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ABSTRACT numéricos e uma propriedade incremental para responder al

. . . _ gumas questdes sobre formas incomuns de lugar das raizes
After a first contact with Evans’ root locus plots, in an intro relacionadas a sistemas de controle em malha fechada. Em
ductory course about classical control theory, students Usalguns casos, responder a essas questdes pode ser fundamen

ally pose questions for which the answers are not triviallyal para fazer um esbhogo correto de um lugar das raizes.
found in the usual textbooks. Examples of such questions

are: Can a branch intersect itself? Can two or more branch@sLAVRAS-CHAVE : controle com realimentagao, método
be coincident? Can a branch intersect its asymptote? In til lugar das raizes.

paper devoted to helping teaching, numerical examples and

an incremental property are used for answering some ques- |INTRODUCTION

tions about unusual forms of root loci related to closeddloo

control systems. In some cases, answering to these questigalysis and design of linear time-invariant, single-
can be fundamental for making a correct sketch of a root Ignput/single-output, feedback control systems can be per-
Cus. formed by using the root locus method. For instance, this
method can be employed for determining the lock-in range
of phase-locked loops (e.g. Piqueira and Monteiro, 2006).
Root locus method was introduced in 1948 by W.R. Evans
RESUMO (1948, 1950) in order to make possible sketching the path
(in the complex plane) of the closed-loop poles of control
ApOs um primeiro contato com graficos de Evans de lugafstems, as the value of a single parameter is varied. This
das raizes, num curso introdutorio sobre teoria de clentrqparameter is normally the open-loop gain> 0. If G(s) is
classico, os estudantes normalmente fazem perguntas p@@open-loop transfer function, the closed-loop polestae

as quais as respostas nao sao encontradas trivialmesite fipts of the characteristic equation (e.g. Ogata, 2001):
livros-textos usuais. Exemplos de tais questdes sdao: Um

ramo pode se auto-interseccionar? Dois ou mais ramos po- 14+ kG(s) =0 (1)
dem ser coincidentes? Um ramo pode interseccionar sua
assintota? Neste artigo com fins didaticos, usam-se d&empB .

y taking G

KEYWORDS: feedback control, root locus method.

(s) = b(s)/a(s), wherea(s) andb(s) are real
coprime polynomials of degreesandm, respectively, then

Artigo submetido em 31/01/2008 (]_) can be written as:
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Figure 1: Block diagram of a control system.
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1 1 Figure 3: Root locus fo€(s) = 1/(s + 1)3.

0.5

Imag Axis

with the rules presented in the course and found in the text-
books. For instance: Which are the angles of departure
(or arrival) of the branches leaving from (or arriving togth

real axis? Can a branch intersect itself? Can two or more

-05F

-1sp 1 branches have a common point? Can two or more branches
§ be coincident for an open interval of values/s? Can a

25 2 15 os 0 o5 1 15 2 branch intersect its asymptote? Here, we answer such ques-

tions with numerical examples and/or arguments based on

Figure 2: Root locus fofi(s) = 1/(s? + 2s). analytical expressions. These answers can be found in the

literature (as cited below); however, they are barely used f
sketching root loci. Here we present examples where the
sketches of the corresponding root loci can not be appropri-
ately made without such answers.

Evans derived rules that allow to sketch the loci (the

branches) of the roots of equation (2) fags varied from In the next section, an incremental property of the root$ocu

zero to infinity, without solving such an equation (the casglotis derived from a didactical block diagram. This prdper

k < 0is studied, for instance, by Eydgahi and Ghavamzadels, employed in part of this study. The presented root loci

2001; Teixeira et alii, 2004). This sketch is based on the vavere numerically plotted by using the software Matlab.

ues of the poleg, of G(s) (j = 1,...,n), which are then

roots of the polynomiak(s); and on the zeros; of G(s) 2 |INCREMENTAL PROPERTY

(j = 1, ...,m), which are then roots of the polynomiai(s).

For physically realizable systems, thern> m. Consider the feedback control system illustrated in Fig. 1

) . _ where0 < ¢, k < oco. The closed-loop poles are given by:
Evans’ rules are usually presented in an introductory stibje

on control systems in undergraduate engineering courses an 1+ (g+k)G(s) = 0 ©)
they are simple to be applied. Some well-known rules are

(e.g. Kuo, 1967; Franklin et alii, 1986; Ogata, 2001): the

number of branches of the root locus is equat i n > m, Or b(s)
then fork — oo there arey = n — m branches approaching 1+ k
straight-line asymptotes; branches can leave from oretoiv

the real axis, and so on.

=0 4

Wheng = 0, the root locus plot of this system is sketched by
However, after seeing some examples of root locus plot, stthe usual rules, because the characteristic equationsi{?) a
dents usually ask questions that can not be easily answerd) become the same. Now, suppose that ¢; > 0. In this
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Figure 4: Root locus fof(s) = 1/(s +8s% + 1852+ 165+  Figure 5: Rootlocus fofi(s) = 1/(s* +4s°+85> +8s+3).
1),

the real axis at = s; for £ > k*. A break-in point is a
case, the root locus plot can be determined from the zerosiefal roots = s; of equation (2) occurring @ = k* where
G(s) (the roots ob(s)) and the closed-loop poles 6f(s) for  r branches (with- > 2) arrive to the real axis at = s; for
q = q1 (the roots ofa(s) + ¢1b(s)). Thisresultrepresents an k. > k*. In both cases, wheh = k*, thens; is a root of
incremental property of the root locus plot: the closedslooequation (2) with multiplicityr.
poles fork > ki = ¢q1 + ko is a function of the open-loop
zeros and of the closed-loop poles for= k;. The usual Theincremental property can be used for obtaining angles of
situation occurs fok; = 0, which implies that the roots of arrival and angles of departure from break-in and breakaway
equation (2) depend on the roots of the polynomiglg and ~ points, respectively. The usual example is giverty) =
b(s), as Evans proved. 1/(s* + 2s), where the closed-loop poles are the roots of

5?2 +2s + k = 0. Notice thats = s; = —1 is a root with
Incremental property, also denominated continuation propnultiplicity two for k = k* = 1; and fork > 1, both roots
erty (e.g. Kuo, 1967; Pan and Chao, 1978; Franklin et alipecome complex numbers. The departure angles from the
1986, Paor, 2000), is an obvious consequence of the diagragal axis ats = s; can be determined from the closed loop
shown in Fig. 1, which was not found in any control textspoles atk = k*. The expression (5) reveals that these angles
the inner loop can be considered as the open-loop to draw thge:

root locus for a varying: > 0. 180° .360°
b = —— +J= (6)

3 ARRIVAL AND DEPARTURE ANGLES

with 7 = 0,1, ..., — 1. In this casey = 2 and the departure
The angle associated to the complex numbesatisfying angles ar@0° and270°, as shown in Fig. 2.
the equation (2) must be an odd multiple 1&0°, because

kG(s) = —1. Thus: ForG(s) = 1/(s + 1)3, the departure angles a66°, 180°
and300°, as illustrated in Fig. 3. These angles are obtained
N, o from expression (6) withh = 3. Observe that = s; = —1
21% B 219J = (21+1)180 ) is the breakaway point @& = k£* = 0, which is also the
Jj= Jj=

open-loop pole with multiplicity three.

wherel = 0, £1, £2, .... The angles of the vectors from theForG(s) = 1/(s*+8s%+18s2+16s+1),thens = s; = —1
zerosz; and the poleg; to the numbes are, respectively, is a root with multiplicity three fok = k* = 4, as shown in
¢; = arg(s — z;) andd; = arg(s — p;). Fig. 4. The departure angles obtained from (6) are the same

o ) of the previous example, which a$8°, 180° and300°.
A breakaway point is a real roet= s; of equation (2) oc-

curring atk = k* wherer branches (withr > 2) departfrom Similar plots were already presented by, for instance, Kuo
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Figure 6: Root locus fofi(s) = (s> +2s+10)/(s°+9s*+ Figure 7: Root locus forG(s) = (s> + (5/6)s +
40.255% + 106.552 + 141.75s + 67.5). (1/3))/(s3(s* + 65 + 16)).

1967) and Krajewski and Viaro (2007). . . . .
( ) JEWsK laro ( ) This is because if branches intersect at a point of the comple

plane fork = k', then they must separate following distinct
4 INTERSECTION AMONG BRANCHES angles fork = k' + ¢, with ¢ — 0, (these angles can be

) ) calculated by expression (6)). Consequently, these beanch
Breakaway and break-in points are usual examples of coza no more coincident fdr = &’ 1q

mon points among branches on the real axis. However, there

can be such points also out of the real axis.

5 INTERSECTION BETWEEN A BRANCH
e Two or more branchescan intersect at a point that does not AND ITS ASYMPTOTE
belong to thereal axis.

_ _ _ _ _ In Fig. 2, both branches for > 1 are coincident with the
Here intersection means having a common point (a differegprresponding asymptotes. A similar behavior is observed
meaning is given by Lundberg (2007)). This situation ocy Fig. 3, where the three branches are coincident with their
curs whenever there are multiple closed-loop poles outsig@ymptotes fok > 0. Thus, itis easy to find examples where

the real axis. For instancé(s) = 1/(s*+4s%+8s>+85+3) g pranch and its asymptote coincide for an open interval of
presentss = —1 £ 4 as closed-loop poles fdr = 1, both  y3jues ofk.

poles with multiplicity two. In this example, the departure
angles from these complex poles @feand180°, as shown However, it is hard to build a transfer function where this co
in Fig. 5 (found also in Kuo (1967)), because expression (é)cidence happens at a unique point. In fact, such a behavior

reduces to: is possible and it is illustrated in Fig. 6, obtained fofs) =
0, = j.180° 7)  (s2425+10)/(s*+9s5"+40.255°+106.55*+141.755+67.5)
(other examples can be found in Kuo (1967) and Ogata
with j =0, 1. (2001)). Notice that two branches present a common point
) ) with the corresponding straight-line asymptotes (represk
* Abranch can not intersect itself. in the figure by dotted lines forming angles@s and300°

with respect to the real axis). The third asymptotel §it°)

This property is immediate since, by construction, the gain is coincident with its corresponding real branch fox 0.

increases along the root locus branches. By contradidfion,

such an intersection occurred there would be a point corre-
sponding to two distinct values &f 6 HARD TO SKETCH

e Two or more branches can not be coincident in an open  There are root loci hard of correctly sketching without isive
interval of values of k. tigating the existence of common points among branches out
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Figure 8: Root locus forG(s) = (s* + (5/6)s + Figure 9: Root locus forG(s) = (s*> + (5/6)s +
(1/3))/(s*(s* + 65+ 17)). (1/3))/(s*(s* + 7s + 16)).

Ey comparing the three last figures, it is evident that a root |
Us plot can be drastically changed by slightly varying)
'Q_these cases, by slightly varying the positions of thenepe
oop poles and keeping unaltered the positions of the zeros)

the real axis and without determining the arrival and depa
ture angles related to such points. In some cases, inters
tions among branches and asymptotes should also be inv:
tigated in order to perform a right sketch. For instancegtal
G(s) = (s*+(5/6)s+(1/3))/(s°(s* + (6 + a)s + 16+ 8).  Ag a "homework” we suggest to sketch the case with: 0
Fig. 7 correspondsta = 0 andg = 0, Fig. 8toa = 0 andg = —1.

andg =1, and Fig. 9 tax = 1 andg = 0. In all cases, the

departure angles from the origin (a triple pole) é0&, 180°

and300°, as in Fig. 4. In Fig. 7 there are two common points7 FINAL COMMENTS

out of the real axis (in-1 + 7); in the other cases such points

do not exist. In Figs. 7 and 8 there are neither breakaw??/_USing an increme_ntal property (here didactically ex-
point nor break-in point and the branches going to infinity in. ained) and/or numerical e>_<amples, we answered the ques-
the right half-plane arrive from the complex poles. Howevert'or?S pos_ed at _the Introduction about unusual forms Olf root
in Fig. 7 two branches intersect twice their asymptotes; iFPC" Tht(a||nyest|ge:1ted fegtl:;eslcar be ;e aIIyVL\J/se:]ulfo that th
Fig. 8 such intersections do not occur. In Fig. 9 there are on rool ocl, as Sil owr;hln € 1ast section. ted ope h all N t
breakaway point and one break-in point, the branches goirﬁ3 am[;) es P?_S Well as the reasoning presented can help roo
to infinity in the right half-plane come from the origin, and cus teaching.

intersections among branches and asymptotes do not happen.

Observe that correct sketches of the these cases can be niglle authors are partially supported by CNPq.

only if the common points among branches out the real axis
and the intersections among branches and asymptotesare ¢al
culated. For instance, as in Fig. 8 there is no intersecti
among branches and asymptotes, then the branches going.to .
infinity in the right half-plane must arrive from the complex%vans’ W.R. (1948). Analysis of Control SystelEE

poles and the ones going to zeros must arrive from the origi-ﬁr.an‘%ctlons vol. 67, pp. 547-551.

In Fig. 9 as such intersections do not occur either, then thg,ans W.R. (1950). Control System Synthesis and Root Lo-

branches going to infinity in the right half-plane must comeys MethodAl EE Transactions, vol. 69, pp. 66-69.
from the origin (because, if not, then two branches coming

from the origin should intersect the asymptotes in order tBydgahi, A.M., Ghavamzadeh, M. (2001). Complementary
arrive in the break-in point situated at the left of the poinRoot Locus Revisited EEE Transactions on Education, vol.
where the asymptotes meet the real axis). 44, pp. 137-143.
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