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RESUMO

Navegação em veículos autônomos requer a integração de
medidas de sensores inerciais embarcados e informação
externa adicional coletada por vários sensores. Neste artigo,
o modelo de erro de velocidade representado no sistema
de coordenadas computado é aumentado com um modelo
de constante aleatória para descrever o erro de zero dos
acelerômetros e girômetros. Essa modelagem visa à fusão
de um sistema girante de navegação inercial de baixo custo
com medidas externas de posição e velocidade empregando
o filtro de Kalman. É investigado o impacto do erro de
modelo e das manobras na estimação do desalinhamento e
dos erros da unidade de medidas inerciais. Este trabalho
simula os três canais de um sistema inercial de navegação,
sem amortecimento vertical e dotado de unidade de medidas
inerciais girante em relação ao veículo. A rotação da unidade
de medidas inerciais não requer o mecanismo sofisticado
típico de uma plataforma estabilizada mecanicamente, além
de dispensar manobras que podem levar o veículo a se afastar
da trajetória desejada e que são usualmente empregadas no
alinhamento em vôo de plataformas solidárias ao corpo do
veículo. Em comparação com a plataforma estabilizada
mecanicamente e estacionária em local conhecido, a rotação
da unidade de medidas inerciais melhora a estimação dos
erros de zero dos acelerômetros e parcialmente melhora
a estimação dos erros de zero dos girômetros e do
desalinhamento. Finalmente, a combinação de rotação
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da unidade de medidas inerciais com segmentos distintos
de aceleração produz observabilidade completa, resultando
assim em melhoria significativa nas estimativas dos erros de
zero dos girômetros e do desalinhamento.

PALAVRAS-CHAVE : navegação inercial, alinhamento em
vôo, fusão de sensores, veículos autônomos, robótica.

ABSTRACT

Navigation in autonomous vehicles involves integrating
measurements from on–board inertial sensors and external
data collected by various sensors. In this paper, the
computer–frame velocity error model is augmented with
a random constant model of accelerometer bias and rate-
gyro drift for use in a Kalman filter–based fusion of a low-
cost rotating inertial navigation system (INS) with external
position and velocity measurements. The impact of model
mismatch and maneuvers on the estimation of misalignment
and inertial measurement unit (IMU) error is investigated.
Previously, the literature focused on analyzing the stripped
observability matrix that results from applying piece-wise
constant acceleration segments to a stabilized, gimbaled INS
to determine the accuracy of misalignment, accelerometer
bias, and rate-gyro drift estimation. However, its validation
via covariance analysis neglected model mismatch. Here,
a vertically undamped, three channel INS with a rotating
IMU with respect to the host vehicle is simulated. Such
IMU rotation does not require the accurate mechanism of
a gimbaled INS (GINS) and obviates the need to maneuver
away from the desired trajectory during in-flight alignment
(IFA) with a strapdown IMU. In comparison with a stationary
GINS at a known location, IMU rotation enhances estimation
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of accelerometer bias, and partially improves estimation
of rate-gyro drift and misalignment. Finally, combining
IMU rotation with distinct acceleration segments yields full
observability, thus significantly enhancing estimation ofrate-
gyro drift and misalignment.

KEYWORDS: inertial navigation, in-flight alignment, sensor
fusion, autonomous vehicles, robotics.

GLOSSARY

DCM – direction cosine matrix.

GINS – mechanically stabilized, gimbaled–based INS.

IFA – in-flight alignment.

IMU – inertial measurement unit.

INS – inertial navigation system.

NED – North-East-Down.

PWC – piece-wise constant.

SDINS – strapdown inertial navigation system.

SOM – stripped observability matrix.

WGS-84 – World Geodetic System 1984 geoid-interpolating
geocentric reference ellipsoid.

x

A– time derivative of vectorA as computed by an observer
attached to reference frame Sx.

x

A
y

– representation of
x

A in reference frame Sy.

Asp – specific force sensed by accelerometer triad.

Dx
y– DCM from reference frame Sx to Sy.

gm, g – Earth’s gravitation and gravity, respectively.

g0 – WGS–84 Earth’s equatorial gravity magnitude.

h – altitude above WGS–84 ellipsoid.

R – true position.

RN , RE – WGS–84 latitude-dependent northward and
eastward Earth’s curvature radii, respectively.

Re – WGS–84 latitude-dependent Earth’s radius.

R0 – WGS–84 Earth’s equatorial radius.

Ss – navigation reference frame.

Sx – x-reference frame, x={b,c,e,i,NED,p,s,t}.

Ve – terrestrial velocity, equal to
e

R.

λ,Λ– geographic latitude and longitude, respectively.

∆R – position error.

∆Ve – terrestrial velocity error.

ε – rate-gyro drift.

ρ – transport rate vector, equal toωse.

ω –Inertial angular rate vector of Ss, equal toωsi.

ωxy– angular rate of Sx relative to Sy.

Ω– Earth’s inertial angular rate, equal toωei.

Ω
xy
x – skew-symmetric matrix representation of vector cross-

product operator [ωxy
x ×](.).

δθ– Misalignment vector from St to Sc.

ψ– Misalignment vector from Sc to Sp.

φ– Misalignment vector from St to Sp.

∇– accelerometer bias.

Subscripts:

a – aiding sensor external to INS.

b – IMU reference frame.

c – computer reference frame.

e – Earth-fixed reference frame.

i – inertial reference frame.

m – measured quantity.

p – platform reference frame.

s – navigation reference frame.

t – true reference frame.

0 – initial value.

1 INTRODUCTION

An inertial navigation system (INS) estimates position and
velocity. The INS comprises computational resources and an
inertial measurement unit (IMU) containing accelerometers
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and rate-gyros capable of measuring specific force and
angular rate components. Gimbaled INS implementations
(GINS) employ accurate mechanisms to isolate the IMU
from the host vehicle’s motion and keep alignment with
the navigation reference frame. A strapdown configuration
(SDINS) employs an IMU rigidly attached to the host
vehicle. IMU sensors often provide signals in discrete time
and incremental form, and adequate numerical integration
provides the desired estimates. The INS can track short-
term, abrupt motions, but estimation errors grow unbounded
during long operation periods due to the integration of low-
frequency errors such as accelerometer bias and rate-gyro
drift, which are unknown, constant null offsets.

Before entering navigation mode, IMU calibration and
alignment – often relative to the North-East-Down frame
– make use of leveling and gyrocompassing, which are
based on reaction to gravity and earth rate sensing while
the vehicle remains stationary at a known location on the
ground. However, some circumstances demand in-flight
alignment (IFA) (Baziw and Leondes, 1972). More recently,
autonomous vehicles often resort to a low-cost SDINS aided
by additional sensors, and Kalman filter-based sensor fusion
is employed to estimate navigation, misalignment and IMU
errors (Adam et al., 1999; Roumeliotis et al., 2002; Eck
and Geering, 2000; Hafskjold et al., 2000, and Wagner et
al., 2003). Sequential Monte Carlo methods, particle filters,
and other nonlinear estimators have also been investigated
(Nordlund, 2000; Vik et al., 2001; Wan et.al., 2001).

Bar-Itzhack and Berman (1988) showed the lack of
full observability when estimating misalignment and
IMU errors of a stationary GINS with velocity error
measurements. Their analysis employed linear navigation
and misalignment error dynamics augmented with random
constant accelerometer bias and rate-gyro drift. Goshen-
Meskin and Bar-Itzhack (1990) departed from the augmented
computer-frame velocity error model of a GINS, investigated
its observability, and indicated that the ability to maneuver
is “a blessing in disguise”. That is, though IFA may seem
to be less accurate and more complicated than alignment
at rest, maneuvers during the IFA phase can excite latent
modes. Acceleration maneuvers in a GINS were modeled by
a concatenation of piece-wise constant (PWC) specific force
segments to circumvent the trajectory-dependent, numerical
computation of the observability Grammian of a linear time-
varying model. Observability analysis of the PWC linear
error dynamics was based on determining the rank of the
stripped observability matrix (SOM) after each acceleration
segment (Goshen-Meskin and Bar-Itzhack, 1990; Leeet al.,
1993). The SOM analysis disregarded the actual model
mismatch arising from linearization errors during operation
and its effect on error estimation accuracy.

Rotorcraft and aerial vehicles with vectorized thrust are
capable of PWC acceleration segments without significant
attitude maneuvers. Goshen-Meskin and Bar-Itzhack (1990)
claimed that covariance simulation and real IFA results
showed that the exact nature of acceleration maneuvers is not
influential, but their mere existence is paramount for accurate
GINS misalignment and IMU error estimation. Thus,
insights from SOM analysis apply to other GINS-equipped
vehicles and maneuvers. On the other hand, SDINS-
equipped vehicles without vectorized thrust must conduct
attitude maneuvers to generate accelerations. It is intuitive
that maneuvers in accelerationand IMU attitude should
enhance estimation accuracy, but continuously changing
IMU attitude violates the assumption of PWC dynamics,
which precludes SOM analysis.

The purpose of this investigation is to gauge the impact
of IMU rotation and PWC acceleration segments on
estimation accuracy relative to a GINS undergoing the same
acceleration maneuvers.Optimal maneuver design for IFA
is not within the scope of this work.Instead of a strapdown
configuration, the IMU rotates relative to the host vehicle.
Hence, the host vehicle need not maneuver away from the
desired path during the IFA phase. Following the IFA
phase, the IMU can be locked in a known attitude relative
to the vehicle. IMU rotation does not require the accurate
mechanism of a gimbaled INS because what matters is to
change the direction of the inertial sensors’ sensitive axes
relative to gravity and earth angular rate. The approach
has been inspired by Leeet al. (1993), which employed
SOM analysis and concatenated PWC segments of IMU
attitude for multiposition alignment on the ground. Notice
that vehicle attitude is a by-product of the conventional
strapdown configuration at all times, whereas during IFA
phase the present approach produces IMU attitude. The
inertial sensors are assumed to be aligned with the IMU
frame Sb.

Section 2 presents the navigation and attitude equations,
and the multirate algorithm. Section 3 shows the
computer-frame velocity error model for use in the Kalman
filter. Section 4 discusses sensor fusion by means of
indirect, feedforward INS-aiding with position and velocity
measurements. Section 5 presents the simulation of
stationary and IFA phase of both GINS and rotating IMU
configurations, and analyzes the results, and conclusions are
in Section 6.

2 THE NAVIGATION EQUATIONS

Consider the following coordinate frames with origins at the
center of the earth: Si is the inertial frame, Se is the earth-
fixed geographic frame and Ss is the navigation reference
frame. The following angular rates are recognized: the
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constant inertial earth rateωei = Ω of Se relative to Si,
and the inertial rateωsi = ω of Ss relative to Si. Thus,
ωse = ρ = ω−Ω is the transport rate. LetR denote position
and the superscript indicate the coordinate frame in which a
time derivative is observed. Neglecting measurement errors,
accelerometers provide the specific force:

Asp =
ii

R−gm, (1)

wheregm=gm(R) is the gravitational pull toward the earth

center due to mass attraction, and
ii

R is the inertial second
derivative, i.e., inertial acceleration. Inertial velocity is:

i

R =
e

R+Ω× R = Ve + Ω × R, (2)

and Ve is the terrestrial velocity observed from the earth-
fixed coordinate frame Se. From (2), inertial acceleration is
given by:

ii

R =
i

Ve +Ω×
i

R =
i

Ve +Ω× (Ve + Ω × R). (3)

It is desirable to describe
s

Ve =
se

R, i.e., the rate of terrestrial

velocity as observed in the navigation frame Ss. Since
i

Ve =
s

Ve +ωsi × Ve, (3) yields:

ii

R =
s

Ve +(ω + Ω) × Ve + Ω× (Ω × R). (4)

Substitution in (1) and rearranging gives:

s
Ve = Asp − (ω+Ω)×Ve + g, g = −Ω× (Ω×R)+ gm,

(5a)

whereg=g(R) is the local plumb-bob gravity vector. The
corresponding terrestrial position rate as observed in Ss is:

s

R = Ve − ρ× R. (5b)

Equations (5a-b) are the navigation vector equations.
Specific force measurements, a gravity model, and
knowledge of initial conditionsVe(0) andR(0) are needed to
obtain the inertial estimatesVe,INS(t) andRINS(t). Equations
(5a-b) are often mechanized to reflect the choice of
Ss ≡ SNED. The U.S. Department of Defense World
Geodetic System (DoD WGS-84) approximates the earth’s

shape by a geocentric reference ellipsoid, which models
earth radius Re, curvature radii RE and RN along East
and North directions, respectively, and gravity (Siouris,
1993). Latitudeλ, longitudeΛ, and altitude h describe the
terrestrial position. The vertically-undamped, continuous-
time navigation equations are:

λ̇ =
VN

RN + h
,

Λ̇ =
VE

(RE + h) cos(λ)
,

ḣ = −VD,

V̇N = Asp,N +
VNVD

(RN + h)
− VE{2Ωsin(λ) +

VE tan(λ)

(RE + h)
},

V̇E = Asp,E + VN{2Ω sin(λ) + VE tan(λ)
(RE+h) }+

+ VD{2Ω cos(λ) + VE

(RE+h)},

V̇D = Asp,D −
VNVN

(RN + h)
−VE{2Ω cos(λ)+

VE

(RE + h)
}+

+ g(λ, h). (6)

whereg(λ, h) = g0(1 + 0.0053sin2(λ))(1 − 2h/Re) is a
sufficiently accurate approximation of gravity. Inaccurate
knowledge about gravity is not among the most significant
sources of errors in stand-alone, low-cost INS operation
where the effect of IMU errors strongly exceed those due
to gravity errors (Jekeli, 1997). Use of accelerometer datain
(6) needs attitude determination, i.e. the transformationfrom
Sb to SNED according toAsp,NED = Db

NED,INSAsp,b,m. One
approach is to compute the direction cosine matrix (DCM)
from angular rate measurements and the initial alignment
Db

NED,INS(0):

Ḋ
b
NED,INS = Db

NED,INSΩ
bi
b,m − ΩNEDi

NED,INSDb
NED,INS. (7)

The entries in skew-symmetric (cross product form) matrix
Ωbi

b,m are the components of the angular rate sensed by the
IMU’s rate-gyro triad. Likewise, skew symmetric matrix
ΩNEDi

NED,INS relates to the components ofωNEDi
NED,INS:
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ωNEDi
NED,INS = ωei

NED,INS + ωNEDe
NED,INS =

= ΩNED,INS + ρNED,INS =

=





ΩN,INS

0
ΩD,INS



 +





ρN,INS

ρE,INS

ρD,INS



 =

=





(Ω + Λ̇INS) cos(λINS)

−λ̇INS

−(Ω + Λ̇INS) sin(λINS)



 , (8)

where Λ̇INS, λ̇INS , λINS are from the INS stand-alone
solution to (6).

The INS stand-alone solution to (6) and (7) is computed
by a multirate algorithm that processes IMU discrete-
time measurements, that is angular and thrust velocity
increments occurring between sensor samples (Bar-Itzhack,
1978; Savage, 1998; Waldmann, 2003). Coning errors arise
because finite rotations do not commute, sculling errors are
due to incorrect thrust velocity computation as coordinate
frames rotate between data samples, and scrolling errors
arise from velocity and position updates occurring at distinct
rates. Though complex, with intricate compensation terms to
attenuate such errors, Savage’s multirate approach has been
utilized due to its accuracy. Thrust velocity increments from
the accelerometers are transformed from Sb to SNED at a
high sampling rate, and terrestrial velocity and position are
solved at intermediate and slow rates, respectively. The fast
acquisition rate of incremental inertial samples and attitude
computation has been set to 400Hz. The INS terrestrial
velocity and position are computed at the intermediate and
slow rates 1/Tint=200Hz and 1/Tnav=100Hz, respectively.
The stand-alone inertial solution diverges due to errors
in IMU data and erroneous processing by the multirate
algorithm, thus causing linearization errors and model
mismatch in the Kalman filter.

3 THE COMPUTER-FRAME VELOCITY
ERROR MODEL

Figure 1 shows the most relevant NED coordinate frames
and misalignment angles for a brief description of this error
model. True, computed, and platform frames, St, Sc, and Sp,
respectively, are located at the actual and estimated positions.
Sc is perfectly known, albeit it is incorrect. If initial
alignment and inertial data were error free, the integration
of (7) would produceDb

t . However, accelerometer bias and
rate-gyro drift yieldDb

p = Db
NED,INS.

δθ is a small misalignment angle vector due to errors in the
estimated position.δθ rotates St into alignment with Sc, and

 

Figure 1: NED coordinate frames and misalignment angles

is represented in Sc as:

δθc =





∆RE/(RE(λ) + h)
−∆RN/(RN (λ) + h)

−∆RE tan(λ)/(RE(λ) + h)



 , (9)

where RE and RN are the earth’s curvature radii, and∆RE

and ∆RN are position errors. The small misalignment
angle vectorψ is due to rate-gyro drift, and rotates Sc into
alignment with Sp. Use of the computer frame Sc for the
error model is attractive because it renders the misalignment

rate
c

ψ uncoupled from both position and terrestrial velocity
errors. The total misalignment angleφ = δθ+ψ from St to
Sp can be estimated from (9) using the INS solution to (6),
and the Kalman filter estimates ofψ and∆R.

Assuming a spherical earth and the IMU path in the
vicinity of the earth’s surface (i.e. h«R0 and |R| ≈R0),
the computer-frame position error model was obtained and
further elaborated to show its equivalence to the computer-
frame velocity error model (Waldmann, 2004). The latter

describes the error dynamics with a structure
•

∆x’NED =
A′(t)∆x′

NED + B(t)∆u that fits in with the Kalman filter
framework:
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∆x′

NED =
[

∆RT
NED ∆VT

e,NED ψT
NED

]T
,

∆u =
[

∇
T
b εT

b

]T
,

∆RNED =
[

∆RN ∆RE ∆RD

]T
,

∆Ve,NED =
[

∆VN ∆VE ∆VD

]T
,

ψNED =
[

ψN ψE ψD

]T
,

∇b =
[

∇Xb ∇Y b ∇Zb

]T
, εb =

[

εXb εY b εZb

]T
,

A′ =





A11 I3 03

A21 A22 A23

03 03 A33



 ,

A11 =





0 ρD −ρE

−ρD 0 ρN

ρE −ρN 0



 ,

A21 = diag(−g0 /R0 ,−g0 /R0 , 2g0 /R0 ),

A22 =





0 ρD + 2ΩD −ρE

−(ρD + 2ΩD) 0 ρN + 2ΩN

ρE −(ρN + 2ΩN ) 0



 ,

A23 =





0 −Asp,D Asp,E

Asp,D 0 −Asp,N

−Asp,E Asp,N 0



 ,

B =





03x3 03x3

Db
p 03x3

03x3 −Db
p



 ,

A33 =





0 ρD + ΩD −ρE

−(ρD + ΩD) 0 ρN + ΩN

ρE −(ρN + ΩN ) 0



 .

(10)

To estimate the IMU errors, assuming full observability, the
above error vector was augmented with a random constant
model of accelerometer bias∇b and rate-gyro driftεb. The

augmented dynamics is
•

∆x = A(t)∆x + n, with n white
noise, and∆x ∈ R15:

∆x =

[

∆x′NED
∆u

]

, A =

[

A′ B
06x9 06

]

. (11)

4 INDIRECT FEEDFORWARD INS AIDING

The continuous lines in Figure 2 depict a feedfoward, indirect
Kalman filter-based fusion of INS estimates with aiding
position and terrestrial velocity. The aiding signals result
from the processing of observables within the aiding sensors.
The latter may be a GPS receiver, or a camera trained on a

known landmark. The term "indirect" refers to error state
estimation rather than estimation of the full state. The dashed
lines in Figure 2 indicate INS reset by feeding back estimates
of misalignment and IMU error, i.e. accelerometer bias and
rate-gyro drift.

Noting that subscripta indicates aiding sensor, and
measurementy is the difference between the INS solution
and the aiding position and velocity, then:

RINS = R + ∆R, Ve,INS = Ve + ∆Ve, (12)

y =

[

RINS − Ra

Ve,INS − Ve,a

]

=

[

∆R − µ
∆Ve − η

]

. (13)

Representation of the above aiding differences in the NED
coordinate frame yields:

∆RN = (λINS − λa)(RN + ha),

∆RE = (ΛINS − Λa)(RE + ha) cos(λa),

∆RD = −(hINS − ha),

∆Ve,NED =

= (Ve,INS − Ve,a)NED =
[

∆VN ∆VE ∆VD

]T
.

(14)

Ideally,µ andη in Figure 2 are white and uncorrelated noise
processes. However, the processing of observables gives
rise to correlation in time and among components of aiding
position and velocity. Such correlations are not considered
here in the statistical model of measurement errors. Thus,
the discrete-time measurement equation in the aided-INS
Kalman filter is yj = [∆RNED(j)T ∆Ve,NED(j)T ]T =
H∆xj + vj , wherevj is a zero-mean, white sequence with
diagonal covariancēR, andH = diag(I6,O6x9).

The INS solution-dependent parametersAsp, Ve,INS, RINS

andDb
p in (11) have been updated at rate 1/Tnav=100Hz.A(t)

has been discretized to produce the state transition matrix,
that is Φk = I + A(kTnav)Tnav(I + A(kTnav)Tnav/2).
Uncertainty inΦk has been translated into an additive, zero-
mean, white noise sequencewk with diagonal covariance
matrixQ, which is related to the linearization error about the
diverging INS solution.Q demanded tuning. Filter estimates
and respective covariance matrix have been propagated
forward in time also with frequency 1/Tnav. Their updates at
rate 1/Ta =1Hz occurred when aiding measurements became
available. The caret superscript indicates the filter estimate
of the error state∆x, andP is the filter-computed covariance
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Figure 2: Indirect feedforward INS-aiding architecture.V is
herein used to denote the terrestrial velocityVe.

of the estimation error. The Kalman filter equations and
corresponding computation rates are:

Initialization:

∧

∆x+
0 =

∧

∆x0 ; P+
0 = P0 ; k = 0 ; j = 1;

Propagation until update available – 1/Tnav=100Hz:

k = k + 1;
∧

∆x−

k = Φk−1

∧

∆x−

k−1;

P−

k = Φk−1P
−

k−1Φ
T
k−1 + Q;

Update available – 1/Ta=1Hz:

∧

∆x−

j =
∧

∆x−

k ; P−

j = P−

k ;

Kj = P−

j HT [HP−

j HT + R̄]−1;

∧

∆x+
j =

∧

∆x−

j +Kj[yj − H
∧

∆x−

j ] ; k = 0 ;
∧

∆x−

k =
∧

∆x+
j ;

P+
j = [I15 − KjH]P−

j ; P−

k = P+
j ; j = j + 1.

Return to propagation stage.

R̄ = diag((3[m])2I3, (0.05[m / s])2I3),

P0 = diag((10[m])2I3, (0.5[m / s])2I3,Z,
(3I3∇b[m / s2])2, (3I3εb[rd / s])2),

Z = diag((∇E / g[rd])2, (∇N/g[rd])2,
((−εE + ΩD0∇E / g)/ΩN0[rd])2),

[

∇
T
NED εNED

T
] T

= diag(Db
p,D

b
p)

[

∇
T
b εT

b

] T
,

Q = Tnav.diag((1[m])2I3, (10−5[m / s])2I3,01x9).

P0 mirrored the initial uncertainty in the estimation error.
The diagonal form ofZ represents the impact of IMU
errors ∇NED and εNED on the uncertainty about initial
misalignment angleψNED(0).

Due to model mismatch, the residual sequencerj = yj −

H
∧

∆x−

j at instants multiple of Ta has been monitored to
ensure statistical consistency (Bar-Shalom and Li, 1993).
Adequate tuning ofQ should produce a zero-mean, white,
Gaussian residual sequence with covariance matrixSj =
HP−

j HT + R̄. Had a position or velocity residual
component been found outside±3 times the square root
of the corresponding element in the diagonal ofS, the
corresponding position or velocity error variance inP
was reset to (3m)2 and (0.3m/s)2, respectively. The
corresponding off-diagonal elements inP were also altered
to keep the cross-correlation coefficients unchanged by the
reset.

5 MANEUVERS AND RESULTS

Goshen-Meskin and Bar-Itzhack (1990) modeled maneuvers
during the IFA phase of a GINS with 20 seconds, PWC, 0.1g
specific force segments. Consequently,Db

p = I, andA23

in (11) was the single PWC, significantly time-varying block
in A(t). IMU rotation, however, violates conditions for valid
SOM analysis becauseDb

p in B(t) varies continuously. The
impact of PWC acceleration segments and IMU rotation on
estimation accuracy,both at a known location on the ground
and during IFA, is gauged with the filter-computed standard
deviation of the estimation error and, as in Pittelkau (2005),
one realization.

Aiding position and velocity measurements, respectively
Ra and Ve,a, have been generated from ground-truth
corrupted by additive Gaussian, zero-mean, white noise with
covariance matrixR̄. IMU rotation with respect to the
vehicle has been simulated with IMU attitude ground-truth in
terms of yaw, pitch, and roll relative to the NED coordinate
frame (Bar-Itzhack, 1977):

ψ = s(2πt/300) + 0.5 s(2πt/1.7)[rd],

θ = s(2πt/300) + 0.5 s(2πt/1.7 + 0.3)[rd],

φ = s(2πt/300) + 0.5 s(2πt/0.85)[rd], t ∈ [0, 200][s].
(15)

The GINS stand-alone solution was simulated by enforcing
thatψ ≡ θ ≡ φ ≡0, generating IMU data, and solving (6)
and (7). In this case of NED mechanization,Db

p = I and
Xb ≡ N, Yb ≡ E, andZb ≡ D. Each rate-gyro has
been corrupted by driftεXb = εY b = εZb=2˚/h and additive
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zero-mean, white noise with standard deviationσε=1˚/h, and
integrated between consecutive sensor samples to yield the
incremental angular measurements.

Given the initial position and terrestrial velocity, and ground
accelerationV̇N , V̇E , V̇D which the IMU was subject to,
the NED ground-truth specific forceAsp,t was obtained
from (6). From (15),Dt

bAsp,t was computed, and each
accelerometer corrupted by bias∇Xb = ∇Y b = ∇Zb=3mg
and additive zero-mean, white noise with standard deviation
σ∇=1mg. Integration between consecutive sensor samples
resulted in the incremental thrust velocity measurements.

Motion 1 aimed to show whether a constant, long-duration
acceleration can enhance observability, though its ultimate
velocity is surely not attainable by a low-cost host vehicle.
With λ(0)=23˚12′S, Λ(0)=45˚52′W, and h(0)=600m as the
initial location at ITA facilities, Motion 1 consisted of
constant ground acceleration a=5m/s2 (Bar-Itzhack, 1977):

VN = VE = −VD = 300 + at [m/s] , t ∈ [0, 200][s]. (16)

With the same initial location and terrestrial velocity, Motion
2 comprised five PWC, 40s ground acceleration segments as
in Table 1.

Segment V̇N V̇E V̇D

1 0 0 0

2 a 0 0

3 0 a 0

4 a a 0

5 0 0 -a

Table 1: Motion 2 ground acceleration segments

Table 2 summarizes the effect of the maneuvers on one
realization of the estimation error of IMU sensor errors
and misalignment at t=200s, and respective filter-computed
standard deviation. Figures 4-6 show the±1-sigma filter-
computed standard deviation of the estimation error (i.e.
filter uncertainty) and one realization of the estimation error
for Motion 2 combined with IMU rotation.

5.1 Stationary GINS at a known location

In this case, from (6) one hasAsp,NED = −g(λ(0), h(0))D
becauseVe = 0. The position error of the stand-alone
INS is in Figure 3. INS-aided position estimation error in
Figure 4 shows that sensor fusion has sucessfully damped
the instability inherent to the INS vertical channel. Other
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Figure 3: Stationary GINS true position error (m)

results shown in Table 2 are briefly analyzed in the ensuing
due to lack of space. The information content available
in this condition only partially reduced the initial filter
uncertainty about biases in the horizontal accelerometers.
Vertical accelerometer (Zb) bias, however, was accurately
estimated.

Filter uncertainty about drift in the Xb horizontal rate-gyro
was reduced more significantly than in the Yb channel.
Filter-computed standard deviation of vertical Zb rate-gyro
drift and azimuth misalignment estimation error confirmed
a lack of observability which is consistent with Bar-Itzhack
and Berman (1988). Similar results have been observed
in the case of a GINS whose IMU displaced with constant
ground velocityVN = VE = −VD = 300m/s because the
horizontal specific force was negligible (see (6)).

5.2 GINS undergoing acceleration

Motion 1 reduced filter uncertainty with respect to
drift in the vertical (Zb) and horizontal (Yb) rate-
gyros (though not in the horizontal Xb-channel rate-
gyro), and w.r.t. misalignment angles. Filter uncertainty
regarding accelerometer bias has been degraded w.r.t. the
stationary condition. Optimistic filter uncertainty aboutthe
misalignment estimation error produced biased estimation
errors.

Motion 2 produced a sharp reduction of filter uncertainty
at the onset of each distinct acceleration segment as in
Goshen-Meskin and Bar-Itzhack (1990), except for the
smoothly decaying uncertainty in the vertical rate-gyro
(Zb) drift estimation error. Notice the improvement
in filter uncertainty and biased estimation of rate-gyro
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Maneuver
∇Xb

mg
∇Y b

mg
∇Zb

mg
εXb

deg/h
εY b

deg/h
εZb

deg/h
φN

arcsec
φE

arcsec
φD

arcsec
Stationary GINS (IMU)

Est. Error -2.5972 -0.6968 -0.0069 0.0352 -0.2800 -5.0900 -143 590 -4.45E3
Std. Dev. 2.8401 2.8400 0.0136 0.2784 2.1150 5.8900 589 534 2.76E4

Accelerated GINS

Motion 1
Est. Error 1.6918 -3.4092 -0.6778 0.1579 -0.2059 -0.5456 123 425 -1890
Std. Dev. 5.6623 3.0535 0.9536 0.9101 0.7899 3.2297 256 468 1276

Motion 2
Est. Error 0.2395 -0.0265 0.0659 -0.0514 -0.1418 0.3506 -7.77 -56.0 -48.1
Std. Dev. 0.1031 0.0704 0.0266 0.0916 0.0818 0.3727 12.9 18.8 38.0

Rotating IMU, stationary
host

Est. Error -0.0849 -0.1080 -0.0278 -0.5973 -1.3490 -0.5518 -12.4 -10.7 -1.10E4
Std. Dev. 0.0679 0.1010 0.0222 0.9960 2.6080 0.9822 15.7 19.9 1.86E4

Rotating IMU and Motion
2

Est. Error -0.0341 -0.0485 -0.0555 0.0321 0.0100 0.0016 -24.5 -3.92 -9.82
Std. Dev. 0.0361 0.0727 0.0486 0.2070 0.0830 0.1586 10.7 11.1 17.2

Table 2: Effect of maneuvers on accelerometer bias, rate-gyro drift, and INS misalignment estimation error after 200s
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Figure 4: Stationary GINS position estimation error (m)

drift. East (Yb) accelerometer bias observability demanded
eastward acceleration, whereas north (Xb) acceleration
bias called for northward acceleration. Resembling the
stationary alignment, the vertical (Zb) accelerometer bias
was accurately estimated from the first segment of Motion
2, with V̇N = V̇E = V̇D = 0, due to the
vertical specific force arising from the reaction to gravity.
Horizontal accelerometer bias estimation in a GINS was
much improved by use of acceleration segments instead of
one constant acceleration. Thus, improved estimation of
horizontal accelerometer bias resulted in better estimation of

misalignment about east (Yb) and north (Xb) axes.

5.3 Rotating IMU in a stationary host

IMU rotation was beneficial for the bias in the
accelerometers and Zb rate-gyro drift, which in a stationary
GINS corresponds to the unobservable vertical channel
rate-gyro drift. However, IMU rotation degraded the
estimation of drift in the Xb- and Yb rate-gyros. Rotating
the IMU significantly reduced filter uncertainty about the
horizontal misalignment estimation error in comparison with
a stationary GINS, though azimuth misalignment remained
weakly observable.

5.4 Rotating IMU combined with Motion 2

In this condition, accelerometer biases have been estimated
with accuracy similar to that described above. In comparison
with rotating the IMU in a stationary host, the reduction
of filter uncertainty was more notable in the Yb rate-gyro
drift estimation error. Figure 5 shows the accelerometer
bias and rate-gyro drift estimation error, and respective filter
uncertainties. Filter uncertainty at t=200s has remained
similar with respect to the case of GINS subject to Motion
2, but the corresponding estimation error improved. Figure
6 shows the misalignment estimation error. Right at the
onset of the first acceleration segment, both filter uncertainty
and estimation error have been attenuated in azimuth in
comparison with a GINS undergoing Motion 2.
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Figure 5: Bias [g0] and drift estimation error (deg/h) - motion 2 and rotating IMU

6 CONCLUSIONS

The superiority of the feedforward approach using external
position and velocity aids relative to the stand-alone INS has
been confirmed. Error propagation of a GINS at rest and in
cruise were similar because of negligible horizontal specific
forces in both conditions.

The results show the benefit of continuously rotating the
IMU during stationary initial alignment on the ground at
a known location for faster, more accurate estimation of
accelerometer bias. Previous work by Leeet al. (1993)
investigated PWC, multiposition initial alignment ratherthan
continuously changing IMU attitude. IMU rotation does not
demand the fine engineering, delicate assembly, and accurate
moving parts found in a GINS.

Lack of observability caused by insufficient IMU
maneuvering produces optimistic filter performance
and biased estimation. Such detrimental qualities were
significantly mitigated by means of combining IMU rotation
with PWC acceleration segments. Thus, improved estimates
of accelerometer bias, misalignment, especially in azimuth,
and rate-gyro drift become available for on-the-fly IMU
calibration and removal of misalignment.

The diverging stand-alone INS solution causes model
mismatch in the Kalman filter, which was neglected in a
previous covariance analysis of PWC dynamics during the
IFA phase by Goshen-Meskin and Bar-Itzhack (1990). The
indirect feedforward approach with the linearized Kalman
filter is appropriate for short-term applications because
model mismatch may cause filter divergence. For long
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Figure 6: Misalignment estimation error (arcsec) - motion 2and rotating IMU

duration applications, the extended Kalman filter arises by
means of INS reset (see dashed lines in Figure 2). In
such a case, caution should be exercised when designing the
feedback logic for INS reset. Full removal of misalignment,
accelerometer bias, and rate−gyro drift estimates should
occurafter the diagonal values of filter covarianceP decay
to safe values determined by simulation to avoid filter
divergence.
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