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ABSTRACT

This paper addresses the problem of determining robust sta-
bility regions for a class of nonlinear systems with time-
invariant uncertainties subject to actuator saturation. The
unforced nonlinear system is represented by differential-
algebraic equations where the system matrices are allowed
to be rational functions of the state and uncertain parameters,
and the saturation nonlinearity is modelled by a sector bound
condition. For this class of systems, local stability condi-
tions in terms of linear matrix inequalities are derived based
on polynomial Lyapunov functions in which the Lyapunov
matrix is a quadratic function of the state and uncertain pa-
rameters. To estimate a robust stability region is considered
the largest level surface of the Lyapunov function belonging
to a given polytopic region of state. A numerical example is
used to demonstrate the approach.

KEYWORDS: Nonlinear systems, stability region, uncer-
tainty, convex optimization, saturation.

RESUMO

Este artigo trata do problema de determinar regides de esta-
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bilidade robustas para uma classe de sistemas nao lineares
com incertezas invariantes no tempo e sujeitos a saturagao
no sinal de controle. O sistema ndo linear é representado
por uma equacdo algébrico- diferencial onde as matrizes do
sistema s@o fungdes racionais dos estados e incertezas e a sa-
turagdo no controle é representada como uma condicio de
setor. As condigdes de estabilidade local propostas sdo ex-
pressas por LMIs e estdo baseadas numa fun¢do de Lyapu-
nov que € polinomial (ordem 4) nos estados e quadraitica nos
pardmetros incertos. Para estimar a regido de estabilidade
robusta propde-se um problema de maximizacdo da maior
curva de nivel da fun¢do de Lyapunov dentro de um politopo
dado representando as condig¢des iniciais. Os resultados sdao
ilustrados através de um exemplo numérico.

PALAVRAS-CHAVE: Sistemas ndo-lineares, regido de esta-
bilidade, incerteza, otimiza¢ao convexa, saturacao.

1 INTRODUCTION

Actuator saturation appears frequently in feedback control
systems and its presence can lead the system to parasitic
equilibrium points, limit cycles and other more complex phe-
nomena. In the control literature, many researchers have
addressed the problem of estimating stability regions for
open-loop unstable linear systems with bounded inputs by
means of the Lyapunov theory and the linear matrix inequal-
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ity (LMI) framework. For instance, Hindi and Boyd (1998)
uses the circle and Popov criteria, Gomes da Silva Jr. and
Tarbouriech (1999) considers polyhedral Lyapunov functions
and Johansson (2002) employs piecewise techniques. How-
ever, there are few results for the nonlinear case such as the
works of Barreiro et al. (2002) which combines the bifur-
cation analysis and Lyapunov theory and Bean et al. (2002)
which uses piecewise bilinear models and a single polyno-
mial Lyapunov function.

On the other hand, the stability and performance analysis,
and control synthesis of uncertain nonlinear systems has
been recently addressed by many authors via convex opti-
mization problems, e.g. the works of (El Ghaoui and Scor-
letti, 1996; Dussy and El Ghaoui, 1997; Chesi et al., 2002)
and (Trofino, 2000; Johansen, 2000; Coutinho, Trofino and
Fu, 2002) that consider quadratic and polynomial Lyapunov
functions, respectively. In general, non-quadratic Lyapunov
functions are less conservative for dealing with uncertain
nonlinear systems than the quadratic ones at the expense of
extra computations Johansen (2000). Also, the LMI frame-
work has some advantages over other approaches since it can
handle parameter-dependent Lyapunov functions, uncertain-
ties, equality and inequality constraints and so on in a numer-
ical tractable way Boyd et al. (1994).

In this scenario, the purpose of this paper is to derive robust
conditions in terms of LMIs for analyzing the stability of
(open-loop unstable) nonlinear systems with time-invariant
uncertainties and subject to input saturation based on the
work of Trofino (2000) which have proposed a convex ap-
proach to the domain of attraction problem for rational non-
linear systems. To this end, the unforced system is described
by rational differential-algebraic equations and the saturation
nonlinearity is modelled by a sector bound condition. Using
a polynomial Lyapunov function, we give sufficient local sta-
bility conditions for the saturated systems while providing an
estimate of its stability region (SR) for all possible admissi-
ble uncertainty. An uncertain controlled pendulum system
with input saturation is used to show the potential of our ap-
proach.

The rest of this paper is as follows. Section 2 states the prob-
lem of interest and Section 3 introduces some preliminary
results. In the sequel, Section 4 presents the main result of
this paper, Section 5 gives a numerical example and Section
6 ends the paper.

The notation used throughout this paper is standard. R™ de-
notes the set of n-dimensional real vectors, R™*™ is the set
of n x m real matrices, I, is the n X n identity matrix, 0, x .,
is the n x m matrix of zeros and 0,, is the n X n matrix of ze-
ros. For a real matrix S, S’ denotes its transpose, and S > 0
means that S is symmetric and positive-definite. The time

derivative of a function r(¢) will be denoted by 7(¢) and the
argument (¢) is often omitted. The symbol * for a block ma-
trix represents its symmetrical block outside the main diago-
nal. For two polytopes By C R™ and By C R™? the notation
B1 x By represents that (B x By) C R(1+72) s 3 meta-
polytope obtained by the cartesian product, and V(51 x Bs)
represents the set of all vertices of B; x By . Matrix and
vector dimensions are omitted whenever they can be inferred
from the context.

2 PROBLEM STATEMENT

Consider the following nonlinear system

& = flz,7A)+g(@ 7\ u)
0 = h(z,7,A) ey
u = sat(K'z)

where € B, C R” denotes the state, 7 € B, C R! denotes
the vector of algebraic variables, A € RP denotes the vector
of constant uncertain parameters associated to disturbances,
u € R is the control input, sat(-) is the unit saturation func-
tion, K € R™ is a given constant vector such that system
(1) is locally stable, B, is a known polytopic region of state
containing the origin, and B, represents the set of admissible
algebraic variables. We assume for the above system that:

A1 The uncertain parameters represented by A lie in a given
polytope By, i.e. A € Bj.

A2 The nonlinear vectors f(z,7,\), g(x,7,\ u) and
h(z,7,\) are continuous on their arguments and
bounded for all (z, 7, A) € B, x B, x Bj.

A3 The origin is an equilibrium point for all admissible un-
certainty, i.e. f(0,7,A) = 0.

A4 The unit saturation function is described by

1 Kzx>1
sat(K'z)={ K'z if |K'z|]<1 ()
-1 K< -1

Considering the above assumptions, the purpose of this pa-
per is to analyze the local stability of the origin of system (1)
while providing an estimate of its SR (stability region) in a
numerical tractable manner. To this end, we will use polyno-
mial Lyapunov functions which will be obtained by means of
a convex optimization problem in terms of LMIs.

We end this section presenting the following basic re-
sult from the Lyapunov theory Kiyama and Iwasaki (2000,
Lemma 1).
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Lemma 1 Consider a nonlinear system © = f(x,7,)\)
where f : B, x B, x By — R" is a continuous func-
tion such that f(0,7,\) = 0. Suppose there exist positive
scalars €1, €2, €3 and a continuously differentiable function
V : By x By — R satisfying the following conditions:

ar’'x <V(z,\) <ex’z, V(z,\) € B, x By (3)
V(x,)\) < —ex’x, ¥V (x,7,\) € By x B x By (4)
RE{z:V(z,\) <1} CB,, Ve By (5)

Then, V(x,\) is a Lyapunov function in B, x By. More-
over, for all x(0) € R the trajectory x(t) belongs to R and
approaches the origin as t — oo.

3 PRELIMINARIES

Before stating the main result of this paper, we introduce in
the following some preliminary results in order to obtain a
convex characterization of Lemma 1.

3.1 Sector Bound Condition

One way to deal with the saturation nonlinearity is to restrict
the amplitude of the input signal leading to a constraint on the
system state Hindi and Boyd (1998). Letting p > 0 be the
allowable input amplitude over the saturation level, hereafter
called the level of over saturation, the constraint

lu@®) <1+p
holds if and only if the system state belongs to the set

Xy 2 {z: |K'e| <1+ p} ©6)

Note when p = 0 (i.e. z € X)) that system (1) behaves with
the following dynamics:

i = f(x77—7 )\) +g(x7 T’ )\7 K/x)’ 0 = h(l.7 T? A)?

and then we can apply the technique proposed in Coutinho,
Bazanella, Trofino and Silva (2002) with the additional con-
straint R C A&} for analyzing its regional stability. However,
the state vector frequently converges to the origin from an
initial point outside the set R C &} and thus the above anal-
ysis may be too conservative.

A more appropriate approach is to allow a certain level of
saturation with p > 0 using the circle criterion. As a result,
we have the following sector bound condition Kiyama and
Iwasaki (2000):

1
(u— K'z) (u—ml(’x) <0,VzeX, (1)

Using the well-known S-procedure (Yakubovich, 1971,
Boyd et al., 1994), we can add the sector condition (7) into
the Lyapunov inequality (4). Thus, there exists a positive
scalar p such that the following inequality is satisfied for all
(x,7,A) € By x By x Byandz € X;:

V(2 \) — pu 4+ 2pp1u' K'x — ppox’ KK'w < —esx’z (8)

where
and po = 9

Remark 1 The sector condition in (7) is satisfied for all
z € X, and thus the modified Lyapunov inequality in (8)
must be tested in the meta-set (B, N X,) x B, x By. As a
consequence, there exists a compromise between B, and X,
since they define the state domain in which the stability con-
ditions will be checked. In other words, we have to choose
the parameter p such that the size of B, N &, is maximized.
This point will be addressed later on this Section and also in
Section 5 by means of an illustrative example. |

3.2 System Model Representation

Consider that the unforced system in (1) can be rewritten as
indicated bellow:

z = Ai(x, 7, Nx+ As(z, 7, N)E

+ Bi(x,7,Nu+ Ba(z,7,\)P, (10)
0 = Uz, 7, N)x+ Qa(x,7,0)E,
0 = ®i(z, 7, Nu+ Po(x,7,A)0,

where the vectors £ € R™ and ¢ € R? are nonlinear func-
tions of (x, 7, \), and the matrices A; (), Aa(+), B1(+), Ba(*),
and Ql() S Rrxn, QQ() S Rer7 (I)l() € R?, (I)Q() S
R#*4 are affine functions of (x, 7, A). Throughout this work,
we may use Ay (-), A2(+), Bi(), Ba2(+), (), Q2(-), 1()
and ®(+) without their respective dependence on x, 7, A and
t (time) in order to simplify the notation.

In order to guarantee that system (10) is well-posed, we fur-
ther assume:

A5 The matrices €5, ®5 in (10) have full column rank for
all x, 7 and X of interest.

The above assumption' implies that £ and ¢ can be elimi-
nated from (10) to recover the original system representation
in (1), i.e., one can return to the original system representa-
tion by defining £ and ¢ in (10) as follows

€= —(0%0) 1Mz, ¢ = —(DLDy) DD u.

LAS is an usual assumption for descriptor systems, see e.g. Bender and
Laub (1997).
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Observe that the nonlinear decomposition (10) has an aug-
mented space (R™ C R™"") and the relationships between
(&, ¢) and (x, 7, A, u) are defined by means of the constraints
Q1+ Qo€ = 0and Pyu+ Po¢ = 0. As aresult, the system
can only have rational nonlinearities without singularities
at origin in the differential-algebraic equations (El Ghaoui
and Scorletti, 1996). However, we can transform a certain
differential-algebraic representation with non-rational terms
into an augmented differential-algebraic form without non-
rational nonlinearities. To illustrate this procedure, consider
the following example.

Example 1 Consider a controlled pendulum system whose
dynamics is given by
(11

where w is the control input and A € B} is a constant uncer-
tain parameter.

T1 =X, Tog = Asinxr; —xo +u

Assume for above system that the angle x; is bounded by
—m < 21 < m. In order to rewrite the above system in the
form (10), we define the following auxiliary variables

r3 =sinx; and 7T = cosxy (12)

With these auxiliary variables, one can construct: a differen-
tial equation #3 = Tx5 and an algebraic one 23 + 72 = 1.
Leading to the following augmented system.

L.Cl = X2
3{;2 = —To+Ar3+u (13)
r3 = TI2

0 = 23+72-1

Notice in (12) that we choose 3 = sin x; aiming a rational
(augmented) representation of system (11). As aresult, a new
differential equation have been added to the system whose
dynamics depends on the algebraic variable T = cos x; lead-
ing to a rational differential-algebraic representation as in
(10) of the original system (11).

Finally, rewriting (13) as (10) give rise the following system
representation

T = A1m+A2§—|—Blu (14)
0 = le—Fng
wherex =[ z1 z2 z3 |,é=[7axe 7 1] and
0 0 1 o0 0 0O
Bi=|1],Ai=]0 -1 X|,A4,=]10 0 0
0 0O 0 O 1 0 O
0O = O -1 0 0
0 0 O 1 —zo O
|0 0 =3 0 T -1
= I =y 0
Tl3 0 —x O
0O 0 O 0 1 -7

Observe that {2, and )5 as given above define the following
constraints over x and &:

Tay—& =0, & — 228 =0, 23 + 76 — 1 =10,
r—x€3 =0, Tx —x€&3 =0, & — 7€3 =0,

where &; are the i-th elements of .

It should be noted that the trajectories of system (14) include
all trajectories of the original one defined in (11). In par-
ticular, suppose that z1(0), x2(0) are the initial conditions
of system (11). Then, for the initial conditions z;(0), 22(0)
and x3(0) = sin 21 (0), both systems have equal trajectories
in the x1, x2 sub-space.

Remark 2 The choice of matrices Ay, ..., Bo in (10) is not
unique and until now there is no a systematic way to define
them. As a result, a bad choice of them can lead to a poor
stability region estimate or even fail to provide the system
stability (Huang and Lu, 1996). A possible way of reducing
this potential conservativeness is to add free multipliers to
the problem reducing the dependence on the choice of the
system matrices as proposed by Huang and Jadbabaie (1999)
and Trofino (2000) using different approaches. In this paper,
we follow the technique of Trofino (2000) to handle state-
dependent LMIs as proposed in Section 4. |

3.3 Lyapunov Function Candidate

Consider the following Lyapunov function candidate

V(z,\) =2'P(x, Nz,

Pz, ) = { G(ff) }/p{ G’(}C;A) } ’ (15

where P is a symmetric matrix to be determined and
O(z,\) € RV*" is a given affine matrix function of (z, A).

From the above definition, we can represent O(z, \) as fol-
lows:

n p
Oz, \) =Y Tizj+ > Udj+Y (16)
j=1 j=1

where T, U;, Y are constant matrices with the same dimen-
sions of ©(x, A), and ;, A; stand for the elements of the
vectors x and )\, respectively.

To determine the time-derivative of V'(x, \), we need to com-
pute the following term:

d(O(z,N)x)

i =0O(z, Nz + O(x,\)E

a7

Straightforwardly from (16), the term ©(z, \)z is given by:

Oz, Nz =Y Tiijw=>» Tjzs;i=0(z)i (I8)
j=1 j=1
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where the matrix (:)(:c) is as follows:

O(z) =Y Tjxs, (19)
j=1

with s; denoting the j-th row of the identity matrix I,,.

Then, using (16), (17) and (18) we can obtain a convex char-
acterization of (8) in terms of LMIs similarly to the procedure
proposed in Trofino (2000). We make this point clear later in
the proof of Theorem 2.

Remark 3 In spite of the fact that V(x, A) as defined in (15)
has a 4th degree in x, we have named it as a polynomial Lya-
punov function. Notice that the proposed approach can be
in a similar way extended for higher polynomial degrees at
the cost of more intensive computations, see e.g. (Coutinho
and Trofino, 2002). Based on our recent results such as
(Coutinho, Trofino and Fu, 2002) and (Coutinho, Bazanella,
Trofino and Silva, 2002), the class of Lyapunov function de-
fined in (15) is the one that achieves the best results regarding
conservativeness and computational effort. ]

3.4 Stability Region

One of the advantages of using polynomial Lyapunov func-
tions is that they may provide a non-ellipsoidal and thus less
conservative estimate of stability regions (SRs). Based on the
results of Trofino (2000), we will present in the following the
main ideas for estimating robust stability regions.

Firstly, represent the polytope B, by a set of scalar inequali-
ties as follows:

B,={ayz <1, k=1,...,n.} (20)
where n is the number of edges of 5,. It turns out that B,
can also be represented by its vertices.

Now, consider the following set as an estimate of stability
region:

R ={z:2'P(z,\)z <1} 20

whose boundary is a level surface of the Lyapunov function
candidate.

Observe that conditions (3) and (8) (with R C X,) implies
that V'(z, \) is a Lyapunov function in B, for all A € B and
7 € B,. Thus, from Lemma 1, the set R will be invariant if
in addition the condition R C B, is satisfied for all A € B

Using the S-Procedure, the condition R C B, can be
checked by the following set of constraints:

2(1 —apz) +2'P(x,N)x—1>0, V (z,\) € B, x By, V&

Taking into account the definition of the Lyapunov matrix in
(15), the above is equivalent to:

/

1 1 [0 af ] 1
Oz 0 P ©r | 20, (22)
T a x

forall k € {1,...,n.}, where ©® = O(x, \).

Keep in mind that the sector bound condition in (7) is guaran-
teed if the condition R C X, holds for all (z, \) € B, x Bj.
By the same arguments, R belongs to X, if the following is
satisfied:

1 1'T@a+p? [0 K] 1
O 0 P Oz | >0, (23)
x K T

for a given p > 0.

From above analysis, we can infer that (22) and (23) imply
the following

R={z:V(z,\) <L, eB\} CB,NA,

Remark 4 It should be noted that a bad guess for p may lead
to serious conservativeness on estimating the SR. A possible
solution to this problem is to define the shape of B, perhaps
based on physical reasoning as proposed in Section 5, and
then choose p sufficiently large such that B, C X,. When-
ever there is no specific information about the size and shape
of B, we can define it as follows

By={z:|zi|<a,i=1,...,n}

and use the parameter « (a scaling factor) to iteratively adjust
its size so that R is maximized. ]

Remark 5 Notice that the size of R is related with the p-
norm of the matrix P(x,\). More precisely, as large is
| P(x, \)||, smaller will be the values of x can take such that
2'P(x, N\)x < 1is satisfied. Normally, we minimize the trace
norm (or simply the trace function for a symmetric matrix) in
order to maximize the size of R Kiyama and Iwasaki (2000).
However, the minimization of trace(P(z,\)) is a non-
convex problem since the Lyapunov matrix is a quadratic
function of x and \. To overcome this problem, we will ap-
proximately maximize the size of R by means of the follow-
ing optimization problem:

min trace [(P, R) : (22), (23), 3)and 8).  (24)
where II(P, R) = P+ RN + N'R’, R is a free multiplier to
be determined and N = N (z, A) is an affine matrix function
of (z, \) specified in next section such that

N(z, ) [ @(z)\) ]x =0.
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From above, we get the following

O(x O(z, )

x{ d”]EuRRﬂ 7 ]xzﬁP@Am,

Le., trace II( P, R) is an approximation of traceP(z, A). W

4 STABILITY ANALYSIS

Before we present the main result of this paper, observe
there are some equality constraints associated with the sys-
tem model representation and the Lyapunov matrix. More
specifically, we have:

911’4’925 = O,‘I)1U+q)2¢ == 0, [ Iv -0 } |: I

(25

In addition, the use of standard LMI techniques for testing

state-dependent matrix inequalities can be quite conservative

Trofino (2000). For example, consider the condition:

T (x)x >0, V2 eB,. (26)

where 7 (x) is asymmetric affine matrix function of x. The
above condition may be checked by

T(xz)>0,VzeV(B,), 27

and hence the following is satisfied
YT (z)y >0,V eB,, VyeR".

Obviously, this is too conservative. To relax this, the notion
of linear annihilators was introduced by Trofino (2000) as
below:

Definition 1 A matrix C'(x) is called a linear annihilator of
x if it is a linear function of = and C(x)x = 0. |

In this paper, we will consider the following linear annihila-
tor:

T2 —x1 0 0
0 I3 —T2 0
C() = _ e RO 1xn
o .- 0 Typ —Tp—1
(28)

The basic idea for incorporating the equality constraints
in (25) and C(x)z = 0 into the stability conditions of
Lemma 1 is to associate free multiplier to them by us-
ing the well-known Finsler’s lemma (Finsler, 1937; Boyd
et al., 1994), hence reducing the conservativeness of check-
ing state-dependent LMIs.

© ]xO.

For simplicity of notation, consider the following auxiliary
matrices:

(1, —(©+6
E_[OTXU Ql}vF__O (I" ):|a
0, O [ o o
o= A Ja=[4]=]s]
o o C) 29
M__BJ,N__h _9}, (29)
[0 E Q 0 0
0= 0 0 0 & &,
- 0O N 0 0 0
| -F G H J M

where © = ©(x, \) and © = O(x).

Then, we can propose the following result for estimating ro-
bust stability regions for nonlinear systems with input satu-
ration.

Theorem 2 Consider system (1) with A1-A4 and its repre-
sentation in (10) with A5. Let ©(x, \) be a given affine
matrix function of (x,\) and consider the auxiliary matrix
O(x) as defined in (19). Let By, B, and By be given poly-
topes. Let p > 0 be a given level of over saturation and K
a given constant vector such that the closed-loop system in
(1) is locally stable. Suppose the matrices P, R, S, Ly, (for
k=1,...,n.), W, and the positive scalar 1. are a solution
to the following optimization problem, where the LMIs are
constructed at V(B x B, x By).

min trace(P + RN + N'R’) subject to:

P+RN+NR >0, P=P (30)
1 [0 o]

[ ao ] (P+LN+NTLy | 2% VR G
L k
[ (1+p) K

L > 32

K (PrsN+Ns) |2 32)
0 P~ } 0 O~ 0

P —pupK'K 0 puprK' 0

0 0 } 0 0 0|+

0 up1 K 0 —u 0
L0 0 0O 0 0

+WQ+ QW' <0 (33)
where py and py are given by (9)and K =[ 0 K’ ].
Then, V (x,\) is a Lyapunov function in B, x By. More-
over, R as defined in (21) is an invariant set for all A € B},

i.e. for all x(0) € R the trajectory z(t) belongs to R and
approaches to origin as t — oo.

Proof: Suppose that (30), (31), (32) and (33) are satisfied at
all vertices of B, x B x By. Thus, by convexity, they are also
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satisfied for all x € B,, 7 € B and A € B). For simplicity
of notation define the following vector:

‘= { @(zx,)\)x } c RO+ (34)
Let I, € R"*("*) be a matrix such that I',( = z, e.g.
Fa, - [ 0n><v In ], and define

Iy = [ Onxv On T'a Opxm O"X(‘H'l) ] ’

For convenience, represent the LMI (30) by ¥, > 0. Since
this inequality is strict, for some sufficient small positive
scalar €7, one can add the term —e;I,T', to %, without
changing its sign, i.e. the condition ¥, — ¢;T,T’, > 0 is
still satisfied. Pre- and post-multiplying ¥, — ;T T, > 0
by ¢’ and ¢, respectively, we get

ax’c <CPC=V(x,\), V(x,\) € By x By (35)

since by construction

N¢ = { 2} 73((;37)/\) ] [ 6(2)‘) ]x:O (36)

Keep in mind that (z, \) belongs to B, x By, thus the ele-
ments of NV and X, are bounded. As a result, there exists a
sufficient large positive scalar €, such that €,('¢ > ('Y.¢
that in turns yields e,(z'z + 2'©®'©xz) > ('P(. Also,
there exists a sufficient large positive scalar ¢, such that
ey, > ©'0. Hence,

V(z,\) = (' P¢ < en’r = e, (1 + €)'z,  (37)

for all (z, \) € B, x B.

Now, consider the LMI in (33). For simplicity, we rep-
resent it by > < 0. Since this LMI is strict, for some
sufficient small positive scalar e3, one can add the term
€3I} Ty to X, without changing the sign, i.e. the condition
Yy + eIy < 0 is also satisfied. Pre-multiplying it by
[ ¢ ¢ W ¢ ] and post-multiplying by its trans-
pose leads to:

i

¢ 0 x 0 0 O ¢
¢ P —pupK'K 0 % 0 ¢
13 0 0 0O 0 O ¢ | < —es2'x
U 0 pupr K 0 —p O U
0] 0 o 0 0 0 0]
v B, —F(+ G+ HE+ Ju+ Mo =0,
N¢=0,
Ve TEDB; :

NeB Qll‘+92§=0,

A Dru+ Pap = 0.

(33)

From (17) and (18), the time-derivative of ©(z, A)x is given

by:
w - ((:)(:c) +0(z, )\)) &

It is easy to verify that the above equality and (10) have the

compact form F'( = G+ HE + Ju+ M ¢. Also, from (10)

and (36), note that Qx4+ Q226 = 0, P1u + Po¢p = 0 and

N¢ = 0, respectively. These relations can be rewritten as

QL¢ ¢ & o ¢ ] =0

Hence, the inequality (38) is equivalent to the following:
V(z,\) — p(u—K'z) (u— poK'z) < —esa’x

From (7), p(u — K'z)(u — po K'z) < O0forall z € X,. As
a result, we have that

V(z,\) < —esa’z, Va e B, N X,, e B, e By (39

Then, from (35), (37) and (39) the system is locally exponen-
tially stable.

Now, consider (31) and (32). Pre- and post multiplying (31)
by [ 1 2'©" 2’ ] and its transpose, respectively, yields
(22). Similarly, (32) implies (23). Then, R is a positively
invariant set, i.e. for all z(0) € R the trajectory z(t) € R
and approaches the origin as ¢t — oo. a

Remark 6 The method proposed in this paper only consid-
ers the single-input and single-output case. However, we can
easily extend this technique to deal with multi-loop systems,
if the saturation operator has a decoupled structure. In this
case, the saturation vector (with w elements) is given by:

sat(K'z) £ | sat(K{x) sat(K}z) |

where K; € R”, 4 = 1,...,w, refers to the i-th row of the
gain matrix K € R“*™, Then, we can apply Theorem 2
taking into account the w input channels by considering w
constraints R C X, = {z: |Klz| < (1+ p;)}. [ ]

Remark 7 The choice of the matrix ©(z, A) defines the
complexity of V(z, A) in (15). The more general Lyapunov
function is obtained by defining ©(z, A) as follows:
A
(40)
However, large dimensions of ©(z, A) leads to a more inten-
sive computation that can be sometimes prohibitive because
of the system dimension. |

O(x,\) = [ x11, oL, I,

Remark 8 The conservativeness of estimating stability re-
gions (SRs) in our approach depends on the size and shape
of the overbounding polytope ,.. A possible solution could
be obtained by taking into account the qualitative behavior
of the nonlinear systems by means of the bifurcation theory
Seydel (1994). Unstable equilibrium points, eigenvalues and
eigenvectors give important information about the directions
of trajectories close to the boundary of the true domain of at-
traction and can be used to determine the size and shape of
B,. A simple way to use this information will be given in
next section. |
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5 NUMERICAL EXAMPLE

In order to illustrate the proposed approach, we analyze in the
following the stability of the origin of system (11) defined in
Example 1.

To this end, assume for system (11) that B, = [0.9,1.1] and
K’ = —2 0 ]. Also, consider its representation in (14)
and define the Lyapunov function candidate by choosing:

x113
[ 0 121’2 }
A3

Oz, \) =

The equilibrium points of system (11) are given:
To =0 and AsinZ; = sat(27;)

where (T1,T2) represents the stationary solutions. Notice
that the number of equilibrium points will depend on the val-
ues of A € B, that lead to different possible solutions for
AsinZ; — sat(2z1) = 0, see a graphical interpretation of
this equation in Figure 1.

o equilibrium points

Figure 1: Equilibrium points equation: (a) A = 0.9, (b) A =
land (c) A =1.1.

Also, the Jacobian matrix of system (11) is as follows:

(41)

T

0 1
Osat(2z1)
S L

A(z) = [ ()\cosxl

where 7 refers to the state vector evaluated at the equilibrium
point.

Analyzing Figure 1 and taking into account (41), we have the
following cases:

(a) A = 0.9 = one stable equilibrium point at system origin;

(b) A = 1.0 = three equilibrium points at (0,0) (stable)
and (£+7/2,0) (non-hyperbolic points, see e.g. Seydel
(1994));

(¢) A = 1.1 = five equilibrium points at (0, 0), (£2.0,0)
(stables) and (£1.14, 0) (unstables).

Clearly, (c) is the worst-case for estimating the stability re-
gion in which the domain of attraction of (0, 0) is bounded by
two unstable equilibrium points at (1.14,0) and (—1.14, 0).
As these points are symmetrical with respect to the origin,
both have the same Jacobian matrix which is given bellow:

A((£1.14,0)) = [ 0816 jl } (42)

and associated with above matrix, we have the eigenvalues

o1 = 0.34, 09 = —1.34 (characterizing a saddle point), and
the following eigenvectors:
0.95 —0.60
v = |: 0.32 :l and Vg = l: 0.80 :l . (43)

The above (real) eigenvectors have a geometrical meaning
Seydel (1994). In fact, they define two straight lines passing
through (£1.14,0) and each half-ray is a trajectory of the
following linearized dynamics of (11) at (+1.14,0):

i = A((£1.14,0))2

where z = x — Z. For the nonlinear problem, the eigenvector
vy associated with the stable eigenvalue o9 defines the tan-
gent to the incoming trajectories (stable manifold or insets)
at (+1.14, 0) and thus gives the approximate direction of the
separatrix.

From the above analysis, we can construct the overbounding
set B, by taking into account the unstable equilibrium points
(£1.14, 0) and the eigenvector v5 in (43) leading to the poly-
tope in Figure 2 (only represented in x1, x5 sub-space) which
is defined by the following set of vertices:

a a —a —a
—b ) 0 ) b 5 )
Cc c C
(44)
a a —a —a
|, o, ] sl.] o
—C —C —C —C

where @ = 1.14, b = 2.67 and ¢ = sin(a).

In accordance with (44), define the admissible values of 7 in
(14) as follows:

B, = [0, \/1—02]
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(—(l, b)
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B,
\\\\ifi
(—a,0) (a,0)
T
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Figure 2: Overbounding polytope B,.
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Figure 3: Estimates of SR: R4 and R,,.

For comparison purposes, we will consider to determine the
stability region of system (11) the following partition for the

matrix P in (15):

Py
P

Py

PO :| , P2 c R’UXU’ PO c Ran

|

From above, we can obtain

i. Quadratic Lyapunov function: take Py as a free matrix
and set P, =0, P, = 0.

ii. Polynomial Lyapunov function: consider Py, P; and P»
as free matrices.
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Figure 4: Phase portrait of system (11)

Figure 3 shows estimates of the stability region of system
(11) for an optimal p = 2.0 where R, was obtained with a
quadratic Lyapunov function and R, with a polynomial one.
As expected, the polynomial Lyapunov function achieved the
best estimate of SR thus justifying the required extra compu-

tation.

Also, we give in Figure 4 the phase portrait of system (11)
with A\ = 1.1 (the worst case for the real domain of attrac-
tion). Notice that the SR of the origin is unbounded (and non-
convex) and our method can only estimate closed sets (con-
vex regions) which justifies the conservative result. How-
ever, the proposed technique is potentially less conservative
than the methods that consider quadratic Lyapunov functions
(circle criterion) and can handle uncertainties on the system

dynamics.

6 CONCLUDING REMARKS

This paper has proposed a convex approach to deal with the
problem of estimating robust stability regions for a class of
uncertain nonlinear systems subject to input saturation. To
this end, the system dynamics is described by means of ra-
tional differential-algebraic equations and the saturation non-
linearity is modelled by a sector bound condition similarly
to the circle criterion. Also, we have used polynomial Lya-
punov functions where the Lyapunov matrix is a quadratic
function of state and uncertain parameters in order to obtain
less conservative results than the ones that consider quadratic
Lyapunov functions. Through a relaxation technique, we
give sufficient LMI conditions that assure the local stability
of the saturated system and provide an estimate of its sta-
bility region that belongs to a polytopic region of the state.
The methodology has been applied to an uncertain controlled
pendulum with saturation and we have given some remarks
about the construction of the overbounding polytope. How-
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ever, the authors are studying a systematic way of defining
the differential-algebraic representation of nonlinear system
and also the state domain (the region in which the stability
conditions are analyzed) in order to turn the proposed ap-
proach more appealing to the control community.
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