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ABSTRACT

This work deals with the specification of an open architec-
ture for control of manipulator robots. The architecture de-
fines policies for the use of the OROCOS framework and
is specified for a generic manipulator robot with N joints,
through the definition of component models to abstract the
hardware and each block of the robot controller. To show
its generality, the proposed architecture is used to implement
two different controllers: an independent PID for each joint
and controller with feedforward compensation. The valida-
tion is made through the implementation in real-time on the
Janus robot.

KEYWORDS: Open architecture, OROCOS framework,
Robot control

RESUMO

Uma Arquitetura Baseada em Componentes para Con-
trole de Robôs
Este trabalho aborda a especificação de uma arquitetura
aberta para controle de robôs manipuladores. A arquitetura
define políticas para o uso do framework OROCOS. A ar-
quitetura é especificada para um robô manipulador genérico
com N juntas, através da definição de modelos de compo-
nentes para abstrair o hardware e cada bloco do controlador
do robô. Para mostrar a sua generalidade, a arquitetura pro-
posta é utilizada para implementar dois controladores dife-
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rentes: um controlador PID independente para cada junta e
um controlador com compensação em feedforward. A va-
lidação é feita através da implementação em tempo real no
robô Janus.

PALAVRAS-CHAVE: Arquitetura aberta, OROCOS, Con-
trole de robôs.

1 INTRODUCTION

The demand for robots with increased performance has
prompted the academia to the development of more complex
controllers, such as computed torque control or feedforward
dynamic compensation. However, their application on indus-
trial robots are restricted because of limitations associated
with the architecture of conventional robotic controllers, as
each robot manufacturer uses its own proprietary interface
and protocols (Kozlowski, 1998).

An open architecture is a proposed solution to such a prob-
lem, as all aspects of design can be changed (Ford, 1994).
Therefore, benefits such as reduced cost and shorter develop-
ment time could be achieved by using off-the-shelf hardware
and software.

Nowadays, some robot manufacturers (Neuronics, 2010;
Barrett, 2010) are selling what they call ”open source soft-
ware“ robots, whose give access to the lower-level control
of motor torques. Those features can be very useful to build
complex controllers. However, those robots can not be said
to be open architecture robots because they depend on the
specific hardware of the manufacturer and it is not possible
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to use the software of one manufacturer with the robot of
another one. A truly open architecture should support the
hardware of many robots with minor changes in software.

In academic research, many projects have been carried out
to develop open architecture controllers. In Gaspar (2003),
an implementation of a control architecture for manipula-
tor robots is presented. This implementation is based on the
Robot Control Interface (RCI) (Lloyd, 1992). However, this
approach lacks interoperability and extensibility since the
RCI is not a component-based software. In a component-
based software, components can be connected together to
achieve the global functionality of the robot. Each compo-
nent is an executable building block with defined interface
and functionality (Brugali and Scandurra, 2009).

In Liandong and Xinhan (2004), a component-based open
architecture is presented. Each device of a robot is mod-
eled by a component that implements its functionality
and uses the Common Object Request Broker Architecture
(CORBA) (Object Management Group, 2010) to exchange
data. However, that work does not make use of a common
system architecture, which would allow the researchers to
focus on the problem of robot control and do not require
them to rewrite code to fit the controllers to a communica-
tion framework such as CORBA.

In Smith and Christensen (2009) the design of a high-
performance robot manipulator built from off-the-shelf com-
ponents is shown. It was built to fill the lack of standard
systems in robotics, on which comparative research could be
done. Even though the design procedure and the hardware
implementation are fully described, the software does not use
an open architecture.

An open architecture is fundamental to enable researchers to
exchange results and port implementations from one robot to
another one. A common framework would encourage other
researchers to use available implementations instead of de-
veloping his own implementation for each robot. Eventu-
ally, that would lead to the development a standard library on
which robot software could be developed. A common frame-
work not only defines how the components can interact to
each other by means of communication and synchronization
mechanisms but also provides infrastructure and functional-
ity to build the system.

The ROS (ROS.org, 2010) and the Microsoft Robot Develop-
ers Studio (RDS) (Microsoft, 2008) are popular frameworks
among the robotics community. Although both are based on
components and offer communication and other mechanisms
required for the implementation of robot software, they do
not operate in real-time and therefore are not suitable for the
implementation of low-level joint control software. Those

frameworks are more appropriate for the development of ap-
plication software for robots.

The OROCOS project (Bruyninckx, 2001) is a component-
based framework for robot and machine control. It follows an
open source development model, has been successfully used
in other projects (Swevers et al., 2007; Tavares et al., 2007)
and has had widespread acceptance in the robotic field. How-
ever, OROCOS has a slow learning curve. It can be some-
what confusing because it has so many features and there-
fore it is possible to implement a given functionality in many
ways.

Unfortunately, OROCOS does not define a policy on how to
use the available mechanisms and due to the complexity of
the framework, it is not easy for a new user to understand all
the details of each mechanism and to decide which one is the
best one for each case.

Hence, by defining policies for using the framework re-
sources, this paper proposes in the following sections an ar-
chitecture for robot control based on OROCOS. The pro-
posed architecture is implemented by defining new compo-
nent models to represent the building blocks of a typical
robot control system. So this paper approaches a software
engineering problem with a focus on control systems.

It is important to observe that the component models are de-
fined in a way to be independent of a specific robot hardware.
This way, the user can easily migrate the software from on
robot to another one. This is achieved by abstracting the in-
terface with hardware of the robot and defining the remaining
of the architecture based on this abstraction.

2 THE OROCOS FRAMEWORK

OROCOS is an acronym for Open Robot Control Software.
It is an open source framework for control of robots and ma-
chines (Bruyninckx, 2001). The framework is based on com-
ponents. A component model is a concept similar to class in
C++, in that component models describe the interface, prop-
erties, and behaviors of components, hence every component
model is implemented as a C++ class and can be compiled
as a dynamic loadable library. Likewise, components are ob-
jects that are instantiated from component models with par-
ticular characteristic.

Each component model inherits a public interface from
the base class (TaskContext), which defines primitives
for component interactions: Events, Methods, Commands,
Properties and Data Port, as seen in Figure 1.

An Event can have functions attached to it. Whenever
the event is triggered, the attached functions are called.
Those functions may be synchronous or asynchronous. Syn-
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Figure 1: OROCOS component interface.

chronous functions are executed as a part of the Event trig-
gering procedure and hence execute in the same thread that
triggered the Event. Asynchronous functions are deferred to
be executed as a part of the component activity.

Methods are similar to C++ member functions, but can also
be called from scripts. They are executed in a synchronous
fashion with respect to the calling component, executing as
an usual C++ function.

Commands are similar to Methods, but Commands are sent
from a component and executed according to the activity of
the receiving component, asynchronously with respect to the
sender. Commands are queued for execution in the receiving
component. Figure 2 explains the difference between Com-
mands and Methods, supposing the interaction between two
components with periodic activity with same period. When
A calls a Method of B, it is executed immediately. When A
sends a Command to B, the execution is deferred until the
scheduling of B.

t

runs

to B

Command of B
runs

A B A B A B

Method of B

A calls a Method
of B

A sends a Command

Figure 2: Commands × Methods.

Properties are variables that can be read from a configura-
tion file in Extensible Markup Language (XML) format and
therefore can be used to store persistent values such as con-
figuration parameters of components or data that should per-
sist across shutdown and power-up of the system.

In order to use the above primitives, a component should peer
with another one. By peering, a component becomes able to
access the public interface of its peer, as shown in Figure 1.
Note that peering is not a symmetric relation. If a component
A is peer of a component B, then A can use the public inter-

face of B, but B can not use the public interface of A unless
B is also a peer of A.

The Data Port is a primitive for data exchange and can be
configured to use a FIFO buffer or not. Also, they can be
write-only, read-only or read-write and are accessed in real-
time in a thread-safe fashion. Hence, while reading a Data
Port, a mutual exclusion procedure ensures that data will not
change until the end of the reading operation. Data Ports can
also be configured to trigger the activity of a component or
to execute a function upon reception of data. Of course, to
exchange data, Data Ports should be connected to each other.

The ExecutionEngine block, shown in Figure 1, is exe-
cuted according to the activity of the component and imple-
ments the processing of the scripts, Commands, Events and
State Machines associated to the component.

As shown above, the OROCOS framework provides many
possibilities for interaction and communication among com-
ponents and therefore, the user has to choose what communi-
cation mechanism to use for implementing his system. Many
of such mechanisms are similar and could be used to replace
the others, if they were not available. However, each of the
communication mechanisms is best tailored for some type of
communication task. Unfortunately, OROCOS does not de-
fine a policy on how to use the available mechanisms and due
to the complexity of the framework, it is not easy for a new
user to understand all the details of each mechanism and to
decide which one is best for each communication task.

3 PROPOSED ARCHITECTURE

A typical topology for a computer-based control system is
shown in Figure 3.

Sensor

Reference
Controller Holder Actuator

Plant

Sampler

Figure 3: Typical topology for a sampled-data control system.

The dynamic model of a manipulator robot can be repre-
sented by Fu et al. (1987):

τ = D(q)q̈ + H(q, q̇) + G(q) (1)

where q is the vector of angular joint positions, τ is the vec-
tor of torques applied on joint, D(q) is the generalized iner-
tia matrix, H(q, q̇) is the vector of centrifugal and Coriolis
forces and G(q) is the vector of gravity forces.

For a N -joint robot, expression (1) can be rewritten as:

q̈i = fi(q1, . . . , qN , q̇1, . . . , q̇N , τi) (2)
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where qi is the position of joint i.

By defining x =
[

qT q̇T
]T

, the model (1) can be repre-
sented in a state-space form as:

ẋ = f(x, τ) (3)

The architecture proposed in this work is based on compo-
nent models for the blocks of the system shown in Figure 3
and on (3). In other words, the architecture can be used
for any system with a diagram block such as Figure 3 and
a model such as (3) and not only for robots. Each compo-
nent model can then be instantiated in a component by using
the specific parameters of a given robot or system. Figure 4
shows the models which are used as the base of the archi-
tecture. In Section 3.2 those models are instantiated for a
generic robot.
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Figure 4: Component models of the proposed architecture.

The component models Sensor, Controller and
Actuator, are models for base components and specify in-
terfaces which enforce polices on how to use the services of
the OROCOS framework. By using those models as bases
for the components representing a specific manipulator, the
user does not have to deal with the details of the communica-
tion mechanisms of the framework and is free to concentrate
in the details on how to specify the parameters of his specific
manipulator.

The Sampler is the component that generates the sampling
rate of the control loop and synchronizes the other compo-
nents. It generates an Event which is received by the other
components, automatically triggering a control cycle. Gener-
ally, the Sampler is configured to generate periodic Events,
but it could be configured to generate aperiodic Events as
well. Each component of the system is registered as a peer to
the Sampler in order to access its events interface.

The Sensor model abstracts the sensors of the system. it
has a Data Port where it writes the values which are read from
the sensors. This Data Port is based on the state x of (2) and
is represented by a vector which size depends on the number
of joints of the robot, given by:

sensor =
[

q1 q2 · · · qN q̇1 q̇2 · · · q̇N

]T

(4)

The Sensor component model has a virtual member func-
tion called sample_now(), which is called each time a
Event from the Sampler is received. This function should
read the actual sensors of the robot and write the data on the
component Data Port. By default, this function just sets a flag
indicating that an Event from the Samplerwas received. Of
course, given an actual robot, the Sensor component model
would be derived in a specialized sensor component model
which would overwrite the sample_now() function to ac-
tually read the sensors.

The Actuator component model abstracts the system actu-
ator. Similar to the Sensor component model it has a virtual
member function called sample_now() which is called in
response to an Event from the Sampler. However, its Data
Port has a different behavior. It is a read-only port where the
component can read the vector of actuator values from. This
Data Port is based on the input τ of (2) and is represented by
another vector with variable size given by:

act =
[

τ1 · · · τN

]T
(5)

Those values should be applied in each joint of the robot.
Furthermore, the Data Port of this component is configured
to trigger a virtual member function whenever a data is writ-
ten (by an external component) to it. This behavior is sig-
naled by an ∗ in the port called act∗. This virtual func-
tion is responsible for actuate the robot with the values just
written to the Data Port. Again, given an actual robot, the
Actuator component model would be derived in a spe-
cialized actuator component model which would overwrite
the virtual member functions to actually actuate the robot.

The Controller component model abstracts the system
controller. It has three Data Ports, similar to the signals that
the controller in Figure 3 is connected to. The reference
and sensor∗ Data Ports are used for reading the refer-
ence and sensor vectors, respectively. Note that a write to
the sensor∗ Data Port triggers a call to a virtual func-
tion called controller_now(), which should compute
the control signal and write it to the act Data Port. Once
again, this model would be derived in a specialized controller
for the actual robot. Similar to the preceding component
models, this component model has a virtual function called
sample_now() which is connected to the Event from the
Sampler.
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In a typical control system, the cycle begins with a read of
sensor and then, this measure is used to compute the con-
trol value which is applied in the actuator. The architec-
ture follows the same principle. The Sample Event just en-
ables the Controller and Actuator and does not cause
any activity, these components will be activated by their re-
spectively Data Ports: sensor∗ and act∗. However, the
Sample Event enables Sensor and should then writes the
sensor measurements to the sensor Data Port. This write
will activate the Controller which will generate the act
and will activate the Actuator.

3.1 The Joint Component Model

In order to represent each joint of a robot there is a Joint
component model. A Joint component should be associ-
ated with another component representing the hardware of
the joint. Hence, the Joint component model does not rep-
resent the hardware of the joint, but just the joint itself. This
way, the concept of a joint of the manipulator is kept inde-
pendent of the supporting hardware, thus enabling all joints
to have a common interface even if their hardware is not the
same. Figure 5 shows the interface of this component model.

brakeApply

motorSet

motorOn

brakeRelease

encoderRead

motorOff

brakeApply
brakeRelease

Properties:
PeerName
Brake
ActuatorSign
SensorSign
GearRatio
InitialPos
Sampler

D
at

a
Po

rt
s Index

Position
Voltage

Displacement

Sample
Act

VoltageActuator

sensorRead
actuatorSet
actuatorOff
actuatorOn

M
et

ho
ds

Joint

C
al

le
d

M
et

ho
ds

E
ve

nt
s

IndexSensor*
DisplacementSensor*PSfrag replacements

Properties:

Figure 5: The Joint component model.

When a Joint component is created, it should be connected
to a component which represents the hardware of the joint.
The component which represents the hardware should pro-
vide the following Methods:

actuatorOn: turn the joint actuator on

actuatorOff: turn the joint actuator off

actuatorSet: apply value to the joint

sensorRead: read the sensors of the joint

brakeApply: apply the brakes to the joint

brakeRelease: release the brakes.

Each Joint component has the following Properties, which
describe the hardware of the joint.

PeerName: Name of the component which implements the
hardware access.

Brake: Indicates whether the joint has a brake.

ActuatorSign: Used to compensate for wiring differ-
ence on the joint hardware, such that when an positive
value is applied, the joint moves in the positive direc-
tion.

SensorSign: Similar to ActuatorSign, but used to
compensate for sensor wiring, such that a positive value
is read when the joint moves in the positive direction.

GearRatio: Ratio between the joint motion and the sensor
readings.

InitialPos: Initial position of the joint.

Sampler: Indicate whether the Joint component should
try to connect to the Sample and Act Events.

The Joint component model exports methods which are
similar to the ones it imports from a peer specified by the
PeerName Property. This way, it is possible to com-
mand the joint of the robot without to command the hard-
ware directly. The motorOn and motorOff Methods
are directly mapped on the imported actuatorOn and
actuatorOff Methods. The same occur with the meth-
ods used to handle the brakes. However, they are only
exported if the Brake Property confirms that the specific
joint has a brake. The motorSet Method is mapped onto
the actuatorSet Method by compensating for the wiring
according to the ActuatorSign Property. Finally, the
sensorRead Method returns the displacement of the joint
of the robot, compensating for the wiring according to the
SensorSign Property and the reduction between the joint
axis and the sensor axis by using the GearRatio Property.

There are three Data Ports for the Joint component to con-
nect to the component which is specified by the PeerName
Property and to publish the status of the joint. The
VoltageActuator Data Port is used to send a voltage
to the component specified by the PeerName Property to
apply to the actuator, while the Voltage Data Port is used
to receive the value the Joint should apply to its actuator.
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Note that a write to this Data Port should be mapped to a call
to the actuatorSet Method of the hardware component.

The DisplacementSensor∗ Data Port receives the dis-
placement of the motor axis from the component specified
by the PeerName Property. A write to this port triggers an
event which computes the displacement of the joint, by using
the GearRatio and SensorSign Properties and updates
it by writing to the Displacement Data Port. The dis-
placement of the joint is also integrated with the initial con-
dition given by the InitialPos Property and updated by
writing to the Position Data Port. In a similar way, the
value in the IndexSensor∗ Data Port received from the
component specified by the PeerName Property is used to
update the value made available at the IndexData Port. The
sensorRead Method imported from the component spec-
ified by the PeerName Property should cause the update
of IndexSensor∗ and DisplacementSensor∗ Data
Ports.

The Sample Event triggers a call to the sensorRead
Method, which updates the Displacement, Position
and Index Data Ports. The Act Event triggers a
read from the Voltage Data Port and a write to the
VoltageActuator Data Port. These Events enables the
synchronized and parallel reading and actuation of all joints.

3.2 Connecting the Base Components

Since the Joint component model represents a single joint
of the robot and the interfaces of Sensor and Actuator
components are based on vectors of variables for the whole
robot, there is a need for multiplexing the signals from the
N Joints of the robot to form the vector required by the
Sensor. In a similar way, there is need for demultiplex-
ing the vector at the output of the Actuator to form the
actuation signal to be applied to each one of the Joints.

The SensorNMux component model (see Figure 6), ex-
tended from Sensor component, multiplexes the 2N Data
Ports to form a vector as given by (4). Hence, the
SensorNMux component has N Data Ports for position
(Position1∗, ..., PositionN∗) and N Data Ports for dis-
placement (Displacement1∗, ..., DisplacementN∗).
Again, the ∗ is used to indicate that a write to those Data Ports
triggers an Event which stores the written value. After all 2N
Data Ports have been written to following a Sample Event,
the sensor Data Port is updated with the corresponding
vector.

The ActuatorNDemux component model (see Figure 7),
extended from Actuator component, demultiplexes the
act vector, given by (5), and writes the values to the N
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generated. This event should force all actuators to drive the
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Figure 7: ActuatorNDemux component model.

The SensorNMux and ActuatorNDemux are generic
component models to multiplex and demultiplex data from
sensors and actuators, respectively. In the proposed archi-
tecture they are connected to with N Joint components as
shown in Figure 8. CardN is the component which imple-
ments the actual access to the hardware of the robot. The
dashed lines indicate the peering of the components, while
the solid lines indicate the data flow through the Data Ports.

It is important to note that the component models described
above are generic and can be used to implement a system for
any robot, independent of the number of joints. Although
an electric actuator has been assumed, the architecture is ex-
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tensible to other types of actuators (hydraulic, pneumatic) as
long as they can be interfaced with a computer.

An instantiation of the models for a robot with two joints
is shown in Figure 9. The following components are in-
stantiated from the corresponding component models de-
fined above: Card01, Card02, Joint1, Joint2,
Sensor2Mux, Actuator2Demux and Sampler. Note
that the controller is not included yet.

The sensor read/actuator write cycle can be described as fol-
lows:

1. The Sample Event is generated and the Sensor2Mux
and Actuator2Demux components will start to wait
for something to be written in their Data Ports:
DisplacementX∗ and Act∗ respectively. At the
same time, the Joint1 and Joint2 components
will receive the same Event and will call their own
encoderRead Methods.

2. Each Card component will execute the
encoderRead Method which will write the ap-
propriate displacement and index status into the Data
Ports of each Joint component. This will cause the
update of Position, Displacement and Index
Data Ports, as explained in Section 3.1, which are
connected to Data Ports of Sensor2Mux component.

3. After all DisplacementX∗ Data Ports of
Sensor2Mux are updated, the sensor is writ-
ten to and the sensor read cycle is done.

4. At other side, when a data is written to the Act∗

Data Port of Actuator2Demux, the Voltage1
and Voltage2 Data Ports, which are connected to
Voltage Data Ports of JointX components, are up-
dated and the Act∗ Event is generated.

5. Again, the JointX components catch this Event and
call their own motorSet Methods, which actually ac-
tuate its joint, concluding the actuator write cycle.

3.3 An Independent PID for Each Joint

Similar to the Sensor and Actuator component models
in Figure 4, the Controller component model should be
extended to implement the desired control law. In this sec-
tion, the Controller component model is extended to im-
plement an independent PID controller for each joint of the
robot. This scheme treats each joint of the robot as a simple
joint servomechanism, thus neglecting the coupling among
joints.

To implement this control strategy, at first, a generic PID
component model will be implemented. This component
model can be instantiated with appropriate gains for each
joint of the robot. Then, the Controller will be extended
to interact with the N PID components.

3.3.1 Component Model for a PID Controller

A PID controller with saturation has three gains: the pro-
portional gain Kp, the integral gain Ki and the differential
gain Kd. The saturation is represented by the values u and
u, meaning the minimum and maximum value for the con-
troller output. In discrete time form, the PID can be written
as (Astrom and Wittenmark, 1984):































u[k] = u[k − 1] + kp(e[k] − e[k − 1])

+kie[k] + kd(e[k] − 2e[k − 1]

+e[k − 2]) , u ≤ u[k] ≤ u

u[k] = u , u[k] > u

u[k] = u , u[k] < u

(6)
where e[k] is is the difference between the reference and the
output value.

Figure 10 shows the interface of the PID component model.
Note that, by defining the PID parameters as Properties, dif-
ferent PID components can be instantiated from the same
model. The component is activated when a value is write
to its Sen∗ Data Port. Then, the error value e[k] is computed
as difference between Ref and Sen∗ Data Ports, and by us-
ing (6), u is computed and written into the Out Data Port.
In the end, the values of e[k − 2] and e[k − 1] are updated
to e[k − 1] and e[k], and the component will be waiting for
another write to its Sen∗ Data Port.

3.3.2 ControllerNPID Component Model

This component model extends the Controller compo-
nent model, which is a MIMO controller, to use N SISO PID
controllers as implemented by the PID component model.
Figure 11 shows the interface of the ControllerNPID
component model.
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Figure 9: Instantiation for a robot with two joints.
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This component model has Data Ports to communicate with
N PID components. It demultiplexes the reference and
sensor vectors and write the values to the 2N Data Ports
(Ref1,...RefN) and (Sen1,...SenN). Also, it acts as a mul-
tiplexer, by collecting the outputs of the N PID components
written to the Out1,...OutN Data Ports, and writing them as
a vector to the act Data Port after a Sample Event. The
block diagram of this extension is shown in Figure 12.

Figure 13 shows the connections for a system with two PID
controllers. The control cycle of Figure 13 can be described
as follows:

1. The Sample Event is generated and the
Controller2PID component starts to wait for
something to be written to its sensor∗ Data Port.
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Figure 12: Block diagram of the ControllerNPID exten-
sion.
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Figure 13: Complete system for a two joint robot with inde-
pendent PID controllers.

2. When a write to sensor∗ occurs, the
Controller2PID reads its reference and
sensor∗ Data Ports, demultiplexes its into Ref1,
Ref2, Sen1 and Sen2. Then, it waits for all of its
OutX∗ Data Ports to be updated.

3. Each PID component react to the write of each Sen∗

and update each Out Data Port.

4. When Out1∗ and Out2∗ are updated, the
Controller2PID multiplexes this two Data
Ports and writes the act vector.
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3.4 PID with Feedforward Compensation

An independent PID for each joint strategy may work at low
speeds, but generally present a poor performance. These
problems arise because the coupling among joints and grav-
ity forces are neglected. Better results can be achieved by
explicit exploring the knowledge about the dynamic model
of the robot.

In this section the Controller component model is ex-
tended to implement a PID control with feedforward com-
pensation, similar to the PD with feedforward compensation
presented in Craig (1989). However, here an integral term
is included to reduce steady-state and modeling errors. This
control strategy is represented by the block diagram shown
in Figure 14. This strategy consists of a PID feedback plus
a feedforward computation of the the nominal robot dynam-
ics (1) along the desired joint position trajectory.

PID +
+

Robot

Model

+

−
outputreference

PSfrag replacements
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q̇ q

ud

δu u

Figure 14: Controller with feedforward compensation.

It is convenient to rewrite the robot model (1) as:

ẋ(t) = f(x(t), u(t)) (7)

If the desired states xd(t) are known along the desired trajec-
tory, then the torque ud(t), are also known, can be computed
by (1) and satisfy:

ẋd(t) = fa(xd(t), ud(t)) (8)

where fa is the robot model.

The result of (7) minus (8) is

δẋ(t) = h(δx(t), δu(t)) (9)

where δx(t) = x(t) − xd(t), δu(t) = u(t) − ud(t) and
h(·, ·) represents the difference between the robot f(·, ·) and
the robot model fa(·, ·).

If the state x(t) is close to desired state xd(t), then a PID
control law, as defined by (6), can be used to make δx(t)
converge towards zero.

3.4.1 The Robot Model Component

This component implements the inverse model of the
robot (1). Given the position, velocity and acceleration of the

joints it computes the desired torque of the robot. This com-
ponent model is shown in Figure 15 and its internal work-
ing is similar to the PID component model, however it com-
putes (1) instead of (6). The Data Port In∗ receives a vec-
tor with the desired position, velocity and acceleration of the
robot and computes, by using (1), the torque, which is written
to the Out Data Port.
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Figure 15: Robot Model component.

3.4.2 ControllerNPIDFF Component Model

The ControllerNPIDFF extends the Controller
component model to implement a PID with feedforward
compensation. Therefore, in order to implement the PID con-
troller with feedforward compensation it is only necessary to
change the component model that Controller is instan-
tiated from to ControllerNPIDFF. Figure 16 shows the
interface of the ControllerNPIDFF component model.
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The implementation is similar to the ControllerNPID
component model. It writes a vector with the robot position,
velocity and acceleration to the In_modelData Port, which
triggers the robot Model component to compute the robot
torque, which is received by the ControllerNPIDFF
through the Out_model∗ Data Port. Then it writes the N
values of sensor to its SenX Data Ports, which triggers the
PID component. In the end, the torque values are them added
to the values received from the PID of each joint through the
OutN∗ Data Port and written to the Act Data Port, to be
used by the system actuators.

4 EXPERIMENTAL RESULTS

The architecture presented in Section 3 was implemented in
the vision system of Janus robot. It consists of two links
connected in series by two rotational joints. Two cameras
are attached to the far-end of the chain. Each joint is driven
by a DC motor and has an incremental quadrature encoder
and a reference index inductive sensor.

Figure 17: The vision system of Janus.

Each joint also has an actuator card which uses a CANbus
with 1Mbit/s for real-time data transfer to a host PC. More
details about the hardware and software for this card can be
found in Santini and Lages (2008). This card, named as AIC,
is modeled as a component which has an interface compat-
ible with the one defined by Joint component model, as
shown in Section 3.1.

4.1 Independent PID for Each Joint

Figure 18 shows the block diagram for an independent PID
controller for each joint. Each component of Figure 18 is in-
stantiated from a component model as shown in Table 1 and
all peering and Data Port connection as shown in Figures 9
and 13 are performed. The hatched components have their
execution in real-time and the arrows represent the informa-
tion flow between components.

Table 1: Characteristics of system.
Component Model Activity Priority Period

Sampler Sampler PeriodicActivity 1 10 ms

aic01 AIC SequentialActivity — —
aic02 AIC SequentialActivity — —
Joint1 Joint SequentialActivity — —
Joint2 Joint SequentialActivity — —
Sensor Sensor2Mux NonPeriodicActivity 2 —
BridgeRef BridgeRef NonPeriodicActivity 97 —
Generator nAxisGenPos PeriodicActivity 98 10 ms

Controller Controller2PID NonPeriodicActivity 3 —
pid1 PID SequentialActivity — —
pid2 PID SequentialActivity — —
Actuator Actuator2Demux NonPeriodicActivity 3 —
Reporter FileReporting PeriodicActivity 100 10 ms

TaskBrowser TaskBrowser NonPeriodicActivity 255 —

In order to test the proposed architecture, a sequence of com-
mands, given by Table 2, is executed. Each command is sent
at its respective time. The desired and measured position for
each joint, are shown in Figure 19.

Table 2: Sequence of test commands.

Time Command

5s moveTo(array(1.0,1.0),10)
17s moveTo(array(2.0,2.0),9)
28s moveTo(array(3.0,1.0),8)
38s moveTo(array(1.0,3.0),7)
47s moveTo(array(4.0,4.0),5)
54s moveTo(array(0.0,0.0),5)

To evaluate the computing performance of the proposed ar-
chitecture, the activity of each component in a full control cy-
cle is measured. The Figure 20 shows the timeline of actions
started by the Sample Event. As can be seen, the computing
of the control loop takes less than 1 ms, which is adequate
for most robots.

At t0 = 0, the Sample Event is generated by Sampler and
the components which are connected to this Event are called
in a synchronous way. Figures 9 and 13 shows that Joint1,
Joint2, Sensor, Controller and Actuator are con-
nected to Sample Event.

First, the Joint1 executes and calls the SensorRead
Method from aic1 card. This process takes about 259 µs

which is the time of sensing the system using the AIC cards
through CANBus. Then, at f1, the Displacement and
Position Data Ports of Joint1 are updated.

After that, the process is done again for the second joint un-
til f2. So Sensor, Controller and Actuator enable
their respective Data Ports: Position1∗, Position2∗,
Displacement1∗, Displacement2∗, sensor∗ and
act∗.

As Joint1 and Joint2 update their Data Ports, which
are connected to Sensor Data Ports, the Sensor com-
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Figure 18: Block diagram for an independent PID for each joint.

ponent is activated and joins Position1∗, Position2∗,
Displacement1∗, Displacement2∗ into sensor
Data Port. This process takes about 20 µs and is done at
f4 when Controller is activated.

Until f5, the Controller splits the data in the sensor∗

Data Port in position and displacement of each joint, interacts
with two PID components and writes the act Data Port to
the Actuator. This is done in approximately 30 µs.

Then, the Actuator is activated and splits the act∗ into
the Voltage1 and Voltage2 Data Ports which are con-
nected to Joint1 and Joint2. In the end, the Actuator
emits the Act Event at t5 taking approximately 10 µs.

The Act Event activates Joint1 and Joint2 to effec-
tively actuate over each joint of robot. This takes about
150 µs. Note that the aic01 cards takes less time than
aic02 by hardware issues. After f6, all the real-time
component have executed and the other components like,
Generator and Reporter can execute.

Note that, by using the proposed architecture, the control cy-
cle is performed in 724 µs for two joints, which means about
362 µs for each joint. In (Santini and Lages, 2008) a similar
controller was implemented by using a monolithic structure,
with a single loop that reads the sensor, computes the control
law and drives the actuator. The control loop was performed
in 331 µs for a single joint. Hence, the proposed architec-
ture imposes a small overhead on the system. However, to
be adapted to another robot, the monolithic implementation
requires a rewrite of the program source code, while the ar-
chitecture proposed here requires just the setting of the joint
parameters on its configuration files. There is no need to
change the program source code, with the associated com-
plexity and the possibility of introduction of bugs.

4.2 PID with Feedforward Compensation

In order to implement the PID controller with Feedforward
Compensation, just a minor change is needed on the basic in-
dependent PID controller for each joint. It is only necessary
to change the instantiation of the Controller component
from ControllerNPID to ControllerNPIDFF. Since
ControllerNPIDFF uses the model of the robot, as de-
tailed in section 3.4.2, two more components are added to the
system, as shown in Table 3.

Table 3: Characteristics of the new components for the PID
controller with feedforward compensation.

Component Model Activity Priority Period

Controller ControllerNPIDFF NonPeriodicActivity 3 —
Model Model SequentialActivity — —
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Figure 19: Position with PID controller.
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Figure 21: Position error.

The same sequence of commands shown in Table 2 were ex-
ecuted with this new controller. The curves for the desired
and measured position can not be visually distinguished from
those for the PID controller shown in Figure 19. However,
the curves for the position error, shown in Figure 21, re-
veal that the trajectory tracking performance for the PID with
feedforward compensation is better than an independent PID
controller for each joint. Nonetheless, since the point here
is the architecture for implementation of controllers and not
their tuning, it is important to note that no effort was made
in order to optimally tune the controllers. Therefore, the rel-
ative performance of each controller is valid for the settings
used in this particular experiment and should not be regarded
as not as representative of that type of controller.
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Regarding the timing of the control loop computation, there
is a 10 µs increase in the computing time, due to the need
to compute the robot model. However, a monolithic im-
plementation is subject to the same increase in comput-
ing time. In this particular case, that happens because
the model component has a SequentialActivity,
which means that it executes in the context of its caller (the
ControllerNPIDFF), just like a function call in a mono-
lithic implementation.

5 CONCLUSION

This paper presented an architecture for control of manipu-
lator robots based on components. The approach is modular
and enables the reuse of components developed earlier, thus
shortening the development time and enabling the replace-
ment of system components without the need to understand
the whole system. Furthermore, the proposed architecture
defines some polices on the use of the resources available
from the OROCOS framework, therefore making it easier for
beginners to start to use the system.

The flexibility of the architecture was demonstrated by im-
plementing two control strategies with minor changes: In-
dependent PID controllers and a controller with feedforward
compensation. The architecture is also independent of robot
and can be easily extended to other systems.

The measured times show that the architecture does not in-
troduce significant computing time in the control loop. This
allows for the use of the proposed architecture in real-time.
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