Fig. 1d), at latitude 23°03’1” S
and longitude 43°35’34” W. The vegetation corresponds
mainly to Tapirira guianensis Aubl and Calophyllum bra-
siliensis Cambess, and the soil, although with a sandy tex-
ture, presents a large amount of organic matter in the
superficial horizons (Carvalho et al., 2015; Pereira et al.,
2012). Here, DSWR, α, DLWR and ULWR were measured
between March-2015 and February-2016.

2.3. Gridded datasets
Five different modern gridded datasets were used.

The RB components were extracted directly from ERA5-
Land, GLDAS and GLASS. Air temperature (Ta), DSWR,
and incident solar radiation at the top of the atmosphere
(Ro), used to compute DLWR with the SEBAL algorithm
(Section 2.4), were extracted from the Xavier and CERES-
SYN datasets. Table 1 summarizes the characteristics of
each dataset.

ERA5-Land is based on running the land component
from ERA5 reanalysis of the European Centre for Me-
dium-Range Weather Forecasts (ECMWF) but without
coupling to the atmospheric models (Cao et al., 2020).
This product has a spatial resolution of 0.1° × 0.1°, with
hourly temporal frequency, from 1981 to present (Pelosi
et al., 2020). The radiation scheme performs calculations
of the shortwave and longwave radiative fluxes using the
predicted values of temperature, humidity, cloud, and
monthly-mean climatologies for aerosols and the main
trace gases (Muñoz-Sabater et al., 2021).

The Global Land Data Assimilation System
(GLDAS) reanalysis is a project lead by the National
Aeronautics and Space Administration (NASA). The RB
components are available in a spatial resolution of 0.25° ×
0.25°, temporal resolution of 3 hours, for the 2000-present
period (Oliveira et al., 2016). The radiation fluxes are cal-
culated as a function of atmospheric transmissivity and
emissivity, which are determined by cloud type and
amount, derived from NOAA satellites (Rodell et al.,
2004).

The Global Land Surface Satellite (GLASS) pro-
ducts are produced from multiple satellite observations,
exploring the use of multiple algorithms for the same pro-
duct to improve accuracy and stability, optimizing the use
of temporal signatures in remote sensing data and the
existing satellite high-level products (Liang et al., 2013;
Zhao et al., 2013). Albedo and DSWR products are avai-
lable in frequency of 8 days and 1 day, respectively. Both
products have spatial resolution of 0.05° × 0.05°. The
GLASS albedo product is produced from MODIS data,
based on two direct estimation algorithms from surface
reflectance, top of atmosphere radiance, and a statistics-
based temporal filtering fusion algorithm (Liang et al.,
2013). The DSWR product of GLASS is generated based
on an improved look-up table method using both polar-
orbiting and geostationary satellite data, including
MODIS, Meteosat Second Generation (MSG) SEVIRI,
the Multi-functional Transport Satellite (MTSAT)-1R, and
the Geostationary Operational Environmental Satellite
(GOES) Imager (Zhang et al., 2019, 2014).

Clouds and the Earth's Radiant Energy System
(CERES) is a mission of NASA that provided the climate
community a 20-yr record of observed top-of-the-atmo-
sphere (TOA) fluxes (Doelling et al., 2016). The CERES
synoptic (SYN) product incorporates derived fluxes from
the geostationary satellites (GEOs) in 1° x 1° spatial reso-
lution and daily temporal frequency. OBS-Brazil dataset

Table 1 - Characteristics of gridded datasets used in this study.

Data Source Resolution Variables used Available period

Spatial Temporal

Reanalysis

ERA5-Land ECMWF 0.1° x 0.1° 1 h DSWR, Albedo, DLWR, ULWR 1981-present

GLDAS NASA 0.25° x 0.25° 3 h DSWR, Albedo, DLWR, ULWR 2000-present

Satellite

GLASS products University of Maryland 0.05° x 0.05° 1 day DSWR 2000-2017

8 days Albedo

CERES-SYN NASA 1° x 1° 1 day Ro 2000-present

Observation

OBS-Brazil University of Texas/Uni-
versidade Federal de Espirito
Santo

0.25° x 0.25° 1 day DSWR 1980-2017

0.1° x 0.1° Ta
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contains daily records of Ta and DSWR from 735 weather
stations across Brazil. These were interpolated in a grid-
ded of 0.25° x 0.25° for DSWR and 0.1° x 0.1° for Ta, in
the 1980-2017 period (Xavier et al., 2016). For conven-
tional stations, DSWR was estimated using the Ångström-
Prescott equation, while at automatic stations, DSWR was
directly measured using Eppley thermopile pyranometers.

2.4. Radiation Balance (RB)
The RB can be defined, by its four components, as

the difference between incoming and outgoing energies at
the Earth surface, expressed as:

RB=DSWR 1− αð Þþ DLWR−ULWRð Þ ð1Þ

With the exception of albedo (dimensionless), all compo-
nents were calculated in W/m2. The DSWR is the radiation
received directly or indirectly from the sun by a horizontal
plane on the Earth's surface, and was extracted from the
ERA5-Land, GLDAS and GLASS datasets. Albedo is the
fraction of DSWR reflected by the Earth's surface, supplied
by the ERA5-Land, GLDAS and GLASS datasets. The
ULWR refers to longwave radiation emitted by the Earth's
surface towards the atmosphere, extracted from the ERA5-
Land and GLDAS datasets. The DLWR is the longwave
radiation emitted by the atmosphere towards the Earth's
surface, calculated by the ERA5-Land and GLDAS data-
sets, and through an adaptation of the SEBAL algorithm.
This methodology was proposed by Bastiaanssen et al.
(1998) to calculate the energy balance on surface, and the
DLWR is obtained by:

DLWR= σɛaTa ð2Þ

ɛa = 0:85 − ln τð Þ
0:09

ð3Þ

where σ is Stephen-Boltzmann constant (5.6697 x 10-8 W/
m2.K4), ɛa represents the atmospheric emissivity, Ta (K)
was taken from Xavier dataset, and τ is the one way atmo-
spheric transmissivity, which is calculated in this study as
the relationship between solar radiation incident on the
surface and at the top of the atmosphere, using the fol-
lowing equation:

τ =
DSWR
Ro

ð4Þ

where DSWR and Ro were extracted from Xavier dataset
and CERES-SYN, respectively.

2.5. Statistic validation
The performance of the datasets in the calculation of

the RB components was determined by comparison reana-
lyses, satellite-based and blended data with USR, PDG
and Marambaia observations. Four statistical indices were

used: correlation coefficient (r), bias, root-mean-square
error (RMSE) and mean relative error (MRE). The linear
relationship between estimates and observations is explain
by r. The bias is the tendency to overestimate or under-
estimate the error. The RMSE is the general error in the
predictions in relation to the actual observed value. The
MRE is a measure of forecast accuracy, expressed as a
percentage. These statistical indices are widely used in
validation studies of the RB components (Ferreira et al.,
2020; Oliveira et al., 2016; Silva et al., 2015; Verma et al.,
2016; Zeng et al., 2020). It is noteworthy that, although
there are few stations in relation to the size of the territory,
they represent different soil cover conditions, environ-
mental and, in particular, distinct weather and cloud con-
ditions in the study area.

To understand the variations of each evaluated pro-
ducts, the main variables that influence the RB compo-
nents are analyzed. Previous studies show that DSWR,
Albedo, DLWR and ULWR are strongly determined by
cloud cover fraction (CF), enhanced vegetation index
(EVI), Ta and land surface temperature (LST), respectively
(Jiao et al., 2015; Oliveira et al., 2018; Wang et al., 2018;
Wild, 2016; Zuluaga et al., 2021). Except for Ta (directly
measured at all stations) the other variables were obtained
from MODIS sensor products.

3. Results and discussion

3.1. DSWR
The DSWR is the basic energy for biological, physi-

cal and chemical processes (Zhang et al., 2020), as well as
being an increasingly attractive resource to meet growing
energy demands through photovoltaic energy conversion
(Wild et al., 2015). For validation of the DSWR, Table 2
shows the performance results of ERA5-Land, GLDAS
and GLASS to estimate DSWR with respect to stations.
Figure 2 shows the comparison between observations and
the datasets based on scatterplots analyses.

The standard deviation (SD) indicates that the
monthly variability of datasets ranges from 30% to 40%,
compared to their annual mean values (Table 2). ERA5-
Land shows a statistically significant underestimation of
DSWR for all stations (Fig. 2a-c, Table 2). GLDAS and
GLASS do not present statistically significant bias, except
for GLDAS at the PDG station (bias = 10 W/m2, Table 2).
Differences between GLASS and GLDAS are evident
when analyzing the error values, which is smaller in
GLASS (Table 2). The latter displays values of
RMSE < 40 W/m2 and MRE < 18% for all stations, while
the lowest GLDAS values are RMSE = 43 W/m2 at PDG
and MRE = 21% at USR. ERA5-Land presents the largest
errors at the Marambaia station (RMSE = 93 W/m2 and
MRE = 49%) and the smallest at the PDG station
(RMSE = 55 W/m2 and MRE = 25%), still much larger
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than those presented by GLASS. Verifying the ERA5-
Land at the USR station, the r values (0.7-0.9) suggests a
moderate-strong relationship between the datasets and
observations (Table 2). Among all datasets, GLASS dis-
plays the highest concentration of scatter points on the 1: 1
line in the three stations (Fig. 2).

The comparison between gridded products and local
station measurements can induce errors, because the pixel
assumes unique values for spatially heterogeneous sur-
face, which may not correspond to the observations sur-
face type (Huang et al., 2016). Thus, spatial resolution
plays an important role, as in the case of GLDAS, where
the proper scatter (Fig. 2d-f), may be related to its grid
(0.25° lat/lon), as argued by Oliveira et al. (2016) in the
Amazon. However, ERA5-Land, despite having a more
refined spatial resolution (0.1° lat/lon), presents larger
scattering (Fig. 2a-c) and higher errors (Table 2) in com-
parison to other datasets.

Figure 3 presents the daily DSWR variability by
month in the three stations. As expected, the maximum
values of observed DSWR (362 W/m2 at USR, 340 W/m2

at PDG, and 371 W/m2 at Marambaia), is observed for the
austral summer. This season takes place between Decem-
ber and February, when the solar zenith angle over the
Southern Hemisphere is the lowest and, therefore, more
radiation is received at the top of the atmosphere. The

minimum values of observed DSWR appear in September,
in the beginning of spring (26 W/m2 at USR and 25 W/m2

at PDG), and in July, during winter (34 W/m2 at Maram-
baia). All datasets are able to reproduce the DSWR seaso-
nal variability. During summer, the highest DSWR values
are displayed, as well as greater variability (longer box
plots), associated with changes in rainfall and cloudiness,
caused by South American Monsoon (SAM). This, begins
at Equatorial Amazon in the spring, and spreads rapidly to
the east and southeast of the country during summer,
boosting the SACZ (Garcia and Kayano, 2015). In con-
trast, in winter, the lowest DSWR values and the least
variability (shorter box plots) are shown, related to the dry
season and the cloudless sky that mark the end of SAM
(Garcia and Kayano, 2015). In this period the cloudiness
of the southeastern region results from the presence of
substantially cold frontal systems (Zandonadi et al., 2015).

Considering that Zuluaga et al. (2021) found that
cloud cover is the main factor that contributes to the
DSWR variations in southeastern Brazil, Fig. 4 shows the
correlation between cloud fraction (CF), and the observed
and estimated DSWR standard deviation. At the USR
(Fig. 4a) and PDG (Fig. 4b) stations, values of r (> 0.8)
indicate that, in general, datasets are able to simulate the
strong influence that CF has on DSWR variations. In these
two seasons, ERA5-Land presents the main lags in the
spring-summer transition (October-December), when
SACZ starts to act on the region. The Marambaia station
(Fig. 4c) exhibits greater CF variability, probably related
to constant advection from the ocean, making it more dif-
ficult for datasets simulations. Here, ERA5-Land and
GLDAS show difficulty in simulating DSWR variability
during spring and much of summer (December and Jan-
uary). GLASS displays correlation values closer to the
observations, with some differences during autumn and
winter, when CF is mainly related to frontal systems.

In short, the combination of geostationary and polar
orbit satellites, high spatial resolution, and algorithms for
different cloud conditions, makes GLASS the best option
for DSWR studies in southeastern Brazil. In addition to the
previous one, all datasets are restricted to continental
areas, which should influence the large errors presented in
pixels near the coast (Kara et al., 2007; Pelosi et al.,
2020), as in the case of the Marambaia station.

3.2. Albedo
Albedo is a fundamental parameter of the RB; since

it controls the energy budget through the regulation of the
DSWR quantity reflected by the surface (He et al., 2018).
Table 3 contains the statistical analyses of the datasets in
estimating the surface albedo. Figure 5 shows the scatter-
plots between observed and estimated albedo from the
datasets.

Estimates of albedo at the USR station deliver the
largest errors among the 3 stations (Table 3) with the worst

Table 2 - Statistic performance of datasets to estimate DSWR compared
to the observations (Obs) from stations. Values in bold indicate sig-
nificant values at 95% level (p-value ≤ 0.05).

Station Obs ERA5-Land GLDAS GLASS

USR

Mean (W/m2) 222 170 222 214

SD (W/m2) 71 50 66 64

r 0.7 0.8 0.9

Bias (W/m2) -52 0 -8

RMSE (W/m2) 71 44 32

MRE (%) 29 20 12

PDG

Mean (W/m2) 213 172 223 216

SD (W/m2) 63 50 64 66

r 0.8 0.8 0.9

Bias (W/m2) -42 10 3

RMSE (W/m2) 55 43 32

MRE (%) 25 21 13

Marambaia

Mean (W/m2) 191 160 190 194

SD (W/m2) 76 61 61 79

r 0.2 0.8 0.9

Bias (W/m2) -31 -1 2

RMSE (W/m2) 93 45 38

MRE (%) 49 28 17
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results for GLDAS (RMSE = 0.067, MRE = 34.059%),
followed by GLASS (RMSE = 0.064, MRE = 32.615%)
and ERA5 -Land (RMSE = 0.039, MRE = 18.739%).
Observed data show a mean albedo of 0.189 but varying
substantially during the studied period (SD = 0.016).
These values are underestimated by the datasets with a
mean bias of -0.054 (Table 3), and a concentration of scat-
ter points below the 1: 1 line (Fig. 5a). Despite these
results, GLDAS and ERA5-Land show positive statisti-
cally significant correlations.

At the PDG station, biases (Table 3) show a reaso-
nable performance for ERA5-Land (0.003) but statistically
significant underestimation of albedo for GLDAS
(-0.0048) and GLASS (-0.022). Moreover, these datasets
do not follow the high variability of the observations as
demonstrated by reduced standard deviation (SD = 0.018).
ERA5-Land and GLDAS show negative correlations, but
not statistically significant. The RMSE range from 0.020
to 0.051, and the MRE from 10.351% to 29.152%

(Table 3). The low variability of the datasets is reflected in
the line-shaped scatterplot in Fig. 5b.

In opposite to that has been found for the DSWR
(Section 3.1), at the Marambaia station the best agreement
is found for albedo estimates among the datasets (Table 3).
These results are explained, in part, by the low variability
of observations (SD = 0.009), which perhaps can be better
treated by the reanalysis and satellite data. GLASS has the
highest correlation (r = 0.695), while ERA5-Land exhibits
a negative and statistically significant correlation
(r = -0.407). The scatters in Fig. 4c show the reasonable fit
between GLASS and observations, as shown by a bias
close to 0 (Table 3). The GLASS delivers the smallest
errors (RMSE = 0.006, MRE = 3.592%) and GLDAS and
ERA5-Land outperformed GLASS errors by almost
5 times (Table 3).

Considering that the albedo depends on the charac-
teristics of the surface (vegetation in this case), each sta-
tion is discussed separately. For this, Fig. 6 shows the

Figure 2 - Comparison between DSWR estimations from datasets and observed in USR (a, d, g), PDG (b, e, h) and Marambaia (c, f, i) stations. ERA5-
Land is red, GLDAS is green and GLASS is blue.
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variability of albedo and the enhanced vegetation index
(EVI) by month in the three stations. EVI is a frequently
used remote-sensing vegetation phenological metric,
which is optimized to resist atmospheric and soil back-
ground effects (Wang et al., 2017).

In February (regrowth phase), due to the absence of
leaves, the higher reflectance of the soil determines and
contributes to the highest (lower) albedo (EVI) value of
the period (α = 0.22, EVI = 0.26) (Oliveira et al., 2018;
Williamson et al., 2016). Between March and July, during
the tillering phase, albedo decreases to approximately 0.19
related to the appearance and development of sprouts,
leading to larger EVI up to 0.42. Between August and
September, the albedo continues to decrease until 0.17 due
to the total coverage of the soil by the foliage of the plants
(EVI = 0.46) favoring absorption of solar radiation.
Finally, between December and January, the maturation
and senescence of the leaves appear (EVI = 0.41), and the

albedo value returns to values close to 0.20 (Fig. 6a).
These results are in line with those found by Oliveira et al.
(2018) and Scarpare et al. (2016).

The PDG station presents the highest albedo values
(α ≈ 0.17) during the spring when the renewal of the foli-
age generates greater vegetative vigor (EVI = 0.42). The
lowest albedo values (α ≈ 0.15) correspond to autumn/
winter (Fig. 5b). According to Oliveira et al. (2018), the
reduction in albedo is due to the fact that during the dry
season (winter) DSWR penetrates the canopy more easily
due to less foliage (EVI = 0.35), and the soil covered by
dark plant litter absorbs more radiation.

According to Carvalho et al. (2015), the characteris-
tic vegetation that surrounds the Marambaia station, pre-
sents its peak of leaf fall during the dry season (July-
September) and beginning of the rainy season (October-
November) with mean EVI value of 0.45. This, together

Figure 3 - Variability of daily DSWR by month in the a) USR, b) PDG
and c) Marambaia stations from observations and datasets. Box plot
include the interquartile range (25th-75th percentiles), median (hori-
zontal line), mean (black circles), maximum and minimum values (black
dots).

Figure 4 - Correlation (r) between monthly cloud fraction (CF) from
MOD08_M3 and standard deviation (SD) of DSWR, in the a) USR, b)
PDG and c) Marambaia stations. Significant r values at 95% level (p-
value ≤ 0.05) are accompanied by *.
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with the high content of organic matter in the soil, con-
tributes to the reduction of albedo to 0.12 (Fig. 5c). Howe-
ver, between December and June, the vegetation has its
greatest vegetative vigor (EVI ≈ 0.56) reaching an albedo
of up to 0.15.

Turning to the GLDAS product is noticed that it is
able to reproduced the albedo seasonality pace at USR and
Marambaia stations, but with a clear underestimation
(Fig. 6a, c). At the PDG station, albedo is also under-
estimated and remains practically constant throughout the

year (Fig. 6b). These values may be associated with the
fact that the GLDAS uses a global static land cover data-
set, based on observations from the AVHRR in 2000 (Ro-

Figure 5 - Comparison between albedo estimations from datasets and observed in a) USR, b) PDG and c) Marambaia stations.

Figure 6 - Variability of monthly EVI from MOD13Q1 and weekly
albedo by month in the a) USR, b) PDG and c) Marambaia stations from
observations and datasets. Error lines correspond to standard deviation.

Table 3 - Statistic performance of datasets to estimate albedo (α) com-
pared to observations (Obs) from stations. Values in bold indicate sig-
nificant values at 95% level (p-value ≤ 0.05).

Station Obs ERA5-Land GLDAS GLASS

USR

Mean 0.189 0.153 0.124 0.126

SD 0.016 0.009 0.009 0.004

r 0.445 0.352 0.275

Bias -0.036 -0.065 -0.062

RMSE 0.039 0.067 0.064

MRE (%) 18.739 34.059 32.615

PDG

Mean 0.159 0.162 0.111 0.137

SD 0.018 0.005 0.001 0.003

r -0.275 -0.225 0.012

Bias 0.003 -0.048 -0.022

RMSE 0.020 0.051 0.028

MRE (%) 10.351 29.152 13.397

Marambaia

Mean 0.135 0.156 0.109 0.135

SD 0.009 0.014 0.010 0.006

r -0.407 0.073 0.695

Bias 0.020 -0.026 0.000

RMSE 0.028 0.029 0.006

MRE (%) 17.154 18.932 3.592
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dell et al., 2004). ERA5-Land presents practically the
same albedo cycle (with the similar values) at USR and
PDG stations (Fig. 6a-b), which leads to the conclusion
that despite its high resolution there is no differentiation
between USR and PDG land cover. At Marambaia station
an out-of-phase pattern of the albedo is shown with res-
pect to observations (Fig. 6c). This is very likely related to
caveats in ERA5-Land along coastline regions primarily
reproducing sea-land mean albedo (Pelosi et al., 2020).
GLASS matches the seasonal variations of observed
albedo in the 3 stations (Fig. 6), but values are under-
estimated in USR and PDG (Fig. 6a-b). According to Liu
et al. (2013), GLASS presents deficiencies related to the
quantity (and quality) of data that is applied to training the
regression algorithms used to calculate the albedo, mainly
in tropical areas.

Additionally, two factors must be considered: 1)
albedo observations are local, while GLDAS and GLASS
use satellites, whose nominal resolution may be 1 km, but
generally perform spatial averages to remove the effects of
cloudiness. 2) Satellite detection leads to a sensitivity limit
in the decimals of the albedo values and even to systema-
tic errors. These two facts help to understand that the albe-
dos observed by GLDAS and GLASS are practically
constant throughout the year.

3.3. DLWR
The DLWR, also known as thermal infrared energy,

is considered a fundamental indicator of the effect of
atmospheric greenhouse gases (water vapor, CO2, etc.) on
the climate (Tang et al., 2021). However, DLWR observa-
tions are rarely available due to the cost of the instruments
for their measurement (Kruk et al., 2010). Figure 7 shows
the comparison of daily DLWR estimates and observed
values. The statistical results of the comparisons are sum-
marized in Table 4.

The observed values show that the DLWR variability
(SD) at the Marambaia station is twice as high as at the
USR station (Table 4). The r values of all datasets are sta-
tistically significant, however, at USR, the correlations are
strong (r ≥ 0.7), while at Marambaia this is moderate-
weak (0.4 ≤ r ≤ 0.5). The complexity of estimating DLWR
leads to different biases among datasets. ERA5-Land pre-
sents statistically significant bias, with overestimation at
USR (bias = 14 W/m2) and underestimation at Marambaia
(bias = -4 W/m2). GLDAS and SEBAL show completely
different biases with values between -4 and 2 W/m2 (with-
out statistical significance) at USR, and underestimations
between -45 and -26 W/m2 (with statistical significance) at
Marambaia (Table 4). The GLDAS, however shows the
best fit with the observed DLWR at USR (Fig. 7b). It
should be noted that at both stations (Table 4).

Figure 8 shows observed and estimated temporal
variability of DLWR. Largest DLWR are noted in the USR
(≈ 375 W/m2) and Marambaia (≈ 420 W/m2) stations du-

ring spring/summer, in agreement to maximum cloudiness
and precipitation across the Southeast region (Coelho
et al., 2016). In opposite, the lowest DLWR values appear
during the dry period (autumn/winter), with ≈ 320 W/m2

at USR, and ≈ 398 W/m2 at Marambaia (Fig. 8). This pat-
tern is associated with the fact that the emissivity and
atmospheric temperature (see Eq. (2)) present their maxi-
mum values during summer, and minimum values in win-
ter (Ferreira et al., 2012). The influence of water vapor
should not be disregarded. For instance, higher DLWR
values at Marambaia station is associated with maritime
advection of water vapor onto the continent in line with
the sea breeze effect. This might increase the atmospheric
humidity inducing higher DLWR (Brito and Oyama, 2014;
Marques et al., 2010).

According to Wang et al. (2018), even on cloudy-sky
days, Ta is a main controlling factor that influences the
surface DLWR. Figure 9 shows the correlation between Ta
and DLWR, measured at each station. Both places show
high and statistically significant correlations (r > 0.8). At
the USR station (Fig. 9a), observed and estimated DLWR
fit nicely the pace of the Ta seasonal cycle. In Marambaia
(Fig. 9b) disagreements between observation and estima-
tion are exhibited during autumn and winter, probably due
to limitation of ERA5-Land and blended data to reproduce
the Ta daily variability. In this period, air temperatures
may be affected by periodic stratocumulus clouds. During
the spring/summer, DLWR from ERA5-Land matches the
observations. The weak seasonal march of Ta in Maram-
baia is also reflected in the low variability of DLWR. In
general, with all limitation, the datasets are able to capture
the DLWR seasonality in both stations. However, caution
should be taken if these data have to be used on high fre-
quency, such as daily values.

Tabela 4 - Statistic performance of datasets to estimate DLWR compared
to station observations (Obs). Values in bold indicate significant values at
95% level (p-value ≤ 0.05).

Station Obs ERA5-Land GLDAS SEBAL

USR

Mean (W/m2) 356 370 358 352

SD (W/m2) 33 29 32 18

r 0.9 0.9 0.7

Bias (W/m2) 14 2 -4

RMSE (W/m2) 18 14 17

MRE (%) 4 3 4

Marambaia

Mean (W/m2) 413 410 387 369

SD (W/m2) 17 25 26 17

r 0.4 0.4 0.5

Bias (W/m2) -4 -26 -45

RMSE (W/m2) 24 36 48

MRE (%) 5 7 11

10 Radiation Balance Estimates Over Southeastern Brazil: Ground Observations, Satellite and Reanalysis



Figure 7 - Comparison between DLWR estimations from datasets and observed in USR (a-c) and Marambaia (d-f) stations.

Figure 8 - Variability of daily DLWR by month in the a) USR and b)
Marambaia stations from observations and datasets. Box plot include
the interquartile range (25th-75th percentiles), median (horizontal
line), mean (black circles), maximum and minimum values (black
dots).

Figure 9 - Correlation (r) between observed monthly air temperature
(Tair) from a) USR and b) Marambaia stations, and monthly DLWR.
Significant r values at 95% level (p-value ≤ 0.05) are accompanied
by *.
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3.4. ULWR
The ULWR is the component of the RB that mainly

represents the thermal radiation capacity of the Earth's
surface, dominating at night, in high latitudes and during
most of the year in the Polar Regions (Jiao et al., 2015;
Qin et al., 2020). Table 5 and Fig. 10 show the comparison
between observed ULWR and estimates from two datasets.

Observations and reanalyses show variability (SD)
between 3% and 5% in relation to the mean ULWR
values in the two stations (Table 5). The correlations in
USR (0.8) are higher than in Marambaia (0.2), statisti-
cally significance in both stations. Biases values show
that ERA5-Land slightly overestimates ULWR in both
stations
(3 W/m2 at USR, 6 W/m2 at Marambaia). However, the
high scatter of ULWR estimated at Marambaia station
(Fig. 10b) is reflected in larger errors (RMSE = 28 W/m2,
MRE = 5%) than those presented at USR station (RMSE
= 10 W/m2, MRE = 2%). GLDAS has a similar behavior
to ERA5-Land, with greater scattering of ULWR esti-
mated at Marambaia with respect to that delivered by the
USR (Fig. 10c-d); but with a tendency of under-
estimation in both stations (mean bias = -12 W/m2,
Table 5). The errors shown by GLDAS, both at USR
(RMSE = 16 W/m2, MRE = 3%) and at Marambaia
(RMSE = 30 W/m2, MRE = 5%), slightly exceed those
of ERA5-Land.

The variability of ULWR over the measurement pe-
riod at the two stations is shown in Fig. 11. Similar to
DLWR (Section 3.3), the highest observed ULWR values
correspond to spring/summer (≈ 440 W/m2 at USR,
≈ 455 W/m2 at Marambaia). The smallest amount of
observed ULWR is noticed during autumn/winter
(≈ 420 W/m2 at USR, ≈ 435 W/m2 at Marambaia).
According to Teixeira et al. (2015), ULWR is mainly
determined by the land surface temperature (LST) - which

Figure 10 - Comparison between ULWR estimations from datasets and observed in USR (a,c) and Marambaia (b,e) stations. ERA5-Land is red and
GLDAS is green.

Table 5 - Statistic performance of datasets to estimate ULWR compared
to station observations (Obs). Values in bold indicate significant values at
95% level (p-value ≤ 0.05).

Station Obs ERA5-Land GLDAS

USR

Mean (W/m2) 433 436 421

SD (W/m2) 16 19 19

r 0.8 0.8

Bias (W/m2) 3 -12

RMSE (W/m2) 10 16

MRE (%) 2 3

Marambaia

Mean (W/m2) 443 449 432

SD (W/m2) 26 17 16

r 0.2 0.2

Bias (W/m2) 6 -12

RMSE (W/m2) 28 30

MRE (%) 5 5
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depends on the DSWR amount - unlike the albedo which
essentially depends on the type of ecosystem and the sur-
face humidity conditions.

In this sense, Fig. 12 shows the correlation between
LST and ULWR. At the USR station (Fig. 12a); it is clear
that the good performance of the datasets is related to the
strong correlation (r > 0.94) that exists between the ULWR
and LST cycles. In Marambaia (Fig. 12b), although the
correlations are moderate (0.59 ≤ r ≤ 0.72), they are sta-
tistically significant. The main differences shown by the
datasets are related to the underestimation of the effect of
LST on ULWR, mainly in the case of GLDAS, and with
some disagreements in the direction of the variations dur-
ing the spring/summer especially. The optimal perfor-
mance of datasets in the ULWR estimate, can be related to
the fact that LST, in ERA5-Land and GLDAS, is one of the
most accurate variables in relation to reality, due to the
correction of bias in the data assimilation processes (Hers-
bach et al., 2020; Rodell et al., 2004). The slight advan-
tage of ERA5-Land may be related to its high resolution
(0.1°) compared to GLDAS (0.25°).

4. Conclusions
In this study, several datasets were evaluated on the

southeast region of Brazil, which is a region with abrupt
environmental changes caused by its economic growth
and high population density. The components of the radia-

tion balance from five datasets (obtained directly or indi-
rectly) were compared with observations from three
stations, located inside surfaces with different physical
characteristics. For this, we use indicators that estimate the
accuracy of the datasets (r, bias, RMSE and MRE).

The results showed that ERA5-Land offered the best
performance in estimating albedo, DLWR and ULWR. In
the case of DSWR, GLASS delivered the most accurate
values in relation to the observations. Both datasets proved
to be an adequate alternative to estimate the components
of the radiation balance in southeastern Brazil.

For the DSWR, DLWR and ULWR components, the
datasets presented the biggest errors in the Marambaia sta-
tion, probably because these are products restricted to the
land areas. These products can also be subject to para-
meterization errors in the radiative transfer models, such
as limitations to capture variations generated by dominant
meteorological systems (cloud changes) in the spring/
summer period. Albedo was the most problematic compo-
nent due to the low seasonal variability shown by datasets
in all stations. The worst albedo results were observed in
the USR station, which corresponds to a sugarcane field.
The datasets were unable to accompany the high varia-
bility of albedo due to the phenological cycles of the crop.

Analyzes conducted in this study highlight uncer-
tainties that still represent posing a challenge for the
research community in the development of products that
compute the radiation balance components. Future studies

Figure 11 - Variability of daily ULWR by month in the a) USR and b)
Marambaia stations from observations and datasets. Box plot include the
interquartile range (25th-75th percentiles), median (horizontal line),
mean (black circles), maximum and minimum values (black dots).

Figure 12 - Correlation (r) between Land Surface Temperature (LST)
from MOD11C3 and monthly mean ULWR in the a) USR and b) Maram-
baia stations. Significant r values at 95% level (p-value ≤ 0.05) are
accompanied by *.
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should explore the combination or merging of different
datasets aiming at correcting errors in the coastal areas and
the albedo estimates. Adequate calculations of the radia-
tion balance components will lead to fundamental advan-
ces for the hydrological and ecological communities to
improve their estimates of sensitive and latent heat, eva-
potranspiration, gross primary production, and surface cli-
mate projections at large.
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