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ABSTRACT

In this article, a method is developed for fault detec-
tion in linear, stochastic, interconnected dynamic sys-
tems, based on designing a set of partially decentral-
ized Kalman filters for the subsystems resulting from
the overlapping decomposition of the overall large scale
system. The faulty sensors can be detected and isolated
by comparing the estimated values of a single state from
partially decoupled Kalman filters. The method is ap-
plied to an example system with two sensors.

KEYWORDS: fault detection, overlapping, Kalman fil-
ters, sensor failures, sensors.

RESUMO

Neste artigo é desenvolvido um método de deteccao de
falhas em sistémas dindmicos acoplados lineares e esto-
casticos, baseado no projeto de filtros de Kalman parci-
almente descentralizados aplicados aos subsistemas re-
sultantes da decomposicao ”overlapping”do sistema glo-
bal. A detecgao da(s) falha(s) e o isolamento do(s) sen-
sor(es) falho(s) sdo feitos através da comparagdo dos
valores estimados dos estados redundantes dos filtros de
Kalman parcialmente desacoplados. Um modelo de apli-
cagao com dois sensores é utilizado na validagao do mé-
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todo.

PALAVRAS-CHAVE: Detecgao de falhas, decomposicao
com sobreposicgao, filtros de Kalman, falhas de sensores,
sensores.

1 INTRODUCTION

An important problem facing engineers in designing
complex industrial processes, which has attracted sci-
entists and researchers in the field of systems science,
is the problem of failure detection in running systems
(Willsky, 1976 ; Isermman, 1984 ; Frank, 1990).

The failure detection problem is an extremely complex
one, and the choice of an appropriate design depends
heavily on the particular application.

An important issue to be considered by the designer of
failure detection systems is the issue of computational
complexity. One clearly needs a scheme that has rea-
sonable time requirements. It would also be useful to
have a design methodology that admits a range of imple-
mentations, allowing a trade-off study between system
complexity and performance.

In addition, it would be desirable to have a design
that takes advantage of computer capabilities and struc-
tures, e.g., designs that are amenable to parallel and dis-
tributed implementations where the environment under
consideration is a multisensor network.
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Figure 1: Overlapping decomposition for three subsys-
tems.

We base this paper on the overlapping decomposition
technique (Tkeda and Siljak, 1980) combined with a par-
allel and distributed Kalman filter proposed in Quirino
and Bottura, (2001) in order to yield a sensors multiple
fault detection and isolation method.

A partially decoupled estimation methodology requires,
when constructed, communication between the local fil-
ters. In principle, such communication is in opposi-
tion to the decentralization philosophy of the overlap-
ping technique. However, through this communication
we achieve simultaneously two important aims: 1) The
construction of a consistent estimator that complies with
the detection structure; 2) The improvement of the per-
formance of the detection system regarding its capacity
to detect and isolate single faults as well as multiple
faults.

The apparent contradiction that arises using distributed
estimation techniques, developed in the two last decades
and discussed in Quirino and Bottura (2001), jointly
with the overlapping decomposition technique (Krtolica
and Siljak, 1980), can have hindered progress in the de-
velopment of methods for monitoring, distributed sensor
fault detection and isolation.

Sensor Fault Detection (SFD) techniques for large-scale
systems have been developed (Singh et al.,1983; Benkh-
erouf and Allidina, 1987; Hassan et al., 1992), using an
overlapping decomposition method.

This concept is accomplished (Ikeda and Siljak, 1980;
Ikeda et al., 1981) by expanding the original system into
a larger system comprised of a collection of intercon-
nected subsystems. Although the order of the expanded
system is higher than that of the original system due to
the introduction of overlapping, the order of each sub-
system (and consequently, the order of each one of the
decentralized state estimators) is much lower. Further-
more, it is only required that the subsystems be locally
observable. This is easier to test for than the observ-
ability of the original system.

In the method described by Hassan et al. (1992) state

observers for the interconnected subsystems are de-
signed independently, neglecting the interaction terms
between the subsystems.

The results obtained for suboptimal decentralized con-
trol can be applied to the problem of decentralized state
estimation (Krtolica and Siljak, 1980), by using duality.

It is thus possible to detect and identify a faulty sen-
sor by comparing the discrepancies between estimates
of the same (overlapping) state provided by different
sub-observers. However, the sensor failures would only
be detected and isolated correctly if they were assumed
to occur one at a time.

In the following, we illustrate how a global system par-
titioned into three subsystems with an expanded state
space model in such a way as to generate two overlapped
states.

Consider the case of overlapping decomposition for three
partitioned subsystems, with two overlapped states x; 2
and xz 2 , as shown in Figure 1.

With respect to Figure 1, the rows of Table 1 show us
each one of the ambiguous situations (column 1) be-
tween simple (column 2) and multiple (column 3) faults,
and the criterions (column 4) to them related. Such
criterions (column 4) were established in Hassan et al.
(1992) in order to treat uniquely simple fault (column
2) occurrences.

In this article we propose alternative criterions to those
established in Hassan et al. (1992) , in order to avoid the
ambiguity situations as shown in Table 1 and diagnose
correctly simple faults as well as composite faults.

The use of the method developed by Hassan et al.
(1992) would generate ambiguous situations and as con-
sequences missed detections and false alarms. For exam-
ple, in situation 4, as shown in Table 1, the composite
failure of sensors y; and g9, would produce a false alarm
in sensor y3 and missed detections in sensors y; and ys.

In situation 1, as shown in Table 1, composite failure in
all three sensors would not be diagnosed.

Thus, the SFD scheme proposed in Hassan et al. (1992)
would fail to detect composite faults.

An extension of this method, which would permit iden-
tification and isolation of a single malfunctioning sensor
as well as of sensors simultaneously or sequentially faulty
, is the proposal of this work. The proposal is based on
the approach for distributed Kalman filtering (Quirino
and Bottura, 2001), developed from an hierarchical es-
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Table 1: Ambiguous situations for single and composite faults

Sit. | Single Faults Composite Faults Module of Estimation
Discrepances
1 no fault faults in y1,y2 and y3 | |Z12] <1 and |Z3 2| < &2
2 fault in 4 faults in yo and y3 Zip| > €1 and |Za 2] < &2
3 fault in yo faults in y; and ys3 |Z1,2]e1 and |Za 2] > €2
4 fault in y3 faults in y; and ys |Z1,2] < €1 and |Z 2| > €2

Z12= (x1.2)851- (X1,2)852 ;
Zy9= (x2.2)s52— (X2.2)553 ;
€1, €2

= constants to be determined.

(x1,2)ss: = estimate of the overlapped state x1 2 by the totally
decoupled Kalman filter of i-th subsystem.

(x2,2)ss; = estimate of the overlapped state 25 by the totally
decoupled Kalman filter of j-th subsystem. i =1,2;j = 2, 3.

timation structure. It is optimal in the sense of Kalman
filtering and is based on the multiple projections (succes-
sive orthogonalizations) method (Quirino et al., 1998).

The extension involves the use of a duality that exists
between two state space representations.

It is derived from the application of an approach using
the coupling and noise terms of the original system.

The algebraic structure developed is suboptimal, due to
the fact that it does not take into account the updating
of the state prediction based on the multiple innovations.

The article is organized as follows. Section two is con-
cerned with the expansion and decomposition of a dy-
namical system into a set of overlapping subsystems.
The SFD procedure is described in section 3 and sim-
ulations illustrating the method are given in section 4.
Finally, some conclusions are given in section 5 .

2 SYSTEM MODEL AND OVERLAP-
PING DECOMPOSITION

Consider a large-scale linear interconnected system S,
which is described by the following state and output
equations:

S : Tht1 = Axy + wy (1)
yr = Hypxp, + v (2)

where x € R", wy € R™ is the state noise vector, yi €
R™ is the output measurement vector and v, € R™
is the noise disturbing the output. A and H are the
system matrices of appropriate dimensions, in which H
is assumed to be a block-diagonal matrix with N blocks
corresponding to N subsystems.

For the above system given by eqns. 1 and 2, we have

the following assumptions:

(1) wy and vy, are Gaussian random vectors with zero
mean and covariances respectively given by E{w;w}} =

Q(Sjk s E{Ujvltc} = R(Sjk.

(2) The disturbance vectors are uncorrelated, i.e.,
Efvjwi} =0 Vj, k.

(3) The initial state vector z(0) is a Gaussian ran-
dom vector with mean E{z(0)} = X, and covariance
E{[2(0) = Xo][x(0) — Xo]'} = .

(4) z(0) and the noise vectors vy and wy, are uncorre-
lated, i.e., E{z(0)v.} =0, E{z(0)wt} =0 VEk.

The system S described by equations (1) and (2) can be
expanded into another system S using a linear transfor-
mation

gk = T.%‘k (3)

where z € R® (n >n) and T is a n.xn constant transfor-

mation matrix. The expanded system is given by:

St Ty = Azy + wy (4)
yr = Hxy + g (5)

where wy, is the expanded state noise and A and H are
the new system matrices (with dimensions n xn , m xn
respectively) given by:

A=TAT'+ M;H=HT' + L (6)
T = (T'T)~'T! (7)

where M and L are complementary matrices of appro-
priate dimensions (Tkeda and Siljak, 1980).

T7 is the generalized inverse of T' € R™", which is a
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transformation matrix given by:

I,
I
I
Is1

In_11
In_22
In_22

where I; ; is an identity matrix with dimension (n;-n; 2)
X (n;n;2); I;2 is an identity matrix with dimension
Ni2 X N2, i=1,...,N.

3 FAULT DETECTION METHOD

In this section, we consider the problem of detecting
the malfunctioning sensors of the augmented system S,
which comprises N overlapping subsystems. This will
be achieved through the design of Partially Decentral-
ized Hierarchical Kalman Filters (PDHKF), presented
in Quirino and Bottura, (2001) for the subsystems and
by comparing the estimated states, which are obtained
by two successive filters for each subsystem.

The ith subsystem éi derived from the expansion is de-
scribed by the following equations:
Sic g = Az + Y Alzl +w (9)
j=1
i#]
Y = Hyzy + vy, (10)
The results obtained for partially decentralized hierar-
chical state estimation (Quirino and Bottura, 2001) can
be applied by duality to the overlapping subsystems (9)
and (10). The filters are designed as follows:

Consider the approximate equation for the expanded
subsystem él

N
i i ij g
St Zhy = Az + Zék Zy, + wy,

(11)
j=1
i
yr = Hyxp, + vy, (12)
where
N
wy =Y Al +wh (13)
j=1
i

By using (13) as a “plausible” approximation (Quirino
and Bottura, 2001) to represent a white noise, we can es-
timate the state gz 41, using a set of partially decoupled
Kalman filters (Quirino and Bottura, 2001) described by
the following stages:

Prediction Stage

N
Tk = ApZign + Zéggir/k‘

(14)
j=1
i
£§6+1/k = Q}Lcﬂ/ké;ct + QZ (15)

where

i _ i Dt
Qpt1/k = ék_lc/k

@ =Qit Q;.chrl/k (17)
Q;chrl/k = Zémgi/kégt (18)
=1
2

Q; Covariance matrix of the w! approximate expanded
white noise;

Bi/k,ﬂi/k Covariance matrices of the ith and jth ap-
proximate expanded subsystems, respectively.

Correction Stage

Lk = Ty e+ GiVisn (19)

where
k= Phj 1 Hy (Hy Pl Hy' + Ry~ (20)

denotes the gain matrices of the local Kalman filters
and Jk—1 is the measurement prediction error of the
1th approximate expanded subsystem.

. . 'L 'L
The covariance matrix of T s based on Vi k—1 Can be
written as:

Pl = KiPi
Ki = 1- Gy,

(21)
(22)

Due to the approximation (13), the prediction correction
based on non local observations is unnecessary (Quirino
and Bottura, 2001) .

Owing to overlapping decomposition, the state vec-

tors ' and z'~! share the part z'~ 12, ie. , 2'7! =
[£1—2,2£z—1,1§2—1,2]t and &Z — [£1—1,2§z,1§z,2]t.
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Table 2: Sensor fault decision table for two sensors

21,2 Sensor fault decision
. <e fault in y;
negative >e faults in y; and ys
positive fault in g9
null normal operation

Let [QZ;’Q]ssl , [&Z?ig]ssg represent the estimated val-
ues of the state vector =2 from the filters of subsys-
tems ¢ — 1 and ¢, respectively.

For the case of two subsystems, during normal operation
of the overall system we have

= E([Ellcfk]ssl - [2]1;/2]6]552) =0

where FE is the mathematical expectance.

21,2 (23)

If one or more than one of the N subsystem sensors are
malfunctioning, the above condition will be violated, as
shown in Table 2.

As aresult, Z; 5 becomes biased (positive or negatively)
because of the discrepance between estimates of the cor-
responding overlapping state.

Thus, by examining Z; 2 , the faulty sensors can be lo-
calised as shown in the voting decision Table 2.

The tolerance value, €, which is the magnitude of the
departure from zero-mean, must be found for a specific
application, depending on noise considerations and on
model parameter uncertainty.

eis a constant which is usually determined by the experi-
ence of the designer. However, in failure cases which are
different from those considered in obtaining the value of
e, further investigation is required.

It is important to observe that such investigation can
lead us to incorporate the failure estimation treatment
into our proposal, due to the fact that different values
of € are useful in characterizing the failures.

The failure estimation problem involves the determina-
tion of the extent of failure. This could be expressed by
a sensor becoming completely non-operational(and be
off or have hard-over failures), or by degradation in the
form of a bias or reduced accuracy. The failures may
be modeled as abrupt changes in the H matrix or as
increase in the sensor covariance.

By inspecting the validity of eqn.(23), we can detect and
locate the sensor failures among the N subsystems.

It is important to highlight that the use of decentralized

Failure Detection and Diagnosis :

21,= E ([ X" ]s1 - [ X%k ]s2) 0 2

A

1l 12t
Xok=[ X7k Xk o1

2 _rul2 21 22t
X%= [ Xk Xk X o2

I Plarc, X'iaw
Overlapping i » overl apping
Observer Pk X2k Observer
Ss, SS.
Decoupled Kalman Filters A
N4 V2
Subsystem 1 Subsystem 2

Approximate expanded system

Figure 2: Approximate expanded system connected to
failure detection system

estimation (14-22) modified the SFD scheme originally
proposed in Hassan et al. (1992) (which uses differences
between overlapping states of the subsystems), by the
generation of different failure test conditions (Table 2).
Another point to be noted is that in spite of not obtain-
ing the best state estimate of S, the unbias property is
preserved, meaning that the scheme above will not only
be useful as a composite fault detector but also as a
good state estimator (by using the inverse of similarity
transformation).

Figure 2 illustrates the use of the decentralized state
estimators to detect faulty sensors when subsystems S;
and S, share the state variable 12

Although the implementation of this SEFD method re-
quires communication between the subsystems, compos-
ite faults are precisely detected and isolated and this
enhances the reliability of the SFD scheme.

From the point of view of the sensor’s output, the sub-
system estimators are completely decoupled, by the fact
the state corrections are based on purely located obser-
vations. In other words, such state corrections don’t
take into account the successive orthogonalizations be-
tween the subsystems. On the other hand, these es-
timators take into consideration the interaction terms
between the subsystems.

If the interactions between the subsystems are strong
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(i.e. strongly connected subsystems), a malfunction in
any sensor could affect all the local filter estimates, and
by consequence, compromise the response of the pro-
posed SED scheme.

Thus, it remains to show that the proposed SFD scheme
also works satisfactorily in systems where the interac-
tions may be strong, due to the fact the approximation
(13) be just considered “acceptable” for weakly coupled
systems (Quirino and Bottura, 2001).

In order to minimize the effect of noise, z; 5 is passed
through a low-pass filter as follows:

2ok +1) = 2 (k) + g.[z1,2(k + 1) — 2{, (k)]

where g is the filter gain. ¢ and & are chosen by sim-
ulations. The gain g serves exclusively to smooth the
estimator oscillations produced by the state and mea-
surement noises.

(24)

In addition, if the state “Q” and measurement noise “R”
covariance matrices, both diagonal, are such that the
elements ¢;; are identical for all ¢+ and r;; are identical
for all 7, then a unique gain g will smooth all the state
variables estimates simultaneously.

The filtered output z{ 2 s used to measure the departure
of 212 from zero-mean, and thus to locate the faulty
Sensors.

4 APPLICATION AND SIMULATION RE-
SULTS

The results given in this section are obtained by consid-
ering a 4* order system with two sensors outputs. By
using an appropriate transformation matrix T and com-
plementary matrices M and L, the approximate system
is expanded into a 5" order system consisting of two
interactive overlapping subsystems.

The actual parameter values used for the original 4* or-
der system and the expansion obtained are given below:

Original System

Tr+1 = Az +wp + ¢
Ye = Hpp + vy

0,18 0 0 0
A_|-0.25 027 0 0
0,5 0 0,18 0
0 0,55 —0,25 0,27

¢ =[4,5 6,15 2 2,65]

0100
H[OOOJ

Xo=[5555]; R=10"31; Py =25I4; Q = 10731,
Expanded Approximate System

Lhg1 :ﬁk +w;, +c¢

yk:@k"‘vk
0,18 0 0 0 0
-0,25 0,27, 0 0 0
A= -0,25 0 [0,27 0 0
0,55 0 0 0,18 0
0 0,55| 0 —0,25 0,27
c'=[45 6,15|6,15 2 2,65 |
1 0/0 0 0O
0 1{1 0 0
Q=103|0 1|1 0 0
0 0{0 1 0
0 0[{0 0 1

0 1]/0 0
H_{OOOI}

Py =25I5; R=R= 101,

The overall system is split into two interconnected sub-
systems, as shown by bold lines in A. The partially
decentralized Kalman filters are calculated for the sub-
systems.

A system simulation, which uses the matrices 4, H , Q
and R of the approximate expanded original system is
used to generate the measurements y; and ys .

Sensor faults are simulated as sudden changes in the ap-
propriate elements of the measurement matrix H. The
simulation results are obtained with ¢ = 0.07 in equa-
tion (24). In this application, € was taken to be equal
to —0, 6.

Case a: Normal operation. For this case, we have
1,2 1,2
E([zk/k]ssl - [&k/k]sSQ) =0.

In this case, the matrix H is kept constant so that
the simulated measurements y; and ¥, are the sen-
sors outputs under no fault condition. The respec-
tive estimates of the shared state are in very good
agreement as can be seen from Figure 3 where the
filtered difference 2{72 is shown. This indicates that
both sensors are functioning normally.

In the following cases, failures of both sensors and
of one sensor at a time are assumed to occur.

Sufficient time is given for the estimators to produce
satisfactory values of the estimated states before the
injection of sensor failures.
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O. L T T T T
normal operation

Figure 3: Cases a, b, ¢ and d of sensor faults

Case b: The sensor of subsystem 1 failed:

(Hy = [0 1.15]) at the iteration & = 200.
As result we have E([Qiljk]ssl - [Q}C’/Qk]ssg) < 0.

The Figure 3 shows that, after the occurrence of
the fault, z:{’Q becomes negatively biased which, ac-
cording to the decision scheme in Table 2, indicates
a fault in sensor 1.

Case c¢: The sensor of subsystem II failed:

(Ho =100 1.15] ) at the iteration k = 200.

The filter results for this case (depicted in Figure
3) clearly indicate a positive deviation of z{,Q from

zero-mean, which corresponds to a fault in sensor
2.

Case d: Both sensors of the subsystems failed:

(Hy =1[01.15] and Ho = [0 0 1.15] ) at the iter-
ation k = 200. For e = —0.6 , in Table 2, these
simultaneous faults are correctly detected by the
filter as can be seen from the results in Figure 3.

In figure 4, sequential failures of the sensors y; and
yo are combined at the iterations k& = 200 and
k = 250. From the results in Figure 4, we can
verify that the SFD scheme proposed will respond
satisfactorily in diagnosing sequential failures, by
the convergence of the single failure curves to that
of the simultaneous failures situation shown in Fig-
ure 3.

Since the filter calculations are performed on low-
order blocks of subsystem equations, the SFD pro-

no faults

fault iny,, after iny;

K
300 400 500

0 100 200
Figure 4: Sequential faults

posed can work with accuracy and numerical sta-
bility even for high-order systems.

Case e: Uncertainty in the parameters

In all the previous simulations, the partially decou-
pled Kalman filters were provided with the exact
expansion matrices and it was assumed that the
system parameters are known exactly. In practice,
there may be some uncertainty about the param-
eter of the system and it is important to examine
how this affects the SFD scheme.

To this end, the simulations performed in the cases
of sequential and simultaneous faults are repeated
with exactly the same conditions, except that the
expanded matrix A used in the partially decoupled
Kalman filtering scheme is perturbed in order to
simulate parameter uncertainty, i.e., some of the
parameters have been changed by more than 10%.

0.16 0 0 0 0

-0.22 019 0 0 0
A=1-025 0 0.24 0 0
0

0.45 0 0 0.1
0 0.5 056 -—0.22 0.27

The PDHKF (Partially Decentralized Hierarchical
Kalman Filter) results obtained are given in figures
5 and 6. It can be seen that the smoothed differ-
ences Z{’z have (non-zero) negative constant bias,
even though there is no sensor fault.

When a fault in sensor 1 or sensor 2 or in both
sensors occur, the PDHKF results are as shown in
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no faults

0 100 200 300 400 500

Figure 5: Single and simultaneous faults with parameter
uncertainty

figures 5 and 6. These results show a change to a
different bias in Z{iz after the occurrence of each
one of those faults.

Disturbances in the matrices Q, R, and P used by
the PDHKEF filter have also been simulated and sim-
ilar results have been obtained (i.e., Zlf’Q, depend-
ing on the fault locations, changes suddenly at some
point in time, only when a sensor fault is present).

Although the SFD scheme can cope with small pa-
rameter uncertainty, robustness against larger un-
certainty is an important consideration for practical
applications and is the subject of current research.

5 CONCLUSION

In this paper, an extension of the Sensor Fault Detec-
tion method introduced by Hassan et al.(1992) has been
proposed. The objective of the extension was to detect
and isolate precisely composite sensors malfunctioning.
This is achieved by using an approximation which pro-
vides estimated interactions between the subsystems as
portions of system noise.

Suboptimal Kalman filters have been used to estimate
the states of the overlapping subsystems and a proce-
dure to incorporate new interactions within the filter
equations has been described.

Simulation results using a low order system with two
sensors have shown that the method operates satisfac-
torily and that discrepances between estimates of the
shared states of the subsystems can be used to identify

0.2

no faults

faultsiny;
andy,

0 100 200 300 400 500

Figure 6: Single and sequential faults with parameter
uncertainty

and precisely isolate malfunctioning sensors.

The method can be applied equally well to a large scale
system decomposed into more than two overlapping sub-
systems.
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