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ABSTRACT

In this paper, a new procedure to design Supplementary
Damping Controllers (SDCs) for Flexible Alternating Cur-
rent Transmission System (FACTS) devices is proposed. The
control design problem is formulated as a search for a feasi-
ble controller subject to restrictions in the form of Linear Ma-
trix Inequalities (LMIs). The main objective, from the appli-
cation viewpoint, is the improvement of the damping ratios
associated to inter-area oscillation modes. Unlike other types
of formulations existing in the literature, this new formula-
tion is capable of explicitly modeling the constraints on the
controller bandwidth, which are crucial to avoid undesired
amplification of high frequency noise signals coming into the
controller input. To illustrate the efficiency of the proposed
procedure, the design of an SDC for a Thyristor Controlled
Series Capacitor (TCSC) placed in the New England/New
York benchmark test system is carried out. The results show
the designed controllers are able to provide adequate damp-
ing for the oscillations modes of interest for several different
operating conditions.
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Souza

RESUMO

Este artigo propõe um novo procedimento para projeto de
controladores suplementares de amortecimento (ou SDCs,
do inglêsSupplementary Damping Controllers) para dispo-
sitivos FACTS. O problema de projeto do controlador é for-
mulado como uma busca por um controlador que satisfaça
um conjunto de restrições na forma de desigualdades matri-
ciais lineares (ou LMIs, do inglêsLinear Matrix Inequali-
ties). Sob o ponto de vista de aplicação, o objetivo principal
de controle é aumentar as taxas de amortecimento das osci-
lações inter-área. Ao contrário de outras formulações pro-
postas na literatura, esta nova formulação é capaz de mode-
lar, explicitamente, as restrições da banda passante do con-
trolador, evitando assim que ruídos em alta frequencia se-
jam amplificados a partir do sinal de entrada do controlador.
Para ilustrar a eficiência do procedimento proposto foi rea-
lizado um projeto de controlador suplementar para dispositi-
vos TCSC instalados no sistema New England/New York. Os
resultados mostram que os controladores projetados são ca-
pazes de fornecer amortecimento adequado para os modos de
oscilação de interesse em diversas condições de operação.

PALAVRAS-CHAVE : oscilações inter-área, desigualdades
matriciais lineares, controlador suplementar de amorteci-
mento, dispositivos FACTS, TCSC.
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1 INTRODUCTION

Inter-area oscillations are a common phenomenon observed
in electric power systems world-wide, where groups of syn-
chronous generators are interconnected over long distance
transmission lines. Usually, these interconnection lines cre-
ate a weak electric coupling between the generator groups
and must sustain high levels of active power flow during nor-
mal operation. As a consequence, the inter-area oscillations
will probably exhibit poor damping (or even instability) in
the absence of an adequate stabilizing control system (Kun-
dur et al., 2004)(Gama, 1999). Power System Stabilizers
(PSSs) have been used for many years to supply additional
damping for the low-frequency oscillations in power systems
by means of a stabilizing signal added to the excitation sys-
tems of the generators (DeMello and Concordia, 1969). In
practice, the PSSs are effective to damp local oscillations
but, unfortunately, they are not always as effective to damp
inter-area oscillations. This mainly occurs due to the diffi-
culties related to tuning and coordination of multiples PSSs
which operate in different power systems areas (Handschin,
Schnurr and Wellssow, 2003). In these cases, the use of al-
ternative solutions is mandatory.

In recent years, due to development of power electronics, the
Flexible Alternating Current Transmission System (FACTS)
devices have been successfully used to improve steady-state
and dynamic system performance, and became an interesting
cost-effective alternative compared to the system expansion
(Paserba, 2004). These devices can be used, for example, to
improve local voltage stability margins and/or to reduce elec-
trical distances in long transmission lines. As a consequence,
the maximum amount of active power that can be transferred
among the interconnected systems may be increased. Also,
there are several types of FACTS devices that may be used
to provide additional damping to inter-area oscillations by
inclusion of a Supplementary Damping Controller (SDC) to
the device (Paserba, 2003)( Hingorani and Gyugyi, 2000).

From the practical viewpoint, there are several characteristics
that both type of damping controllers (PSSs and SDCs for
FACTS devices) have to possess. The following list depicts
some of them:

(i) the controllers must be robust with respect to the uncer-
tainties in the system operating point, i.e., a satisfactory
level of damping must be achieved in several different
operating conditions;

(ii) multiple damping controllers operating simultaneously
in a system must have a coordinated action;

(iii) the action of the damping controllers must vanish in
steady-state, so the controllers do not change the oper-
ating point defined by the load flow;

(iv) a control structure based on dynamic output feedback
must be used due to difficulties in obtaining measure-
ments of all state variables of the system, and;

(v) it is preferable to use local input control signals, be-
cause the use of remote signals would require the im-
plementation of dedicated communication links and
complex control schemes, which would increase the
cost for implementation of the controller.

The usual practice in power systems is to employ classi-
cal phase compensation to design both PSSs and SDCs for
FACTS devices. These controllers consist basically of a
static gain, a washout filter and a phase compensation net-
work (Gama, 1999)(DeMello and Concordia, 1969). Such
quite simple control structure suitably satisfies the practical
requirements (iii) to (v).Ad hocapproaches are often used to
tune the parameters of these controllers (as, for example, pole
placement techniques based on root locus rules and eigen-
value placement using transfer function residues) (DeMello
and Concordia, 1969)(Larsen and Swann, 1981). The ma-
jor difficulties in these design procedures are related to the
practical requirements (i) and (ii), i.e., in guaranteeing the
robustness of the controller with respect to the uncertainties
in the system operation that were not treated in the design
stage, and also to ensure an adequate coordination of multi-
ple damping controllers operating simultaneously in the sys-
tem.

A number of alternative techniques (based on classical and
modern control concepts) have been proposed to address the
robustness and coordination of multiple damping controllers.
Design procedures based on frequency domain methods are
presented, for example, in (IEEE Power System Engineering
Committee, 1999). Methodologies based on robust control
theory were also proposed, and the H∞ mixed-sensitivity
formulation (Chaudhuri and Pal, 2004), the combined H∞

control problem with regional pole placement constraints us-
ing LMIs (Tsai, Chu and Chou, 2004) and the multi-objective
genetic algorithms approach (Bomfim, Taranto and Falcão,
2000), can be cited as examples.

Paper (Ramos, Alberto and Bretas, 2004a) proposes a
methodology (which was later on extended in (Ramos, Mar-
tins and Bretas, 2003)), based on a robust control technique,
to design PSS-type controllers. The design objective of such
methodology consists basically in calculating a dynamic out-
put feedback controller described in state space form by ma-
trices AC , BC and CC that stabilize (also fulfilling a specific
performance criterion) a set of linearized power system mod-
els with matrices A, B and C. This control problem is for-
mulated using the well-know Lyapunov Inequality developed
for LTI systems (Boyd et al., 1994). Additionally, constraints
in the form of matrix inequalities are included to guaran-
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tee both: robustness (using the Polytopic Quadratic Stabil-
ity concept) and a minimum performance of the closed loop
system by means of a Regional Pole Placement technique
(Boyd et al., 1994)(Chiali, Gahinet and Apkarian, 1999).
As a result, the control formulation is described by a set of
BMIs (Bilinear Matrix Inequalities) on the matrix variables.
It is possible, however, to transform these BMIs into a set of
LMIs by a two-step separation procedure shown in (Oliveira,
Geromel and Bernussou, 2000).

The resulting control methodology based on LMIs is pre-
sented in (Ramos, Alberto and Bretas, 2004a) for the design
of PSS-type controllers. Unfortunately, this control method-
ology is not general enough to be applied in the design of
SDCs for FACTS devices. In reference (Xue, Zhang and
Godfrey, 2006) a different two-step separation procedure is
applied, and the resulting procedure is able to handle the
problem of SDC design for FACTS devices. It is also argued
in (Xue, Zhang and Godfrey, 2006) that the ideas used in
(Ramos, Alberto and Bretas, 2004a) and (Oliveira, Geromel
and Bernussou, 2000) may not be applicable to this problem.

This paper proves the converse, i.e., that the ideas in (Ramos,
Alberto and Bretas, 2004a) and (Oliveira, Geromel and
Bernussou, 2000) can indeed be applied to derive a procedure
capable of handling the design of supplementary controllers
in general (that is, either PSS-type controllers or SDCs for
FACTS devices). Furthermore, it also includes an explicit
formulation to ensure that the bandwidth of the resulting con-
trollers is acceptable in practice, which is very important to
avoid the amplification of high frequency noise signals in the
controller input. These two features constitute the main con-
tribution of this paper.

The paper is structured as follows: section 2 reviews the fun-
damentals of the control methodology proposed in (Ramos,
Alberto and Bretas, 2004a), and shows why it is not appli-
cable to the design of SDCs for FACTS devices; section 3
presents the proposed control technique, which is based on
the ideas developed in (Ramos, Alberto and Bretas, 2004a);
section 4 summarizes the complete design procedure; results
of the tests performed using the proposed procedure are pre-
sented in section 5, and section 6 presents the conclusions
and the final comments.

2 THE PREVIOUSLY PROPOSED CON-
TROL METHODOLOGY

This chapter presents a review of the main fundamentals
about the previously proposed control methodology, which
was developed in (Ramos, Alberto and Bretas, 2004a) for
designing PSS-type controllers.

2.1 System and Controller Models

The power system model is represented in (Ramos, Alberto
and Bretas, 2004a) by a set of nonlinear differential and al-
gebraic equations in the form

ẋ =f(x, z, u), (1)

0=g(x, z, u), (2)

y = h(x, z, u), (3)

wherex(t) ∈ ℜn is a vector composed of the system state
variables,z(t) ∈ ℜm is a vector of algebraic variables,
u(t) ∈ ℜp is a vector with the system control input, and
y(t) ∈ ℜq is the vector with the system outputs.

Usually, the analyses of local and inter-area oscillations and
design of damping controllers for power systems are carried
out by means of linear models (Chaudhuri and Pal, 2004).
The process often involves linearizing the system equations
(1)-(3) around a specific equilibrium point. The vector of
algebraic variablesz is eliminated by isolating it and substi-
tuting the result in the linearized equation obtained from (1).
Using this process, a linear representation of the system in
the vicinity of the equilibrium point is obtained, which can
be described in state space form by

ẋ(t) = Ax(t) + Bu(t), (4)

y(t) = Cx(t). (5)

A control structure based on dynamic output feedback is
adopted in (Ramos, Alberto and Bretas, 2004a). Such control
structure is necessary due to difficulties in obtaining mea-
surements of all model state variables in the real system.
The proposed controller based on dynamic output feedback
is represented by

ẋC(t) = ACxC(t) + BCy(t), (6)

u(t) = CCxC(t), (7)

wherexC(t) ∈ ℜn is a vector with the controller states. The
dynamic behavior of the controller, as a function of the plant
outputy(t), is described by (6). The control input for the
systemu(t) is produced by (7) with the application of the
matrix gainCC to the states generated by the controller.

2.2 Control Problem Formulation

From the connection of the power system model (4)-(5) with
the damping controller model represented by (6)-(7), the
closed-loop system is given by
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˙̃x(t) = Ãx̃(t), (8)

where

Ã =

[

A BCC

BCC AC

]

, (9)

andx̃(t) ∈ ℜ2n is a vector with the states of both the system
and the controllers. Notice thatAC, BC, andCC are the
matrix variables to be determined by the design procedure.

Using the Lyapunov stability theory for linear systems, the
problem of stabilizing the system (4)-(5) by the output feed-
back controller (6)-(7) can be solved (Skelton, Iwasaki and
Grigoriadis, 1998) if the controller matricesAC, BC, CC

and a matrixP̃ = P̃T > 0 (with appropriate dimensions)
are found, such that

ÃTP̃ + P̃Ã < 0. (10)

This idea constitutes the core of most design procedure based
on Lyapunov stability theory for linear systems. However,
this simple formulation is not adequate to the design of
damping controllers for power systems, because:

(i) The controller designed using (10) may not provide a
satisfactory damping to the oscillation modes of inter-
est since no performance index is considered in that for-
mulation;

(ii) since the linear approximation (4)-(5) is valid only in a
vicinity of a particular operating point, the robustness
of the controller with respect to the variations in the
operating conditions of the system is very limited;

(iii) inequality (10) is a Bilinear Matrix Inequality (BMI) on
the problem matrix variables (AC, BC, andCC and
P̃), whose solution may require a large computational
effort.

Each of these problems was addressed in (Ramos, Alberto
and Bretas, 2004a) using suitable extensions of the core
idea expressed in (10). The next subsections present a brief
overview of these extensions.

2.3 Performance Index

In (Ramos, Alberto and Bretas, 2004a), a performance crite-
rion (in the form of a minimum damping ratio to be achieved
for all modes of the closed loop system) is included in the

control formulation to ensure an acceptable performance for
the controlled system. This inclusion is done using the Re-
gional Pole Placement (RPP) technique (Chiali, Gahinet and
Apkarian, 1999), which consists in the definition of a region
for pole placement in the complex plane where the perfor-
mance criterion is fulfilled. This region is defined byζ ≥ ζ0,
and it can be viewed in Fig. 1, whereζ0 is the desired mini-
mum damping ratio for the poles of the closed loop system.

Figure 1: Region for the pole placement.

The pole placement criterion expressed in Fig. 1 can be ful-
filled if matricesAC, BC, CC andP̃ = P̃T > 0 are found
such that the BMI (Ramos, Alberto and Bretas, 2004a)

[

sinθ ·

(

ÃTP̃ + P̃Ã
)

cosθ · (P̃Ã− ÃTP̃)

cosθ · (ÃTP̃− P̃Ã) sinθ · (ÃTP̃ + P̃Ã)

]

< 0,

(11)

is satisfied, whereθ = cos−1(ζ0) and matrices̃A andP̃ were
previously defined.

2.4 Performance Robustness

The uncertainties in the power system model with respect
to the variations of the operating conditions were treated
in (Ramos, Alberto and Bretas, 2004a) using the polytopic
modelling technique (Boyd et al., 1994)(Ramos, Bretas and
Alberto, 2002). In this technique, instead of using a single
Linear Time Invariant model, the system is modeled by a
Polytopic Linear Differential Inclusion in the form

˙̃x ∈ Ã(a)x̃, (12)

whereÃ(a) ∈ Ω andΩ is a closed subset of a matrix space
with dimension2n×2n, which is formed by the convex com-
bination of a set of predefined matricesÃi. Notice that each
Ãi comes from a closed loop representation of the power
system in the form (9), which is related to a linearized model
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around a particular operating condition. Such operation point
may be chosen, for example, from the load curve of the sys-
tem, complying with the typical practice in the industry. Set
Ω can be written as

Ω =

{

Ã(a) : Ã(a) =

L
∑

i=1

aiÃi;

L
∑

i=1

ai = 1; ai ≥ 0

}

.

(13)

It can be observed in (13) that setΩ is a polytope in the ma-
trix space and matrices̃Ai are the vertexes of this polytope,
beingL the number of operating points used for the construc-
tion of the polytope.

Using both polytopic modelling and RPP technique in the
design procedure, associated with the quadratic stability the-
ory (Boyd et al., 1994), an adequate damping of the oscil-
lation modes of the system is guaranteed. This is achievied
not only for the operating points used as vertexes in the con-
struction of the polytopic model, but also for all the operat-
ing points that can be generated from the convex combina-
tion of these operating points (Ramos, Bretas and Alberto,
2002)(Barmish, 1985). Such statement is satisfied solving
the following BMIs on the matrices variablesAC, BC, CC

andP̃ (which must be symmetric):

P̃ > 0, (14)
[

sinθ ·

(

ÃT

i P̃ + P̃Ãi

)

cosθ · (P̃Ãi − ÃT

i P̃)

cosθ · (ÃT

i P̃ − P̃Ãi) sinθ · (ÃT

i P̃ + P̃Ãi)

]

< 0,

(15)

where Ãi=

[

Ai BiCC

BCCi AC

]

,i = 1, ..., L and θ =

cos−1(ζ0).

The matrix inequalities (14)-(15) are BMIs on the problem
matrix variablesAC, BC, CC andP̃. However, such ma-
trices inequalities can be transformed to a set of LMIs us-
ing a two-step separation procedure (Oliveira, Geromel and
Bernussou, 2000). This procedure consists basically in a pa-
rameterization and a change of some matrix variables of the
control formulation (14)-(15), allowing the solution of the
inequalities by two sequential steps. The first one involves a
choice of matrixCC and the second one consists in finding
matricesAC andBC using the previous choice ofCC.

However, as originally proposed in (Ramos, Alberto and Bre-
tas, 2004a), this design procedure was conceived to work
over polytopic models whose vertices were comprised by lin-
ear models in the form (4)-(5), leading to the closed loop for-
mulations in the form (8). These closed loop formulations are

not suitable for the problem of SDC design for FACTS de-
vices, because the linearized models of power systems con-
taining these devices usually exhibit a direct feedthrough ma-
trix D in the output equation. For this reason, it was argued
in (Xue, Zhang and Godfrey, 2006) that the ideas support-
ing the procedure proposed in (Ramos, Alberto and Bretas,
2004a) may not be applied to design SDCs for FACTS de-
vices. The next section proves this statement wrong, and
proposes a new formulation (which uses the main ideas from
(Ramos, Alberto and Bretas, 2004a)) which is not only ca-
pable of designing such controllers, but is also capable of
handling constraints on the controller bandwidths, which are
very important from the practical point of view.

3 THE PROPOSED NEW CONTROL FOR-
MULATION

In order to be able to handle the design of SDCs for FACTS
devices, the new control formulation proposed in this paper
deals with generalized power system models with matrices
A, B, C and also a non-zero matrixD.

For that, consider again the linearized power system model
described by (4)-(5). The time derivative of active power
measurements is used as input control signal. This signal ex-
hibits a great observability of the inter-area oscillations of
interest and, additionally, its derivative effect prevents the
controller from acting in steady-state (Ramos, Alberto and
Bretas, 2004a)(Ramos, Alberto and Bretas, 2004b). There-
fore, the practical requirement (iii) in the list presented in
section I is fulfilled. The time derivative of the outputy(t)
can be written as

ȳ(t) = ẏ(t) = C̄x(t) + D̄u(t), (16)

whereC̄ = CA andD̄ = CB are matrices with dimensions
determined byA, B andC. Besides,̄D is a non-zero matrix
for the FACTS devices due to the sensibility of the line active
power flow to variations in the FACTS controllable parame-
ters (as for example, the equivalent reactance for a TCSC
device). It is important to point out that the definition of the
new output as the time derivative of the previous one does
not require the implementation of an ideal derivative block.
As explained in (Ramos, Alberto and Bretas, 2004b), this
derivative action can be later incorporated into the controller
transfer function to compose a washout block, which is typi-
cal of PSSs and SDCs for FACTS devices.

With this new definition for the output, the dynamics of the
controller can now be described by

ẋC(t) = ACxC(t) + BCȳ(t). (17)

196 Revista Controle & Automação/Vol.20 no.2/Abril, Maio e Junho 2009



Figure 2: Region for the pole placement.

From the connection of the power system model (4) and (16)
with the damping controller model (17)-(7), the vertices of
the polytope for the controlled system with general power
system models described by the set(A,B, C̄, D̄) will be
given by

Ãi=

[

Ai BiCC

BCC̄i AC + BCD̄iCC

]

, (18)

for i = 1, ..., L.

Furthermore, as mentioned earlier, an additional practical re-
quirement is included in the control formulation to ensure
that the controller bandwidth remains within acceptable lim-
its. With this inclusion, the new region of the complex plane
used for the pole placement is shown in the Fig. 2 as re-
gion D, which is delimited by a circle with radiusr and a
conic sector defined by angleθ. So, such region ensures a
minimum damping ratioζ0 = cos θ (ensuring the oscillation
modes are adequately damped) and a maximum natural os-
cillation frequencyw = rsinθ (ensuring that the closed loop
system has acceptable bandwidth) for the poles of the poly-
topic closed loop model.

The matrices inequalities related to the polytopic modelling
(considering the generalized power system model) and the
RPP technique with the constraints shown in Fig. 2, are given
by (Chiali, Gahinet and Apkarian, 1999)

P̃ > 0, (19)
[

−rP̃ P̃Ãi

ÃT

i P̃ −rP̃

]

< 0, (20)

[

sinθ ·

(

ÃT
i P̃ + P̃Ãi

)

cosθ · (P̃Ãi − ÃT
i P̃)

cosθ · (ÃT

i P̃ − P̃Ãi) sinθ · (ÃT

i P̃ + P̃Ãi)

]

< 0,

(21)

where

Ãi=

[

Ai BiCC

BCC̄i AC + BCD̄iCC

]

, i = 1, ..., L, θ =

cos−1(ζ0) andr is a scalar.

So, if matricesAC, BC, CC of the proposed controller and
also a matrixP̃ = P̃T > 0 (defining an appropriate Lya-
punov function) are found, such that (19) to (21) are satis-
fied, the poles of the controlled system are confined into the
region D of the complex plane, not only for the operating
points used in the construction of the polytopic system, but
also, for all the operating points that can be generated from
the convex combination of the L adopted operating points.

The next section shows how to use the two-step procedure
in (Oliveira, Geromel and Bernussou, 2000) to transform the
set of BMIs (19)-(21) into a set of LMIs which corresponds
to the generalized control formulation proposed in this paper.

3.1 The Two-step Separation Procedure

The concepts and procedures described in this section are
derived from the ideas presented in (Oliveira, Geromel and
Bernussou, 2000). The first stage of the separation proce-
dure consists in setting up a state feedback gain that stabi-
lizes the polytopic system with the pole placement objec-
tives discussed previously. For that, it is possible to find a
state feedback gainKf= LY−1 solving the following LMIs
in the matrices variablesL andY (Ramos, Alberto and Bre-
tas, 2004a):

Y > 0, (22)

[

−rY AiY + BiL

∗ −rY

]

< 0, (23)













sinθ · (YAT

i + AiY

+LTBT

i + BiL)
cosθ · (YAT

i − AiY

+LTBT

i − BiL)

cosθ · (−YAT

i + AiY

−LTBT
i + BiL)

sinθ · (YAT

i + AiY

+LTBT
i + BiL)













< 0, (24)

where i = 1,...,L andr is a scalar. Then, the first step of the
separation procedure is concluded definingC̄C := Kf as
being the output matrix of the proposed damping controller.

For the second step of the separation procedure, considers the
BMIs (19) to (21). It is possible to partitioned the symmetric
matrix P̃ and its inverseP̃−1 according to the dimensions
of the system and the controller, as follows

Revista Controle & Automação/Vol.20 no.2/Abril, Maio e Junho 2009 197



P̃ =

[

X U

UT XC

]

, P̃−1=

[

Y Y

Y YC

]

, (25)

whereX,XC,Y,YC,U ∈ ℜnxn. Now, letT ∈ ℜ2n×2n a
matrix defined by

T =

[

I I

I 0

]

, (26)

where the dimensions of the submatrices are implicitly deter-
mined byP̃.

Moreover, the following changes of variables are carried out

F = UBC,P = Y−1,S = AT

C
UT, (27)

where the dimensions of the matricesF, P andS are implic-
itly determined by the transformations.

Now, the BMIs (19)-(21) can be transformed into a set of
LMIs. For that, multiply these BMIs on the right and the
left by T̃ = diag[T,T], introduce the new variablesF, P,
S and simplifies the expression by algebraic manipulations,

remembering that̃PP̃
−1

= I. Solving the set of LMIs ob-
tained by such development in the matrices variablesF, P,
S andX, the matricesAC andBC of the proposed damp-
ing controller can be calculated by (27), whereU = P− X.
The set of LMIs are given by

[

P P

P X

]

< 0, (28)









−rP −rP PĀki PAi

∗ −rX XĀki + FC̄ki + S XAki+FTCT

∗ ∗ −rY −rI
∗ ∗ ∗ −rX









< 0,

(29)








N11 N12 N13 N14

∗ N22 N23 N24

∗ ∗ N33 N34

∗ ∗ ∗ N44









< 0, (30)

where

N11 = sinθ · (PĀ+
kiĀ

T
kiP ),

N12 = sinθ · (PĀ+
i ĀT

kiX + C̄T
kiF

T + S),

N13 = cosθ · (ĀT

kiP − PĀ
)
ki,

N14 = cosθ · (−PA+
i ĀT

kiX + C̄T
kiF

T + S),

N22 = sinθ · (XA+
i AT

i X + FC̄+
i C̄T

i FT ),

N24 = cosθ · (−XA+
i AT

i X − FC̄+
i C̄T

i FT ),

N23 = NT

14, N33 = N ,
11N34 = N ,

12N44 = N ,
22

Āki = Ai + BiC̄C ,

C̄ki = C̄i + D̄iC̄C , (i = 1, ..., L), with C̄C

calculateda priori by (22)-(24).

The next section presents the complete design procedure
based on the developments described previously.

4 THE DESIGN PROCEDURE

The design procedure is divided in three stages: (i) construc-
tion of the polytopic model; (ii) calculation of the state feed-
back gain matrix of the controller (CC) and; (iii) calculation
of the matrices that describe the controller dynamics (matri-
cesAC andBC). Each stage is described in this section.

4.1 Construction of the Polytopic Mod-
elling

The first step of the controller design procedure consists in
choosing some typical operating points of the system to ob-
tain the matrices̃Ai (i = 1, ..., L) that define the vertexes of
the polytopic model. The steps for carrying out the first stage
are:

(i) Build the power system model as a set of nonlinear dif-
ferential and algebraic equations in the form (1)-(3);

(ii) Linearize the system equation (1)-(3) around L equilib-
rium points and after the network reduction (which is
required to eliminate the vector of algebraic variables
z), theL linear systems are obtained in the space state
form which will constitute the vertexes, as in (12), of
the polytopeΩ.

4.2 Calculation of the State Feedback
Gain Matrix of the Controller (Matrix
CC)

After the first stage, the purpose of the two following stages
is to design a supplementary damping controller based on
dynamic output feedback structure and defined by matrices
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AC, BC andCC. This controller must stabilize the polytope
Ω while fulfilling a minimum damping ratio and a maximum
natural oscillation frequency for all modes of the closed loop
polytopic model. In this design stage, the state feedback gain
matrix of the controllers (CC) is determined by means of the
solution of a set of LMIs written for the polytope vertexes.
These steps can be carried out in the following way:

(i) Define the minimum damping ratioζ0 = cos θ and a
maximum frequencywm = rsinθ. Therefore, a region
in the complex plane defining the minimum acceptable
performance index is specified for all the oscillation
modes of the polytopic system (according to Fig. 2);

(ii) build the computational representation of the matrix
variablesL andY. The matrixY must be symmetric
with dimensionn×n and the matrixL must be rectan-
gular with dimensionp× n. The set of LMIs (22)-(24)
must be structured and solved for the variablesL and
Y;

(iii) after determining the variablesL and Y, the state
feedback gain matrixCC can be calculated by
C̄C= LY−1.

In the next stage, the matricesAC andBC are calculated
with the previously designed matrixCC.

4.3 Calculation of the Matrices A C and B C

In the last stage, the matricesAC and BC are calculated
by means of the solution of a new LMI set established in
the polytope vertexes. To do so, the following steps must be
executed:

(i) Build the computational representation of the new ma-
trices variablesF, P, S andX, with dimensionsn×n,
n × n, n × q andn × n, respectively, and solve the set
of LMIs (28)-(30) in these variables;

(ii) After finding F, P, S andX, the matricesAC andBC

can be calculated byAC = U−1ST andBC = U−1F,
whereU = P− X.

After concluding the three design stages, the matricesAC,
BC andCC which define the structure of the SDC for the
FACTS device are obtained. Such controller can also be rep-
resented in the transfer function form obtained by

H(s) = C
C

(sI − AC)
−1

BC. (31)

With the purpose of implement the transfer function (31)
without using the time derivative of the output∆y obtaining

the desired time derivative of the line active power (without
the inclusion of an ideal derivative block) as input control
signal, it is possible to rewrite (31) in the zeros/poles/gain
form, as the following relation shows (Ramos, Martins and
Bretas, 2005):

H̄(s) =K

∏z

k=1 (zk + s)
∏p

l=1 (pl + s)
= K

Tw

1 + sTw

∏z

k=1 (zk + s)
∏p−1

l=1 (pl + s)
,

(32)

whereK is the gain, whilepandzare, respectively, the num-
ber of poles and zeros of the controller. The parameterTwis
equal to−1/ph, whereph must be chosen as the real pole
placed closest to the origin by the controller design proce-
dure. Since that∆u = H̄(s)∆ȳ = sH̄(s)∆y, we can im-
plement the designed controller from the active power mea-
surements by:

∆u = K
sTw

1 + sTw

∏z

k=1 (zk + s)
∏p−1

l=1 (pl + s)
∆y. (33)

5 TESTED SYSTEM

To demonstrate the effectiveness of our proposed proce-
dure, tests were carried out on a 16-machine, 5-areas sys-
tem, shown in Fig. 3. This is a reduced order model of the
New England and New York interconnected system. The first
nine machines (G1 to G9) are the generators associated with
the New England Test System (NETS), while G10 to G13 are
the generators of the New York Power System (NYPS). Also,
G14 to G16 are representing three equivalent areas neighbor-
ing connected to the NYPS.

In the adopted multimachine model, all the generators were
described by a sixth order model that considers the swing
equations and the transient and subtransient effects indand
qaxes (Anderson and Fouad, 1994).

Also, the machines were equipped by a first order model
of a static type AVR (thyristor controlled without transient
gain reduction) with a gain equal to 50 and a constant time
of 0.01s. The transmission system was modeled as a pas-
sive circuit by means of algebraic equations and the system
loads were modeled as constant impedances. The data for
bus, lines and machines were taken from (Pal and Chaudhuri,
2005).

The generators G2, G3, G5, G7, G9, G10, G11, G12,G14 and
G15 are equipped with a speed input PSS- type controller to
ensure adequate damping of its local modes. Such damp-
ing controllers were designed by a classical control tech-
nique based on eigenvalues placement using transfer func-
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Figure 3: 16-machine, 5 areas study system.

tion residues (IEEE Power System Engineering Committee,
1999).

Since our main purpose is to design SDCs for FACTS de-
vices, we chose one type of such devices that is regarded
as a highly effective solution to improve damping of inter-
area oscillations (a task that PSS sometimes cannot per-
form with similar effectiveness): the well-know Thyristor
Controlled Series Capacitor (TCSC). In our application, the
TCSC is represented by a first order linear model (Del Rosso,
Canizares and Dona, 2003) (which is a typical model used
in small-signal stability studies). The block diagram of the
adopted TCSC with an SDC is given in Fig. 4.

In Fig. 4,∆XTCSC is the deviation of the equivalent TCSC
reactance with respect to the nominal value,∆Xref is the
reference for the desired reactance deviation (from its nom-
inal value) in steady state,∆Xsup is the stabilizing signal
from the proposed supplementary controller andTTCSC is
the device time constant.

Two TCSC devices were placed in the system with the
purpose of improving the stability of inter-area oscillation
modes, as well as increasing the active power transfer ca-
pacity among the power systems areas. One of them was
installed in the line connecting buses #60 and #61 and the
other in the line connecting buses #18 and #49. Hence, the
one is responsible to raise the active power transfers capacity
between areas #2 and #5. The compensation of both TC-
SCs (in steady-state) corresponds to 50% of the impedance
of their respective lines.

All the small-signal stability analyses in this paper were car-
ried out for a daily load curve, which is shown in Fig. 5. The
stability of local and, especially, inter-area modes were inves-
tigated in twenty-four operating points, each one equivalent
to an hour of the day. The data for a particular load level
(which was assumed, in this paper, as the operating condi-

Figure 4: Small-signal dynamic model of TCSC with a Sup-
plementary Damping Controller (SDC).

Figure 5: Daily load curve of the tested system

tions at 3 p.m) were taken from (Pal and Chaudhuri, 2005).
The other operating points were obtained using percentual
variations (as shown in Fig. 5) of the system loads with re-
spect to the operating conditions at 3 p.m. The generators
were redispached in each of these points, sharing portions of
total load variation in a direct proportion of their respective
inertia constants. It was also assumed (to comply with the
usual practice in power systems) that each area is responsi-
ble for supplying its own load variations and, therefore, the
active power flows among the areas were kept constant for
all operating conditions.

The eigenvalue analysis shows (for all considered operating
conditions) that the system without the inclusion of SDCs for
the TCSCs have all the local modes and also two inter-area
modes adequately damped (corresponding to a damping ratio
greater than 5%, which is typically accepted as an indicator
of satisfactory power system dynamic behavior). These re-
sults for the inter-area modes are shown in Table 1. As it
can be seen, modes 3 and 4 are the well damped ones. On
the other hand, mode 1 exhibits an unacceptable damping ra-
tio in the operating conditions from 7 a.m to 10 p.m, while
mode 2 is poorly damped for all the analyzed daily load curve
points. The frequency of each oscillation mode is approxi-
mately (since it changes with variations in the operating con-
ditions) 0.74 Hz, 0.55 Hz, 0.80 Hz and 0.42 Hz, for modes 1,
2, 3 and 4, respectively.

The participation factors analysis shows that mode 1 is most
observable in the generators located in areas #1 and #2, while
modes 2 to 4 are related to generators located in areas #2, #3,
#4 and #5. Therefore, the TCSC equipped with a SDC and
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installed between areas #1 and #2 is responsible to improve
the stability of mode 1. Similarly, the TCSC installed in area
#2 and also equipped with a SDC must supply an additional
damping to the mode 2. Both SDCs were designed (but not
simultaneously) by the proposed control methodology.

The power system model has 140 states. In order to reduce
the dimensions of the power system models used to design
the proposed controllers, two simplified models were devel-
oped. The first one corresponds to the NETS model con-
nected to a single equivalent generator (which is an equiva-
lent representation of areas #2, #3, #4 and #5) and it was used
to design the SDC for the TCSC installed between buses #60
and #61. This simplified model, i.e, the NETS model with
the single equivalent generator, has 77 states and it is denoted
in this paper by reduced modelA. Similarly, the other sim-
plified power system model corresponds to the NYPS model
connected to a single equivalent generator representing area
#1, and it was used to design the SDC added to the TCSC
installed between areas #2 and #5. This model has 66 states
and it is denoted by reduced modelB.

To illustrate the accuracy among the full order model (with
140 states) and the reduced models A and B, Table 2 shows
the inter-area modes calculated for each of these models in
the operating conditions at 3 p.m. Notice that only mode 1 is
observed in the reduced model A, since the dynamics among
the generators of areas #2, #3, #4 and #5 are not being con-
sidered by such model. Comparing the inter-area modes cal-
culated by each power system model, it is possible to verify
that the reduced models A and B offer an acceptable approx-
imation of the system dynamics of interest.

The proposed controllers were not designed simultaneously1,
i.e., the SDC for the TCSC installed between areas #1 and #2
was designed using the reduced modelA, while the SDC for
the TCSC located between areas #2 and #5 was designed us-
ing the reduced modelB. For both SDCs, the time derivatives
of local active power measurements were used as input con-
trol signal. The operating points at 3 p.m and 4 p.m were
used for the construction of the polytopic model adopted for
the reduced modelA, while operating points at 5 p.m and 6
p.m were used for the polytopic model of reduced modelB.
A minimum damping ratio of 5% (ζ0=0.05) and a maximum
natural oscillation frequency ofr = 20 rad/s was defined as
an acceptable performance index for the controlled polytopic
system.

1Although from a theoretical viewpoint there is no restriction for the
simultaneous design of both controllers in this case using block-diagonal
structures for the controller matrices, it was tried this simultaneous ap-
proach with several different block-diagonal choices but none of them
produced satisfactory results. For this reason, it was chosen to apply
this sequential design approach, which ended up producing better re-
sults in this case.

The “feasp” solver, available in Matlab LMI Control Tool-
box (Gahinet et al., 1995) was used to solve the set of LMIs
related to the control problems. The time taken to generate
the controllers was approximately 8 hours and 25 minutes for
the SDC added to the TCSC installed between areas #1 and
#2 and 4 hours and 37 minutes for the other SDC. Both set of
LMIs were solved in a computer with a Pentium Dual Core
3.2 GHz processor and 2 GB of RAM.

Table 1: Damping ratios (%) of the inter-area modes for the
daily load curve without the inclusion of SDCs.

Hour

(a.m)
Inter-area modes

Hour

(p.m)
Inter-area modes

1 2 3 4 1 2 3 4

0 5.36 3.05 7.94 8.76 12 4.73 2.65 8.01 9.27

1 5.49 3.19 7.86 8.58 1 4.66 2.61 8.04 9.35

2 5.56 3.31 7.80 8.44 2 4.55 2.90 8.36 9.55

3 6.19 3.52 7.75 8.15 3 4.51 3.01 8.97 9.69

4 6.26 3.44 7.82 8.32 4 4.25 2.55 8.33 9.31

5 6.05 3.12 7.71 8.56 5 3.86 2.26 8.56 9.69

6 5.42 2.94 7.68 8.76 6 3.21 1.95 8.71 9.83

7 4.97 2.74 7.91 9.14 7 3.64 2.21 8.65 9.77

8 4.44 2.50 8.16 9.50 8 3.95 2.42 8.54 9.53

9 4.40 2.48 8.18 9.53 9 4.33 2.67 8.40 9.37

10 4.53 2.55 8.11 9.44 10 4.70 2.81 8.21 9.18

11 4.82 2.67 7.98 9.25 11 5.31 2.90 8.02 8.93

One of the difficulties associated with the proposed design
methodology is its requirement, due to the nature of the con-
trol problem formulation, that the order of the designed SDC
must be equal to the order of the power system model. In
the presented application, since the reduced power system
models A and B have, respectively, 77 and 66 states, the re-
sulting SDCs had also order 77 and 66. However, high order
controllers are difficult to implement in practice and, for this
reason, it is desirable to reduce the dimensions of the con-
trollers designed by this proposed methodology.

To achieve the goal of producing a low order controller, the
proposed procedure was combined with a final step of model
order reduction. After a high order controller was designed,
the balanced truncation method (Pal and Chaudhuri, 1995)
was applied, reducing the dimension of the SDCs from order
77 and 66 to only order 5 for both controllers.

It is important to emphazise that the application of the bal-
anced truncation method may modify the original poles and
zeros obtained by the design procedure. This means that the
poles and zeros of the reduced order controller may not sat-
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Table 2: Damping ratios (%) of the inter-area modes for the
daily load curve in each of the power system models.

Inter-
area

modes

Full Order
Model
ζ(%) f
(Hz)

Model A
ζ(%) f
(Hz)

Model B
ζ(%) f (Hz)

#1 4.51 0.73 4.89 0.73 -

#2 3.01 0.54 - 2.54 0.57

#3 8.97 0.79 - 8.72 0.79

#4 9.69 0.42 - 9.55 0.44

isfy the region for pole placement (Fig. 2). In this case, it
is important to verify if the bandwidth of the reduced order
controller remains within acceptable limits. The validation
of the effectiveness of the reduced order SDCs was carried
out by comparison of the frequency responses of the full and
reduced order controllers and by quadratic stability analysis
with regional pole placement constraints (using the formula-
tion given by (21)-(22) and considering the same polytopes
adopted in design stage). The transfer functions of the re-
duced order SDCs are presented in the appendix.

The damping ratios of the inter-area modes for the system
with the inclusion of the SDCs for the TCSCs in all twenty-
four operating conditions corresponding to the daily load
curve analyzed previously are shown in Table 3. These re-
sults were obtained considering the full order model of the
power system, in which generator 13 was taken as the angu-
lar reference for the system model.

Such results were also compared with conventional SDCs
based on phase compensation (Pal and Chaudhuri, 2005).
The structure of these SDCs consists basically of a static
gain, a washout filter and a phase compensation network
(formed by two lead-lag blocks). The compensation angle
used to determine the lead-lag parameters was determined
using the transfer function residues calculated for the base
case (Pal and Chaudhuri, 2005). The damping ratios of the
inter-area modes for the system with the inclusion of the con-
ventional SDCs for the TCSCs are shown in Table 4.

It was verified that the performance index obtained by the
TCSCs equipped with the proposed SDCs is better than the
minimum acceptable performance specified in the design
stage. Notice that modes 1 and 2 present now a damping
ratio varying from 11.9% to 16.66% and 9.53% to 10.97%,
respectively. Additionally, the TCSC installed between areas
#2 and #5 and equipped with the proposed SDC well im-
proved the damping ratio of mode 4 as well. On the other
hand, comparing the results shown in Tables 3 and 4, it can

be seen that the performance index achieved by the conven-
tional SDCs is smaller than the one obtained from the pro-
posed SDCs. Indeed, for the operating conditions from 5
to 8 p.m., the damping ratios achieved by the conventional
SDCs is smaller than 5%, and it is very difficult to manu-
ally tune these SDCs to achieve greater damping ratios under
these conditions.

The results of the nonlinear simulation in three different op-
erating conditions (at 6 p.m, 1 p.m and 3 a.m) with the pro-
posed SDCs (and the conventional SDCs) are shown in Figs
6, 7 and 8. These simulations were carried out to validate the
results of the linear analyses and the robustness requirement.
The perturbation used to stimulate the inter-area modes was
a three-phase solid fault in one of the lines connecting buses
47 and 48. The fault conditions were simulated after 2s for a
duration of 80 ms (≈5 cycles in a 60 Hz system) followed by
opening of the faulted line.

According to Figs. 6, 7 and 8, the TCSCs equipped with
the designed SDCs presented a betted performance in com-
parison with the conventional SDCs. Notice that the perfor-
mance of the proposed controllers was satisfactory for oper-
ating conditions that were not considered in the design stage
(1 p.m and 3 a.m). This is a good indication of the robust-
ness of the proposed controllers with respect to variations in
the operating conditions. Additionally, the stabilizing signal
provided by the SDC added to the TCSC placed between ar-
eas #1 and #2 was able to reduce the maximum valor of the
active power at line #60-61 in the first oscillation occurred
after the perturbation.

6 CONCLUSION

A robust control methodology structured in the form of lin-
ear matrix inequalities (LMIs) was presented for the design
of SDCs for FACTS devices, with the purpose of improving
the stability of inter-area oscillation modes. This required
the development of a new formulation, based on the ideas
explored by the authors in previous works, that is now capa-
ble of treating the models that arise when FACTS devices are
placed in the power system. This new formulation is general
enough to allow the design of either SDCs for FACTS de-
vices or PSS-type controllers and also includes a further step
of model order reduction, addressing the problem of con-
troller order, which was until now a drawback of the previous
proposition.

It is important to stress out that this paper proves that it is
indeed possible to apply the ideas explored by the authors
in their previous papers to the design of SDCs for FACTS
devices, since this possibility was questioned in the past, as
previously mentioned in the paper. Moreover, the treatment
of the restrictions in the controller bandwidth is another ad-
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Table 3: Damping ratios (%) of the inter-area modes for the
daily load curve with the designed SDCs (using the proposed
design procedure).

Hour

(a.m)
Inter-area modes

Hour

(p.m)
Inter-area modes

1 2 3 4 1 2 3 4

0 15.01 10.55 8.31 11.57 12 14.30 10.11 9.67 12.91

1 15.21 10.77 8.23 11.45 1 14.32 10.12 9.66 12.98

2 15.72 10.90 8.01 11.05 2 13.86 10.06 9.34 12.07

3 16.10 10.97 7.85 10.97 3 13.47 10.04 9.05 13.14

4 16.66 10.49 7.98 11.22 4 13.46 9.96 9.20 13.30

5 15.78 10.35 8.22 11.96 5 12.20 9.66 9.35 13.45

6 15.12 10.31 8.46 12.21 6 11.90 9.53 9.76 13.71

7 14.47 10.20 8.76 12.70 7 12.10 9.70 9.50 13.28

8 13.80 10.04 9.08 13.19 8 12.98 9.82 9.32 13.01

9 13.75 10.02 9.11 13.23 9 13.43 10.03 9.11 12.86

10 13.92 10.07 9.02 13.11 10 13.86 10.12 8.89 12.43

11 14.29 10.16 9.66 12.84 11 14.42 10.27 8.75 12.22

vancement that comprises the set of contributions of this pa-
per.

Given that the closed loop poles and zeros produced by the
method may change when the controller order reduction is
applied, the development of new procedures that enable the
design of low-order controllers without requiring balanced
truncation is one of the future directions of this research. An-
other predicted development is the imposition of bandwidth
restrictions only to the controller transfer function, instead of
the whole closed loop system, which may improve the feasi-
bility of the control problem formulation.
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APPENDIX A

The transfer functions of the reduced model of the designed
SDCs are given by

- SDC for TCSC installed between areas #1 and #2:

SDC1=1.310 ·
s4.67

1 + s4.67
·
(s2 + 1.78s + 0.37)

(s2 + 2.18s + 3.12)
·

·
(s2 + 1.23s + 70.4)

(s2 + 1.20s + 70.98)
.

- SDC for the TCSC installed between the areas #2 and #5:

SDC2=0.39 ·
s11.20

1 + s11.20
·
377.7 + s

359.4 + s
·

·
(s2 + 0.178s + 0.045)

(s2 + 4.38s + 4.529)
·
(s2 + 1.035s + 19.11)

(s2 + 1.073s + 18.59)
.

The transfer functions of the conventional SDCs are given by

- Conventional SDC for TCSC installed between areas #1
and #2:

SDCc1=2.0 ·
s10.0

1 + s10.0
·
1 + s0.0891

1 + s0.8959
·
1 + s0.0891

1 + s0.8959
.

- Conventional SDC for the TCSC installed between the ar-
eas #2 and #5:

SDCc2=0.4 ·
s10.0

1 + s10.0
·
1 + s0.1028

1 + s0.7761
·
1 + s0.1028

1 + s0.7761
.
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