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RESUMO

Redes neurais podem ser treinadas para obter 0 modelo de
trabalho interno para esquemas de controle de sitemas di-
namicos. A forma usual adotada é projetar a rede neural
na forma de um modelo discreto com entradas atrasadas
do tipo NARMA (Non-linear Auto Regressive Moving Ave-
rage). Em trabalhos recentes a utilizagdo de uma rede neural
inserida em uma estrutura de integracdo numérica tem sido
também considerada para a obtencdo de modelos discretos
para sistemas dindmicos. Neste trabalho, uma extensdo da
altima abordagem é apresentada e aplicada em um esquema
de controle ndo-linear preditivo (NPC), com uma rede feed
forward modelando as derivadas médias em uma estrutura
de integrador numérico de Euler. O uso de uma rede neural
para aproximar a funcéo de derivadas médias, em vez da fun-
¢éo de derivadas instantaneas do sistema dindmico ODE, per-
mite que qualquer precisdo desejada na modelagem discreta
de sistemas dindmicos possa ser realizada, com a utilizagéo
de um simples integrador Euler, tornando a implementacdo
do controle preditivo uma tarefa mais simples, uma vez que
ela somente necessitara lidar com a estrutura linear de um
integrador de primeira ordem na determinagdo das a¢des de
controle. Para ilustrar a efetividade da abordagem proposta,
sdo apresentados resultados dos testes em um problema de
transferéncia de oOrbitas Terra/Marte e em um problema de
controle de atitude em trés eixos de satélite comportando-se
como corpo rigido.
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ABSTRACT

Neural networks can be trained to get internal working mod-
els in dynamic systems control schemes. This has usually
been done designing the neural network in the form of a dis-
crete model with delayed inputs of the NARMA type (Non-
linear Auto Regressive Moving Average). In recent works
the use of the neural network inside the structure of ordinary
differential equations (ODE) numerical integrators has also
been considered to get dynamic systems discrete models. In
this paper, an extension of this latter approach, where a feed
forward neural network modeling mean derivatives is used
in the structure of an Euler integrator, is presented and ap-
plied in a Nonlinear Predictive Control (NPC) scheme. The
use of the neural network to approximate the mean derivative
function, instead of the dynamic system ODE instantaneous
derivative function, allows any specified accuracy to be at-
tained in the modeling of dynamic systems with the use of
a simple Euler integrator. This makes the predictive control
implementation a simpler task, since it is only necessary to
deal with the linear structure of a first order integrator in the
calculations of control actions. To illustrate the effectiveness
of the proposed approach, results of tests in a problem of
orbit transfer between Earth and Mars and in a problem of
three-axis attitude control of a rigid body satellite are pre-
sented.
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Feed Forward Neural Nets, Dynamic Systems Neural Model-
ing, Ordinary Differential Equations Numerical Integrators.

1 INTRODUCTION

Multi layer feed forward artificial neural networks have the
capacity of modeling nonlinear functions (e.g., Cybenko,
1988; Hornik et al, 1989). This property allows their ap-
plication in control schemes, where an internal model of the
dynamic system is needed, as is for example the case in pre-
dictive control (Clarke et al, 1987a, 1987b). A commonly
used way of representing the internal model of the dynamics
of the system has been to design the neural network to learn
a system approximation in the form of a discrete model with
delayed inputs of the NARMA type (Non-linear Auto Re-
gressive Moving Average) (Leontaritis and Billings, 1985a,
1985b; Chen and Billings, 1989, 1990 and 1992; Narendra
and Parthasarathy, 1990; Hunt et al, 1992; Mills et al, 1994;
Liu et al 1998; Norgaard et al, 2000). The neural net de-
signed and trained in this way has the disadvantage of need-
ing too many neurons in the input and hidden layers.

In recent works, the use of a neural ordinary differential
equation (ODE) numerical integrator as an approximate dis-
crete model of motion, together with the use of Kalman fil-
tering for calculations of control actions, was proposed and
tested in the predictive control of dynamic systems (Rios
Neto, 2001; Tasinaffo and Rios Neto, 2003). It was shown
and illustrated with tests that artificial feed forward neural
networks could be trained to play the role of the dynamic
system derivative function in the structure of ODE numeri-
cal integrators, to get internal models in nonlinear predictive
control schemes. This approach has the advantage of reduc-
ing the dimension and complexity of the neural network, and
thus of facilitating its training (Wang e Lin, 1998; Rios Neto
2001). It was also shown that the stochastic nature and the
good numerical performance of the Kalman filtering param-
eter estimator algorithm make its choice a good one, not only
to train the feed forward neural network (Singhal et al, 1989;
Chandran, 1994; Rios Neto, 1997), but also to estimate the
predictive control actions (Rios Neto, 2000). Its use allows
considering the errors in the output patterns in the supervised
training of the artificial neural networks. It also allows the
possibility of giving a stochastic meaning to the weight ma-
trices present in the predictive control functional.

This paper further explores the approach of combining feed
forward neural networks with the structure of ordinary dif-
ferential equations (ODE) numerical integrator algorithms to
get dynamic systems internal models in predictive control
schemes. Instead of approximating the instantaneous deriva-
tive function in the dynamic system ODE model, the neural
network is used to approximate the mean derivative function
(Tasinaffo, 2003). This allows the use of an Euler structure

to get a first order neural integrator. In principle this mean
derivative based first order neural integrator can provide the
same accuracy as that of any higher order integrator. How-
ever, it is much simpler to deal with, both in terms of the
neural network training and of the implementation of the pre-
dictive control scheme.

In what follows, in Section 2 the mathematical foundation,
that supports the possibility of getting discrete nonlinear dy-
namic system models using Euler numerical integrators with
mean derivative functions, is presented. In Section 3 it is pre-
sented a summary of the method of calculating the discrete
control actions in a predictive control scheme with the use of
Kalman filtering. In Section 4, results of tests in a problem
of orbit transfer between Earth and Mars and in a problem
of three - axis attitude control of a rigid body satellite are
presented to illustrate the effectiveness of the proposed ap-
proach. Finally, in Section 5 a few conclusions are drawn.

2 MEAN DERIVATIVE BASED EULER IN-
TEGRATOR AS A DYNAMIC SYSTEM
DISCRETE MODEL

2.1 Fundaments

For the sake of facilitating the understanding and of mathe-
matically supporting the possibility of using a mean deriva-
tive based Euler integrator as a dynamic system discrete
model, in this section a summary of the results obtained by
Tasinaffo (2003) are presented without demonstration. With
this purpose, consider the following nonlinear autonomous
system of ordinary differential equations,

y = f(y) (La)

where,
y=I[y1v - ynl" (Lb)
fy) = [f1(y) o (y) - fan1T (Lc)

Let, by definition, y} = y}(t), j=1, 2,...,n be a trajectory,
solution of the nonlinear ODE y = f(y), starting from
y]!(to)at initial time tp, that belongs to a domain of interest
" (t0) . Y"(to)]", and where yM"(to) and y"¥(to)
are finite. It is convenient to introduce the following vec-

tor notation to indicate possible initial condition sets and the
respective solutions of (1.a):

[ PR | i i T

Yo =Y (to) = [y7(to) Y2(to) - Yn(to)] (2.2)

yi =y = [yL© v . yho1T (2.b)
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where, i= 1, 2, ..., 0o; and oo is adopted to indicate that the
mesh of discrete initial conditions can have as many points
as desired.

To start the mathematical background, two important results
(e.g., Braun, 1983) about the solution of differential equa-
tions (1.a) are considered. The first is about the existence
and uniqueness of solutions and the second about the exis-
tence of stationary solutions of (1.a).

Theorem 1 (T1) Let each of the functions
f1(y1, Y2+ - Yn)s - Tn(Y1, Y2, ... Yn)  have continuous
partial derivatives with respect to yq,...,yn. Then, the

initial value problem y = f(y),y(ty) inside a domain of
interest [ymln max]n,J 1, 2,...n, in to, has one and only

one solution y =y (t), in RN, from each yi(to) initial state.
If two solutions, y = ¢(t) and y = ¢(t), have a common
point, then they must be identical.

Property 1 (P1) If y = ¢(t) is a solution of (1.a), then
y = ¢(t + c) is also a solution of (1.a), where c is any real
constant.

Since, in general, yi = f(yi) has not an analytical solution, it
is usual to only know a discrete approximation of y' = y!(t),
in an interval [tk tk+n ], through a set of discrete points,

[y (t + kAt) yiIt + (kK + DAL .. yI[t + (k + ngAY]] =
[ y! Pkl ... ], for a given At.

By definition, the secant given by two points I‘yi and I‘Jflyi
of the curve y!(t) is the straight-line segment joining these
two points Thus, from the secants defined by the pair of
points y and k+ly y and kJf1y2, Ky}, and k+ly one
can deflne the tangents

tanatal (t + KAL) = taniKal =

3.a

[tanAtkaltanAtkaz . tan tkan]T 3a)
kilyi

ki Y] 2k

aNat ) = ——3xr— (3.b)

Property 2 (P2) If kyi is a discrete solution of yi = f(yi)
and At # 0, tan, o' exists and is unique.

Two other important theorems, which relate the val-

ues of tankAta' and tankAtd', with the values of the
mean derivatives calculated from [ kyl k+lyi k+nyiyang
[ Kyl k+lyi  k+nyiy respectively, are the differential and
integral mean value theorems (e.g., Wilson, 1958; Munem
et al, 1978; Sokolnikoff et al, 1966), enunciated in what
follows.

Theorem 2 (T2) (Differential mean value theorem): If a
function yJ' (t), for j=1,2,...,n, is defined and continuous
in the closed interval [ty t)1] and is differentiable in the

open interval (ty,ti41), then there is at least one tj,
t <ty <tg4q suchthat

Kilyi - kyi
o Y
Yj ) =——=a— 4)
T2 assures that given a secant of a differentiable y (t) it is

always possible to find a point between +1y and K y! of the
intersection of the secant with the curve in ty and ty , 1, such
that the tangent to this intermediate point is parallel to the

secant. The value y' (tjo) is called the mean derivative of y(1)
in [ty tk+l]'

Theorem 3 (T3) (Integral mean value theorem): If a func-
tion, y'(t) for j=1, 2,..., n is continuous in the closed interval

[tk tk 1], then there exists at least one tk interior to this
|nterval such that

b1 .
[ Y\ -dt 5)

y(t) - At=
s

In general th and t¥ are different and it is important to notice
that the theorems do not tell how to determine these points.

Property 3 (P3) The mean derivative y.(t*) of yi(t) in the

closed interval [ty, t, 1] is equal to tanAtka' as an imme-

diate consequence of the definition of mean derivatives.

Theorem 4 (T4) The pointhflyJi of the solution of the system

of nonlinear differential equatlonsy = f(y) for j=1, 2,...,n,
can be determined through the relation k+1yJ tankt i

At + yj foraglven y and At.

Corollary 1 (C1)- The solution of the system of nonlinear
differential equations yl = f(y'), at a given discrete point,
ktmyJ!, for j=1, 2,...,n, can be determined, given an initial

kyi, by the relation:

k+m Z tankJrI b At+ yJ (6)

Corallary 2 (C2) For the system, yi = f(yi), the following

ol for

relation is valid: J

i 1 k+l
ta”km.AtO‘J! = 7 Z tan'’\f

=1, 2,..,n
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Notice that for the situation where the system of Eqg. (1a)
is autonomous, y'l(tl) :_y'2(t2) forip #ipandty; # ty
implies that y'l(tl) = y'2(t2). This property establishes
that two trajectories of y = f(y) starting from two different
initial conditions, y'1 (to) and y'2(to), for iy # i, will have
the same derivatives only if y'l(tl) = y'2(t2), even when
t) # to.

k
h . At
the interval [ky',k+1y'] is also autonomous, that is, time in-

variant? The properties that follow answer this question.

The question remaining is if the mean derivative tan ol of

Property 4 (P4) If yil (t) and yi_2(t) are solutions of y = f(y)
starting from y'l(to_ =0)and y'2(t0 = 0), respectively, and
it y'1(to = 0) = y'2(T) for T>0, then y'L(At) = y'2(T +
At) for any given At.

Property 5 (P5) If y'1(ty) = y'2(t,), for iy # iy and t; #
ty, then, tanAtall(tl) = tanAta'2(t2) for At > 0, that is,

k

14.
Sta Lis autonomous.

tan

This result is useful since it determines that it is enough to

know the values of tanﬁtai, fori=1,2,.. 0c0attg, inare-

gion of interest [yjmi”, yjmax]n, j=1, 2,....n, because for t>t,
they will repeat, as long the boundaries of [yjmi”, yjmax]n are

observed.

Notice also that the trajectories of the dynamic system when
propagated ahead will have angles ka(i) varying only in the
interval 75 < ka(i) < % which will thus be unique. When
retro propagated, % < ka(i) < 374” and thus ka(i) will also
be unique in this case.

Theorem 5 (T5) The result of T4 is still valid when discrete

values of control Ku in each [t tk,.1] are used to solve the
dynamic system:

g =f(y', u) )

Demonstration: In this case the continuous function, f(yi,u),
V\{ith Ku approximat_ed as_constant in [ty te, 1], can be
viewed as parameterized with respect to the control variable
and, thus, for any discrete interval the existence of the mean
derivative y'(t}) = ~ = tanat «' is guaranteed
and the result in Eq. (6) is still valid.

2.2 Numerical Integrators with Neural
Mean Derivatives to Represent Dy-
namic Systems

Consider the capacity of a feed forward neural network to
approximate nonlinear functions (e.g., Zurada, 1992). From
the previous section, one can conclude that it is possible to
have a neural network to learn the mean derivatives of a given
dynamical system and use them in an ODE Euler integrator
structure to get a discrete representation of this system. In
the proposed approach, a first possibility was adopted as il-
lustrated in Fig. 1, where the neural network is trained to
directly learn the dynamic system mean derivative, which
is then inserted in the structure of the Euler numerical in-
tegrator. In this scheme, the neural network is trained to
learn the function of mean derivatives from the sampled in-
put values of state I‘y' and control I‘u, with a previously fixed
discrete interval At The value of the training output pattern
K i k+1yi_kyi . .
tanA_ta = & Is generated with Fhe help of a nu-
merical integrator of high order used to simulate one step
ahead with negligible errors k+1y', the solution of the sys-

temy' = f(y',u).

Dymamic 155 .
System

Figure 1. Supervised Training of Mean Derivatives of yi =
fy',u).

A second possibility that could be used, based on that
adopted by Wang and Lin (1998), is depicted in Fig. 2. It
is one where using the outputs of an Euler integrator the neu-
ral network is indirectly trained to learn the dynamic system
mean derivative. In this case, k+1§/', the value of state es-
timated by the neural Euler numerical integrator, is the out-
put value compared to the training pattern I(Jfly' to gener-
ate the error signal for the supervised training. The neu-
ral network is trained to learn the function of mean deriva-
tives tanﬁta' = tanta! (Ky,Ku) from the values of stateKyl,

control Ku and of a previously fixed discrete intervalAt. In
Fig. 2, I"Lly' is the value of the training pattern gener-
ated off line by a numerical integrator of high order used
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to simulate the system y = f(y ,u), and k+ly is the value
the neural network tries to estimate for K+1 yI in the super-
vised training. The relation of recurrence between y!' and

+ly is expressed by +ly = tank a At 4K y where

~K
tank P o f( yI Ku W) is the mean derivative to be approx-
|mated by the neural network. It should be noticed that if

k+ly is obtained from the Euler mtegratlon then tanﬁta
converges to the function of derivatives y' = f(y ,u). But if
k+ly is obtained from the use of a high order integrator or

experimentally, then tanlgtozi will converge to the function of
mean derivatives.

Ipefroton e SN

NN tanaod .
foh, i)
—

l{yi.
¥

Supenised
Training

Figure 2: Supervised Training of an Euler Neural Integrator
Using Mean Derivatives of. y' = f(y',u)

N

kg :i

A correspondent algorithm to get the mean derivative based
first order neural integrator would then be as follows:

1. Given in t, the domains of interest
M) V(o™ j=L 2, . i, and
[ukmln’u?ax]ng, k=1, 2, .., ny generate inside
these domains, m uniformly distributed random vectors
to be the input p;, i=1, 2, ..., m, of training patterns to
the feed forward neural network.

2. Employing a high order ODE numerical integrator,
propagate ahead with step size At the inputs pj, i=1,
2, ..., m, generating the state vectors , i=1, 2, ..., m, at
to + At.

3. Calculate the vectors T; to be used as training output
patterns:

T| = _t [yl(to + At) - yl(to) y2(t0 + At) - y2(to)
Ynl(t0+At) Yh, ()T =

[tanAtal tanlgtaz e tanlgta}]l]T =
(tanﬁta') T

®) and if k+1 y& is away from kJfly then tan

Notice that since the function tanlgtai is also au-

tonomous it is only necessary propagate ahead pj, i=1,
2, ..., m, with step size At, to get the neural network
output patterns T, .

4. Do the supervised training of the neural network, using
the patterns {(p;, T:)}

5. After training the neural network with a specified accu-
racy, there results the dynamic system discrete model,
in the form of a mean derivative based first order neural
integrator:

k+ly = tank ai Atk yi 9)

Notice that using the scheme of Fig. 1, with T; = tanﬁta- as
output patterns, av0|ds calculatlng the back propagation with

k+ly —tank a - At+K yl.

To analyze the local error of this neural Euler integrator, con-

sider the exact value k+ly and the estimated value k+ly ,
respectively given by Egs. (10) and (11).

k+ly = tank ai At 4K yi (10)

K+lgl o (tanK ol + em) - At4Ky! (11)

where e, is the error in the output of the neural network
trained to learn the function of mean derivatives tanlgtajl in-
side a domain of interest. Due to the capacity of approxi-
mation of the neural network, this error can be less than any

specified value. Thus, k+1yi, in Eq. (11), can have the de-
sired accuracy, since for a fixed At > 0 the neural network

is approximating inside a domain of interest the function of
mean derivatives tanzta! that is invariant in time, and em

can be made as small as specified.

Figure 3 better illustrates this situation. Consider k+1yi,
k+1yg and k+1y('9, respective!y representing the exact value
of the solution of y' = f(y',u) at ti.1, the approximate

value of I<+1y obtained from a high order numerical inte-

grator, and the approximate value of k+ly obtained from
an Euler integrator. As indicated by Fig. 3, if it is taken

k+kly- —k+1 y- in the scheme of Fig. 2, then tanﬁta- =

f(Kyl ky w) =~ f( yI Ku), but if it is taken K+1yl =K+1 yi
kta' during the
phase of training will approximately converge to the func-
tion of mean derivatives instead of converging to f(y',u).
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k+1}'i
4 l(+1},i
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Mean Derivative
Instantaneous
1 Derivative
in l(yi
p kel i
L3
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by
| 1 1
' 1, L1 ;-

Iztai and instanta-

neoustankol = f(kyi,ku) derivatives, for yi = f(yi,u)

Figure 3: Representation of mean tan

3 NEURAL
SCHEME

PREDICTIVE  CONTROL

The neural predictive control scheme presented in what fol-
lows was proposed and demonstrated by Rios Neto (2000).
In a problem of neural predictive control of a dynamic system
(Mills et al, 1994), it adopts a heuristic and theoretical ap-
proach to solve the problem of minimizing a quadratic func-
tional subject to the constraint of a neural network predic-
tor, representing the dynamics of the system to be controlled.
In the proposed scheme, the problems of training the neural
network and of determining the predictive control actions are
seen and treated in an integrated way, as problems of stochas-
tic optimal linear estimation of parameters.

The problem to be solved is that of controlling a dynamical
system modeled by an ODE:

y=1(y) (12)

It is assumed that the system to be controlled can be approx-
imated by a discrete model. That is, for tj =t+j-At
y(G) = (13)

where, y(), ..., y(tj - ny) and u(t_ 1), ..., u(ty . nu) are the
past system responses and control actions, respectively.

In the usual neural predictive control scheme, a feed forward
neural network is trained to learn a discrete model as in Eq.
(13). This model is then used as an internal system response
model to get the smooth control actions that will track a ref-
erence response trajectory by minimizing (e.g., Clarke et al,
1987a; Clarke et al, 1987b; Liu et al, 1998) the finite horizon
functional:

Mh
1=L3, br()- )T -y 10 - () - I+
J:

Ny - 1
3 [ut) - v DIT -5 1) - fucy) - u@g - 11 /2
J:
(14)

where, yr(tj) is the reference response trajectory at time t;;
ny, is the number of steps in the finite horizon of optimiza-
tion; re 1(tj) and ry 1(tj) positive definite weighting matri-

ces; y(tj) is the output of the feed forward neural network

previously trained to approximate a discrete model of the dy-
namic system response.

The determination of the predictive control actions can be
treated as a parameter estimation problem, if the minimiza-
tion of the functional of Eq. (14) is seen as the following
stochastic problem:

yr(tj) = ¥() + vy () (15.2)
0=u(tj_ 1) -u(t-2) +vultj- 1) (15.b)
Elvy ()] = 0, Elvy(tj) - vy ()] = ry() (15.0)
Elvu(j)] = 0, E[vu(t) - V[Jr(tj)] = ru(t) (15.d)

with, j = 12,..,np; where y(tj) =
the outputs of the neural network which is recursively used

as a predictor of the dynamic system responses in the hori-
zon of optimization and it is understood that for tj . <t

y(tj _ k) are estimations or measurement of already occurred
values of outputs, in the control feedback loop; Vy(tj) and
Vu (tj) are the uncorrelated noises for different values of tj.

To solve the problem of Eqgs.(15) an iterative approach is
needed, where in each ith iteration a perturbation is done to
get a linear approximation of Eq. (15.a):

a(i) - e(t) - ¥0G) =

j-1
kZO [9y(4)) / Ut a(t iy - [l - OltDT + vy ()
) (16)

where k starts at zero, even for j>n,,, as a consequence of
yA(tj) recursively being a function of u(tj - 2), .., U(t) through
the successive recursions starting with y(tj 1) y(tj . ny)
(see the Appendix, for details about the recurrence rela-
tions needed in the calculations of the partial derivatives, for
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the proposed case where discrete nonlinear dynamic system
models using Euler numerical integrators with mean deriva-
tive functions are used); 0 < «(i) < 1is a parameter to be
adjusted to guarantee the hypothesis of linear perturbation;
and the partial derivatives are calculated either by numerical
differentiation or by using the chain rule to account for the
composed function situation, including the back propagation
rule (see, e.g., Chandran (1994)) in the feed forward neural
network that approximates the derivative function of the dy-
namic system.

The formulation as a stochastic linear estimation problem
in each iteration is complete if the recursion in Eq.(15.b) is
taken in account:

a(i) - [0t - 1) - G(t||,i))] = (17a)
[U(t|,i) - U(t|,i)] + kzo Vu(tk)
1=0,1, -1 i=1,2 .1 (17h)
In a more compact notation:
Uy (ti) = u(ty.i) (18.0)
Ut ) =u(t.q) (18.b)
a@[0(t) - O] = (18.c)
U(t,i) — U(t,i) + V(1)
a (i) 2 (t,1) (18.d)

H" (t,i) [U (t,1) U (t,1)] + V, ()

where the meaning of compact variables become obvious by
comparison with Egs.(16) and (17). Applying the Kalman
filtering algorithm, the following solution results in a typical
iteration (Rios Neto, 2000):

U(t, i) = O(ti) + afi) - [0(t _ 1) - Oi)]+
k(i) - (i) - [2 &) - HUGi) - [0t 1) - O]
k(t,i) =

Ru() - HUT (ti) - [HU() - Ru() - HUT (1) + Ry(0] " L =

(19.a)

Ry 10+ HUT (t) - Ry L0 - HUGL] - L HY @) - Ry )

(19.b)

U(ti+1) = U(t,i); (i) < ali +1);U(t) = (19.0)
u(t, I)

Ru(tl) = [ly - K1) - HY(E D] - Ru() (19.d)

where, i = 1,2, ..., I; Ru(t), Ry(t) and R(f, I) are the co-

variance matrices of Vy(t), Vy(t) and (U(t,1) - U(t)), respec-
tively; and Iy is an identity matrix.

A correspondent algorithm for this predictive control scheme
in a typical time step t would then be as follows.

1. The control @(t—1) (see Eq. (18b)) is the estimated
solution from the last control step. In the ith itera-
tion: the approximated estimated value of control is
U(t,i) = U(t,i—1); a(i) — afi — 1); and for i=1
estimates or extrapolations of estimates of last control
step are used.

ay(t;)
2. Calculate the partial derivatives a_u(tij of Eq.(16), using

the expressions of Egs. (1A) to (3A) of the Appendix.
get HU(t,i) and ZU(t,i), in Eq. (18c).

3. Estimate U(i, i) with the Kalman filtering of Egs.
(19.a), (19.b). Notice that the Kalman filtering can be
done either in batch or sequentially, by recursively pro-
cessing component to component, in sequence. Incre-
ment i, and repeat steps, until the yA(tj) are sufficiently
close to yr(tj) according to a specified error, usually

taken 3 - o of vy, and when this occurs take:

U(t) = U(¢, 1) (20)

4 NUMERICAL TESTS

4.1 Tests in an Earth Mars Orbit Transfer.

This is a problem of low thrust orbit transfer where the state
variables are the rocket mass m, the orbit radius r, the radial
speed w and the transversal speed v, and where the control
variable is the thrust steering angle 6, measured from local
horizontal. The ODE (e.g., Sage, 1968) of this dynamic sys-
tem are:

m = -0.0749 (21.9)
F=w (21.b)
L2 ., T-sine 21
W="F-35 + —m (21.c)
V= WV T-cose (21.d)
=T -m :

where the variables have been normalized with:y, = 1.0, the
gravitational constant; 7' = 0.1405, the thrust; with ¢, = 0
and ¢ty = 5, initial and final times, where each unit of time
is equal to 58.2 days. The predictive control is used on line
to produce control actions that make the spacecraft follow a
reference trajectory determined off line.

Initially tests were conducted to evaluate the neural integra-
tor capacity of giving an accurate discrete model of the dy-
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namics. To approximate the vector mean derivative function,
a multiplayer perceptron feed forward neural network, with
41 neurons (this number of neurons can be determined only
empirically) with the hyperbolic tangent as activation func-
tions (A = 2), in the hidden layer, with identity activation, in
the output layer, and with input bias in the hidden and output
layers, was used. This feed forward neural net was trained
with a parallel processing Kalman filtering algorithm (e.g.,
Singhal, 1989; Rios Neto, 1997), with 3600 input — output
training patterns until a mean square error of 2.4789.10—6
was reached and tested with 1400 patterns, reaching a mean
square testing error of 2.7344.1075.

—— The Reference Responses
--- The Real Trajectories

Rocket Mass
o
=

o
o

o
~
o
=

Mormalized Time

0.4

Radial Speed

Transversal Speed

S : : : : : : :
o 1z 3 4 o 1z 3 4

MNormalized Time

Thrust Steering Angle

u] 0.5 1 15 2
Mormalized Time

25 & 315

Figure 4: Predictive Control with Mean Derivatives Based
Neural Euler Integrator Dynamic Model in an Earth Mars
Orbit Transfer (At = 0.01,nh = 1).

This mean derivative neural network was then used in an Eu-
ler integrator structure to produce an internal model of the
orbit transfer problem dynamics to be used in a predictive
control scheme where the reference was defined as the opti-
mal minimum time transfer trajectory. Results obtained are
shown in Figs. 4 and 5, for a discrete step size of 0.01 of
normalized time (0.582 days) and receding horizons of 1 and
5 steps ahead, respectively. These results illustrate the effec-
tiveness of the proposed approach when applied in this kind
of problem.

—— The Reference Responses
11 : : : --- The Real Trajectories

=

Rocket Mass

[=]

Maormalized Time

Radial Speed

Transversal Speed

1 2 3 4 0 1 2 3 4
Mormalized Time

Thrust Steering Angle

| 1
0 0.5 1 1% 2 25 3 RH
Mormalized Time

Figure 5: Predictive Control with Mean Derivatives Based
Neural Euler Integrator Dynamic Model in an Earth Mars
Orbit Transfer (At=0.01, n;=5).

4.2 Tests in a Three-Axis Satellite Atti-
tude Control

In this case, the attitude control in three axes of a rigid body
satellite is considered, with the correspondent dynamic equa-
tions given as follows (Wertz, 1978; Kaplan, 1976):

Z e
\ ~ cosf
¥
cos @ —sing 0 Wy
cos . cos B sin . cos @ 0 S wy
—cosp.sinfl  —sing.sinf cosf Wy
(22.a)
Ve — I,—1I, +Tw
L)L
I, -1, T,
Wy = W W, + == 22.b
= (B @
Vg = (F2 =l + L
7 = T Wy Wy T
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where, ¢, 6 and ¢ are the Euler angles; I,,1,, I, are the
principal moments of inertia; w,,w, and w, the angular ve-
locity components, in the principal body axes; T,, T, and T,
the control torques. The reference trajectories are defined
such as to drive the Euler angles asymptotically to the origin,
using updating data from navigation (Silva, 2001):

Gref(tit1) = d(tr) -exp [ - (tp41 — tr)] (23.2)
Ores(thr1) = O(tr) - exp [=0 - (thy1 — tr)] (23.b)
Pref(tr+1) = @(tr) - exp [ - (tkt1 — ty)] (23.)

Initially, tests were conducted to evaluate the neural integra-
tor capacity of giving an accurate discrete model of the atti-
tude dynamics. To approximate the vector mean derivative
function, a multiplayer perceptron feed forward neural net-
work, with 20 neurons with the hyperbolic tangent as acti-
vation functions (A = 1), in the hidden layer, neurons with
identity activation, in the output layer, and with input bias
in the hidden and output layers, was used. This feed for-
ward neural net was also trained with a parallel processing
Kalman filtering algorithm, with 3200 input — output training
patterns until a mean square error of 8.621.10~° was reached
and tested with 800 patterns, reaching a mean square testing
error of 8.669.105.

This mean derivative neural network was then used in an Eu-
ler integrator structure to produce the internal model of the
attitude dynamics to be used in the predictive control scheme
with the reference as defined in Egs.(23) and testing data as
given in Table 1. Results obtained are shown in Fig. 6.

Table 1: Testing Data
Initial Conditions: ¢g = | Momentsof Inertia:
gg = gg=g2w° I, = 30,1, =40, I, =
Wzg = gwyg = gw.g = | 20
gllrpm]=z5 - 1[rad/§]
t,=0[s ety=400[9

3 = 0.05R,=102 e
R,=10-¢

Aty (Neural Integrator | Ats(Validation Model

step size) = step size) = 3|9

0419 Fourth Order Runge-
Kutta

Aty (Predictive Control | Linear  Perturbation

Horizon) = Parameter (Eq. 16)

2[9 a=0.15

These results illustrate the effectiveness of the proposed ap-
proach when applied to this kind of problem. The oscilla-
tory behavior in the y component of angular velocity may be
due to the fact that the reference trajectory did not include
explicitly the derivative terms corresponding to the angular
regulation.
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Figure 6: Predictive Control with Mean Derivatives Based
Neural Euler Integrator Dynamic Model in a Satellite Three-
Axis Attitude Control (At=2[g]; ng).

5 CONCLUSIONS

A new approach of predictive control, using a mean deriva-
tive based neural Euler integrator as the internal dynamic sys-
tem model, was presented. The structure of an ODE Euler
numerical integrator was used to get neural discrete forward
models where the neural network has only to learn and ap-
proximate the algebraic and static mean derivative function
in the dynamic system ODE.

The tests indicate the effectiveness of using the mean deriva-
tive based neural model of the dynamic system as an internal
model in the control scheme and reinforced the expected fol-
lowing characteristics:

e It is a simpler task to train a feed forward neural net-
work to learn the algebraic, static function of the dy-
namic system ODE mean derivatives (where the inputs
are samples of state and control variables), than to train
it to learn a NARMA type of discrete model (where the
inputs are samples of delayed responses and controls).

e The neural network in the neural ODE integrator results
to be simpler, in terms of the necessary number of layers
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and number of neurons, since it does not have to learn
the dynamic law, but only the derivative function.

The use of a Kalman filtering based approach to get the neu-
ral predictive control actions led to results where:

e The stochastic interpretation of errors gave more real-
ism in the treatment of the problem, and facilitated the
adjustment of weight matrices in the predictive control
functional.

e The local parallel processing version of the Kalman fil-
tering algorithm used in the control scheme exhibited
efficiency and efficacy equivalent to that of the corre-
spondent neural network training Kalman filtering al-
gorithm. This was expected, since they are completely
similar algorithms used to solve numerically equivalent
parameter estimation problems.

e Only one step ahead was sufficient in the receding hori-
zon of control. This feature together with the efficiency
and performance of the parallel processing Kalman al-
gorithms, combined with the present on board process-
ing capabilities, guarantees the feasibility of real time,
adaptive applications.

Notice that the proposed approach can be also be applied
when an ODE mathematical model is not available. This
can be done as long as dynamic system input output pairs
are available to be used as training information, considering
the structure of the numerical integrator with a feed forward
network in place of the mean derivative function. Notice also
that one could directly use an ODE numerical integrator as
a dynamic system discrete model to play the role of an in-
ternal model in the predictive control scheme. However, in
this case one would not have the possibility of adaptive con-
trol schemes, by exploring the learning capacity of the neural
network and of on line updating its training.

The application of the proposed approach is not restricted to
predictive control. It can be applied to any control scheme
where an internal model of the controlled system is neces-
sary.

Further studies shall evaluate the scheme adopted by Wang
and Lin (1998), and depicted in Fig. 2. It is one where using
the outputs of an Euler integrator the neural network is indi-
rectly trained to learn the dynamic system mean derivative.
In this paper it was only considered the scheme where the
neural network is trained to directly learn the dynamic sys-
tem mean derivative, which is then inserted in the structure
of the Euler numerical integrator.
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APPENDIX: RECURRENCE RELATIONS IN
THE CALCULATION OF HY(T, I)

Equations (18.a) to (18.d) can be solved only if the matrix
HY(t,i) is known. For the case where discrete nonlinear
dynamic system models using Euler numerical integrators
with mean derivative functions are used, it can be calculated
through the following equations (Tasinaffo, 2003):

9 k+qy| _ o tant?q B lal At n | .8k+q - lyl (1A)
o Ku oK+0 - Lyi oKu

where, g=2, 3, ..., n,,_. the notation is the same as in Sec-
tion 2, and ny, is the number of steps in the finite horizon of
optimization.

It is still necessary to calculate the back propaga-
tion relative only to the feed forward network, like
is showed in figure 1A, to get the matrices (2A)
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to (4A), in order to completely solve for H“(t,q).
ak+q-1yi
aku
I 2 k+g-2 PR
atana**9 2l atana a' dtanak*92ql
Okul akuz akunu.
atana“*92%ab  atanat9 %4l dtanack*9?alb
A 6ku1 aku2 akunu.
atanmk*q'zai], dtana Xt 2q’ dtang <t 2g
y Ny Ny
k k k
L ad up d us 9 Unu. Jng x
(2A)
dtana 9 lgl
ak+q-lyi -
dtanak 9 al dtanat al dtanat al
k+qg-1 k+qg-1 k+g-1 ;
2 i 2"y 2"y,
0 tanat aiz 0 tanat aiz 0 tanat +q_la
k+qg-1 i k+qg-1 i k+qg-1 i
Y1 Y2 2 \
. . . y
dtana +q_lari1y dtanat +q_1ai]y, dtana +q_1aay,
K+q- k+q- Kk +q- .
a+q1'1 a+qlI2 a+ql|n'
L y dny xny
(3A)
aku
i K i k i kK i ]
dtanat a; dtanat ap dtanar a;
Bkul aku2 akunu.
atanmkaiz atanmkaig atanAtkaiz
At akuy T 3 up,,
a tanack aLy, atanack a;y, a tanac a';]y‘
o u o u o u, .
B 1 2 ny Jny x e
(4A)
In this case, the back propagation given
by (e.g., Carrara, 1997; Tasinaffo, 2003):
oyl _ oyl ket fork=l-1,1-2  (5A)
oyK — oykil ' (v%) ’
where,

- _@1'* y’f“@ﬁ‘" iy . iy
VAN AR
yﬁ_@ﬁ;z “l-(l-l@ = ﬁm@’k_m’

-1 -1

Figure 1A— The feed forward net.

Y _
ol = 't (64)
f @) 0 0 0
0 f(g) 0 0
YT 0 o0 o (A
0 0 0 f'(y'nk)

where the function f’(.) is the derivate of the activation
function of each neuron inside the feed forward net (Fig.
1A).

Equations 5A to 7A combined with equations (18.a) to (18.d)
of Section 3 completely the problem of getting the matrix
H"(t,7).
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