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RESUMO

Controle de Sistemas Robóticos com Restrições
Cinemáticas
Este artigo considera o problema de controle de pos-
tura para sistemas robóticos com restrições cinemáti-
cas. A ideia principal é considerar as restrições cine-
máticas dos mecanismos a partir de suas equações es-
truturais, ao invés de usar explicitamente a equação de
restrição. Um estudo de caso para robôs paralelos e
robôs cooperativos é discutido baseado nos conceitos de
cinemática direta, cinemática diferencial, singularidades
e controle cinemático. Resultados de simulação, obti-
dos a partir de um mecanismo Four-Bar linkage, uma
plataforma de Gough-Stewart planar e dois robôs coo-
perativos, ilustram a aplicabilidade e versatilidade da
metodologia proposta.

PALAVRAS-CHAVE: robôs paralelos, robôs redundantes,
coordenação multi-rôbos, singularidades cinemáticas .

ABSTRACT

This paper addresses the posture control problem for
robotic systems subject to kinematic constraints. The
key idea is to consider the kinematic constraints of the
mechanisms from their structure equations, instead of
explicitly using the constraint equations. A case study
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for parallel robots and cooperating redundant robots is
discussed based on the following concepts: forward kine-
matics, differential kinematics, singularities and kine-
matic control. Simulations results, obtained with a
Four-Bar linkage mechanism, a planar Gough-Stewart
platform and two cooperating robots, illustrate the ap-
plicability and versatility of the proposed methodology.

KEYWORDS: Parallel robots, redundant robots, multi-
robot coordination, kinematic singularities.

1 INTRODUCTION

In advanced robotic systems, accuracy, repeatability
and load capacity are fundamental skills for carrying
out several practical tasks, where the robot end-effector
has to perform some operation on a constraint surface
or to manipulate an object of the environment (Siciliano
et al., 2008). The structure of a robot manipulator con-
sists of a set of rigid bodies or links connected by means
of revolute or prismatic joints, integrating a kinematic
chain. In general, one end of the chain is fixed to a base,
whereas an end-effector is connected to the other end.
From a topological point of view, a kinematic chain can
be classified in (i) open or serial, when there is only one
sequence of links and joints connecting the two ends of
the chain, and (ii) closed or parallel, when a sequence
of links and joints are arranged such that at least one
loop exists. Usually, serial chain robots can present lim-
itations in their reachable workspace, kinematic singu-
larities, reduced accuracy and rigidity, or be sensitive to
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scaling. These drawbacks could be overcome by the use
of parallel robots to increase rigidity, redundant robots
or mobile manipulators (manipulators mounted on a
mobile robot, e.g., remotely operated vehicles, wheeled
robots) to augment the system workspace and/or avoid
singularities in order to accomplish the task of interest
(Murray et al., 1994).

Parallel robots provide a rigid connection between the
base structure and the payload to be handled by the
end-effector, with positioning accuracy superior to the
one obtained by serial chain manipulators (Merlet, 1993;
Merlet and Gosselin, 2008). The main disadvantages of
using parallel robots are: workspace limitation, more
complex forward kinematics maps and more involved
singularity analysis (Wen and O’Brien, 2003; O’Brien
et al., 2006; Simas et al., 2009). For instance, in contrast
to serial chain manipulators, the singularities in parallel
mechanisms may have different characteristics.

In this context, the singularities can be classified into
three basic types (Gosselin and Angeles, 1990; Liu et al.,
2003):

(i) configuration space singularities: when the rank of
the structure equations drops and, thus, the end-
effector loses the ability to move instantaneously in
some directions;

(ii) end-effector singularities: when the end-effector
loses degrees of freedom (DOF), that is, the mo-
tion of the active joints can result in no motion of
the end-effector;

(iii) actuator singularities: when the actuator of the
manipulator or the active joints cannot produce
end-effector forces and torques in some directions.

The kinematic and dynamic control problems for paral-
lel robots are considered in (Kövecses et al., 2003; Cheng
et al., 2003; Rosario et al., 2007) and an autonomous
control approach to reach the dynamic limits of parallel
mechanisms is presented in (Pietsch et al., 2005).

Redundant manipulators have more degrees of freedom1

that those strictly necessary to perform a given task.
Redundancy is therefore a relative concept for a robot
manipulator, depending on the particular type of task
to be executed. For example, six DOF are necessary for
positioning and orienting a robot end-effector, thus a 6-
DOF manipulator is considered non-redundant. How-
ever, if only the positioning task is of concern, the
same arm becomes redundant. The extra degrees of
freedom provide more dexterity to the robot structure,
and it can be used to avoid kinematic singularities

and collision with obstacles, as well as to optimize the
robot motion with respect to a cost function (e.g., joint
torque energy). Furthermore, considering the pres-
ence of mechanical joint limits, redundant manipula-
tors can also be used to increase the robot workspace
(Siciliano, 1990; Chiaverini et al., 2008). In general,
multiple cooperating robot arms and mobile manipu-
lators, for instance, belong to the class of redundant
robots (Caccavale and Uchiyama, 2008).

The coordination of multiple robots is an essential activ-
ity in several industrial applications, such as assembly
and manufacturing tasks, where multiple robotic arms
are often grasping an object in contact with the envi-
ronment. Typical examples include: deburring, con-
tour following, grinding, machining, painting, polish-
ing and object aligning (Namvar and Aghili, 2005) or
even robot dexterous hands (Caurin and Pedro, 2009).
In this framework, a study of the differential kinemat-
ics and manipulability indexes for multiple cooperating
robot arms with unactuated joints is presented in (Wen
and Wilfinger, 1999; Bicchi and Prattichizzo, 2000). Ad-
vanced motion and force control of cooperative robotics
manipulators with passive joint are considered in (Tinos
et al., 2006; Pazelli et al., 2011). A screw-based system-
atic method to derive the relative Jacobian for two co-
operating robots is developed in the recently published
work (Ribeiro et al., 2008; Simas et al., 2009).

Motivated by several applications to parallel robots and
redundant manipulators, this paper provides a control
methodology for robotic systems under kinematic con-
straints based on a novel proposed method (Wen and
O’Brien, 2003). The key idea is to consider the kine-
matic constraints of these mechanisms from their struc-
ture equations, rather than explicitly using the con-
straint equations. The major advantage of this method-
ology is its applicability and versatility when different
robotic systems are considered. Simulation results are
obtained from the kinematic models of a Four-Bar link-
age mechanism, a planar Gough-Stewart platform and
two cooperating robots.

Terminology and Notation

In this work, the following notation, definition and as-
sumptions will be adopted:

Ēa = [ x⃗a y⃗a z⃗a ] denotes the orthonormal frame
a and x⃗a, y⃗a, z⃗a denote the unit vectors of the frame
axes.

1For some authors, this term has the same meaning as the
degrees of mobility.
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For a given vector x∈Rn, its elements are denoted
by xi for i=1 · · · n, that is, x=[ x1 x2 · · · xn ]T .

ne : number of effective degrees of freedom of the
mechanism2.

nt : number of degrees of freedom required to per-
form a task.

Definition 1 A robotic system can be classified as: (i)
non-redundant: ne ≤nt; (ii) redundant: ne >nt.

Assumption 1 For an open-chain mechanism consti-
tuted by i + 1 links connected by n joints, where the
link 0 is fixed, each joint provides a single degree of mo-
bility to the mechanism structure, and n= i.

Assumption 2 For a closed-chain mechanism consti-
tuted by i + 1 links, the number of joints n must be
greater than i. In particular, the number of closed loops
is equal to n−i.

2 CONSTRAINED ROBOTIC SYSTEMS

This section considers the kinematics of the closed-chain
robotic systems subject to kinematic constraints on ve-
locity. The general methodology to derive the forward
kinematics and the differential kinematics equations for
constraint-based robotics systems is to open the loop
of the mechanism, propagate the kinematics along the
branches and add the kinematic constraints.

Let p ∈ (R)3 be the position of the end-effector frame
ĒE with respect to the robot base frame Ē0, and R ∈
SO(3) the orientation of the end-effector frame ĒE with
respect to the robot base frame Ē0

3. In this context,
the posture (position and orientation) of the robot end-
effector can be obtained from the forward kinematics
map as

{p, R} = k(θ) , (1)

where k(·) : Rn 7→ {R3, SO(3)} is a non-linear mapping
and θ ∈ Rn is the vector of joint variables (or generalized
coordinates) expressed in the unconstrained configura-
tion space Q. The vector of active joints (or actuated
joints) is denoted by θa ∈Rna , whereas the vector of pas-
sive joints (or unactuated joints) is denoted by θp ∈Rnp ,
where n = na +np. Then, we can rearrange the vector
of joint angles, such that, θT =[ θT

a θT
p ]. The kinematic

2The effective degrees of freedom for a mechanism can be
calculate by means of the Gruebler’s formula, provided that
the constraints imposed by the joints are independent (Murray
et al., 1994).

3Special Orthogonal Group SO(3) = {R ∈ R3×3 : RT R =
I, det(R)=1}

constraints can be locally represented as algebraic con-
straints in the configuration space Q by

c(θ) = 0 , (2)

where c(·) :Rn 7→Rr. Then, the mechanism has ne =n−r
effective degrees of freedom and the following assump-
tion is considered:

Assumption 3 The number of active joints is equal to
the effective degrees of freedom, that is, na =ne.

Note that, the constraint described in (2) is an example
of holonomic constraint. In general, a constraint is said
to be holonomic if it restricts the motion of the system
to a smooth hypersurface in the configuration space Q
(Murray et al., 1994).

Now, considering that the constraint can be written in
terms of the joints velocity vectors, we have

Jc(θ) θ̇ = 0 , (3)

where Jc = ∂c(θ)
∂θ ∈ Rr×n is named the constraint Jaco-

bian.

On the other hand, the end-effector velocity v, com-
posed by the linear velocity ṗ and the angular velocity
ω (defined as Ṙ = ω × R (Murray et al., 1994)), can be
related with the velocity θ̇ by

v =
[

ṗ
ω

]
= Jm(θ) θ̇ , (4)

where Jm ∈Rn×n is the manipulator geometric Jacobian
(Siciliano et al., 2008).

Partition the Jacobians Jc and Jm according to the
dimension of active-passive joint variables, θa and θp,
we have Jc = [ Jca Jcp ] and Jm = [ Jma Jmp ]. Then,
without loss of generality, the equations (3) and (4)
can be rewritten as (Wen and O’Brien, 2003; O’Brien
et al., 2006):

0 = Jca θ̇a + Jcp θ̇p , (5)
v = Jma θ̇a + Jmp θ̇p , (6)

where Jca ∈ Rnp×na , Jcp ∈ Rnp×np , Jma ∈ Rm×na and
Jmp ∈Rm×np .

From (5), θ̇p can be calculated in terms of the active
joints as

θ̇p = −J−1
cp Jca θ̇a , (7)

where Jcp is invertible if Assumption 3 holds, i.e. the
number of passive joints is equal to the number of con-
straints, np =r.
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Substituting (7) into (6), the differential kinematics
equation can be rewritten as

v = (Jma − Jmp J−1
cp Jca)︸ ︷︷ ︸

J̄(θa,θp)

θ̇a , (8)

where J̄ ∈R6×n−r. In the case that J̄ be invertible, the
control law is similar to the kinematic control case of
the serial chain manipulator. For example, for a given
desired position pd(t), a proportional control plus feed-
forward could be proposed:

u = θ̇a = J̄p(θa)† [K (pd − p) + ṗd] (9)

where K > 0 is the controller gain matrix and J̄p ∈
R3×n−r is the partition of J̄ relating the contribution
of the active joint velocity θ̇a to the end-effector lin-
ear velocity ṗ. Note that a PI controller could also
be used, however this controller only guarantees zero
steady state error for step-type pd. For the orientation
control, a representation of the end-effector orientation
R ∈ SO(3) should be considered, e.g. unit quaternion
(Murray et al., 1994).

From the analysis of the equation (8), we conclude that
a singularity in J̄ occurs when the rank of matrix Jcp

drops. In this case, implies that there is internal motion
of the joints, even when the active joints are locked. This
type of singularity is named by unstable singularity or
actuator singularity (see (Wen and O’Brien, 2003; Kim
et al., 2001) for a detailed discussion).

3 PARALLEL MANIPULATORS

In this section, a planar Four-Bar linkage mechanism is
used to illustrate the posture control problem for paral-
lel manipulators. In sequence, the presented methodol-
ogy is applied to a planar Gough-Stewart platform. A
parallel manipulator is a closed-chain mechanism with
end-effector and fixed base, composed by the union of
two open kinematic chains at least. Parallel manipula-
tors can present advantages over open-chain manipula-
tors in terms of (i) rigidity of the mechanism, due to
the presence of two or more closed chains, and (ii) actu-
ators allocation, since in general only ne actuators are
necessary (Merlet and Gosselin, 2008).

3.1 Kinematic singularities

The singularities of the parallel mechanisms can be clas-
sified into (i) serial or end-effector singularity and (ii)
parallel or actuator singularity. When both singularities
occur simultaneously, they are named structural singu-
larity (Gosselin and Angeles, 1990).

In a serial singular configuration, the joints can have
a nonzero velocity while the mechanism is at rest. In
this case, the end-effector loses degrees of freedom in
the task space. On the other hand, in a parallel sin-
gular configuration there exist nonzero velocities of the
mechanism for which the joint velocities are null, and in
this case the end-effector gains some degrees of freedom
in the task space. A parallel singularity is especially im-
portant for parallel mechanisms since it corresponds to
configurations where the robot loses the controlability.
Moreover, excessive forces can occur in the vicinity of
singular poses and consequently to lead the breakdown
of robot parts.

Finally, it is worth to mention that in some cases, sin-
gular configurations can be useful. For instance, high
amplification factors between the actuated joint motion
and the end-effector motion can be essential for improv-
ing the sensitivity along some measurements directions
for a parallel robot used as a force sensor, or for accurate
positioning devices with very small workspace (Merlet
and Gosselin, 2008)

3.2 Planar Four-Bar linkage mechanism

The considered Four-Bar linkage mechanism is formed
by a single closed kinematic chain, composed by the
union of two open chains (Figure 1). The mechani-
cal structure consists of four rigid bodies connected by
means of revolute joints, where the active joint is θa =θ1
and the passive joints are θp = [ θ2 θ3 θ4 ]T . Note that,
links l3 and l4 compose one link.

x1

x3

x2

x0

x4 xE

y0

y1 y2

y3 y4 yE

!2

!4!3

!1

E0

EE

l1l1

l3

l2

l4

l0

l2l2

Figure 1: Planar Four-Bar linkage mechanism.

Four-Bar linkages are the simplest, least expensive and
most efficient closed-loop kinematic mechanism to per-
form a wide variety of complicated motions. Linkage-
type mechanisms are primarily used for industrial appli-
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cations as machine components and tools, automotive
suspensions and bolt cutters.

3.2.1 Forward kinematics

The forward kinematics map of a parallel manipulator
is described by the posture (position and orientation)
of the end-effector frame ĒE with respect to the base
frame Ē0, derived for each kinematic chain. For parallel
mechanisms, the forward kinematics problem is usually
much more complex than the inverse kinematics prob-
lem, due to the closed loop nature of the mechanism.
In order to obtain the forward kinematic, an appropri-
ate frame Ēi for i = 1, · · · , l is attached to i-th link.
Thus, the structure equations (or loop equations) of the
Four-Bar linkage mechanism are given by:

p = p01 + p13 + p3E︸ ︷︷ ︸
chain 1

= p02 + p24 + p4E︸ ︷︷ ︸
chain 2

, (10)

ϕ = θ1 + θ3︸ ︷︷ ︸
chain 1

= θ2 + θ4︸ ︷︷ ︸
chain 2

, (11)

where ϕ ∈ R represents the end-effector orientation (for
the planar case the orientation R is an elementary rota-
tion about the z axis, i.e. R = Rz(ϕ)) and pij ∈R3 is the
position vector of the origin of frame Ēj with respect to
the origin of the frame Ēi. The structure equations of
the mechanism introduce constraints between the joint
angles of the manipulator. Considering the planar case,
where p ∈R2 and ϕ ∈R, equations (10) and (11) corre-
spond to r = 3 constraints. Thus, the Four-Bar linkage
mechanism with n=4 joints has ne = n − r=1 effective
degrees of freedom. This result can also be obtained by
using the Gruebler’s formula for planar motions (Murray
et al., 1994).

Remark 1 For parallel mechanisms, the number of
passive joints is always equal to the number of con-
straints, that is, np = r. Thus, the vector of joint
variables θ ∈ Rn can be partitioned as (θa, θp), where
θa ∈Rn−r are the active joint variables and θp ∈Rr are
the passive joint variables.

The kinematic constraints of the mechanism allow us to
control the end-effector orientation by specifying only
the angular position of the active joint θa =θ1, and the
other joint variables must take on values in order to
satisfy the structure equations. Thus, the passive joints
θp ∈ R3 can be obtained as a function of active joints
θa ∈R by means of the forward kinematics equation of

the mechanism, by using the chain 1

p = p01 + p13 + p3E = − l0
2

x⃗0 + l1 R01(θ1) x⃗0 +

(l3 + l4) R01(θ1) R13(θ3) x⃗0 , (12)

or the chain 2

p = p02 + p24 + p4E = l0
2

x⃗0 + l2 R02(θ2) x⃗0 +

l4 R02(θ2) R24(θ4) x⃗0 , (13)

where Rij(θi) ∈ SO(3) denotes the orientation of the
frame Ēj with respect to the frame Ēi. Note that, in
this case, Rij is an elementary rotation matrix by an
angle θi about the axis z of the frame Ēi. After the use
of geometric and algebraic identities, the passive joints
θp are obtained by

θ2 = π − arccos
(

l2
0 − l2

1 + l2
d

2 l0 ld

)
− arccos

(
l2
2 − l2

3 + l2
d

2 l2 ld

)
,

θ3 = π + arccos
(

l2
1 − l2

0 + l2
d

2 l1 ld

)
+ arccos

(
l2
3 − l2

2 + l2
d

2 l3 ld

)
,

θ4 = 2π − arccos
(

l2
2 + l2

3 − l2
d

2 l2 l3

)
,

where
l2
d = l2

0 + l2
1 − 2lol1 cos(θ1) .

In the case that l3 = l0 and l1 = l2, there always exists
solution for θ3 and we has that θ2 = θ1 and θ3 = θ4.

Now, it is possible to obtain the end-effector position
from (12) or (13), as well as the end-effector orientation
from (11), in terms of the active joint θa =θ1.

Remark 2 A more direct technique to solve the in-
verse kinematics problem and obtain the passive joint
variables θp is to apply the methods based on Paden-
Kahan subproblems, in particular the subproblems 1
and 3 (Murray et al., 1994), which are geometrically
meaningful and numerically stable.

3.2.2 Differential kinematics

Analogously, the differential kinematics of a parallel ma-
nipulator is computed by considering the various open
kinematic chains that compose the mechanism struc-
ture. The end-effector velocity v ∈ R3 can be obtained
from the time derivative of structure equations, result-
ing in a Jacobian matrix for each serial chain

v = S J1

[
θ̇1
θ̇3

]
= S J2

[
θ̇2
θ̇4

]
, (14)
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where S ∈R3×6 is a selection matrix given by:

S =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 , (15)

and the Jacobian matrices J1 ∈R6×2 and J2 ∈R6×2 are4:

J1 =
[

z⃗0 × p1E z⃗0 × p3E

z⃗0 z⃗0

]
, (16)

J2 =
[

z⃗0 × p2E z⃗0 × p4E

z⃗0 z⃗0

]
, (17)

with

p1E = l1 R01(θ1) x⃗0 + p3E , (18)
p2E = l2 R02(θ2) x⃗0 + p4E , (19)
p3E = (l3 + l4) R01(θ1) R13(θ3) x⃗0 , (20)
p4E = l4 R02(θ2) R24(θ4) x⃗0 . (21)

The Jacobian of the mechanism can be rewritten in a
more usual form, stacking the Jacobian of each open
chain:

[
S J1 0

0 S J2

]
︸ ︷︷ ︸

J


θ̇1
θ̇3
θ̇2
θ̇4


︸ ︷︷ ︸

θ̇

=
[

I
I

]
︸ ︷︷ ︸

A

v , (22)

or equivalently
J θ̇ = A v , (23)

where the matrix A ∈ R6×3 has full column rank. Using
this notation, it is possible obtain the constraint Jaco-
bian Jc ∈R3×4 and the manipulator Jacobian Jm ∈R3×4

by means of:

Jc = Ã J , Jm = A† J , (24)

where Ã ∈ R3×6 is the annihilator of A, such that,
Ã A = 0, and A† ∈ R3×6 is the pseudo-inverse of A,
such that A† A = I. A possible choice is Ã = [I −I]
and A† = [I 0]. From (8), J̄ ∈ R3×1 can be calculated
by J̄ = Jma − JmpJ−1

cp Jca.

3.2.3 Kinematic control

In this section, the kinematic control approach is used
to modify the posture of the Four-Bar linkage mecha-
nism in order to perform a task of interest. Here, we
assume that the control objective is to drive the cur-
rent end-effector orientation ϕ to a desired time-varying
orientation ϕd(t), that is,

ϕ → ϕd(t) , eϕ = ϕd(t) − ϕ → 0 , (25)
4× denotes the vector cross product.

where eϕ ∈R is the orientation error.

The control scheme to be designed has to command the
velocity of the active joint θ̇a = θ̇1 in order to achieve
the control objective (25). Then, using a proportional
control law plus feedforward action

u = θ̇a = (J̄3)−1 ( kϕ eϕ + ϕ̇d ) , (26)

where J̄3 is the third element of J̄ and the orientation
error dynamics is governed by ėϕ + kϕ eϕ = 0, provided
that the mechanism motions are away from singular con-
figurations. Hence, by a proper choice of kϕ as a positive
constant implies that limt→∞ eϕ(t) = 0.

3.3 Planar Gough-Stewart platform

Another usual example of parallel mechanisms is the
Gough-Stewart platform. Typically, some applications
of this structure include: aircraft flight simulators, an-
tennas and telescopes positioning systems, machine tool
and crane technologies, and orthopedic surgery. In this
section, we consider a planar version of the Gough-
Stewart platform (Figure 2). The mechanical structure
is composed by the union of three open chains and
has nine joints, where three prismatic joints are active
θa = [ d2 d5 d8 ]T , and six revolute joints are passive
θp = [ θ1 θ3 θ4 θ6 θ7 θ9 ]T . We can obtain the effec-
tive degrees of freedom for this mechanism by apply-
ing the Gruebler’s formula for planar motions (Murray
et al., 1994):

ne = 3(i − n) +
n∑

j=1
fi = 3 , (27)

where i is the number of mobile links in the mechanism,
n is the number of joints and fi is the number of degrees
of freedom for the i-th joint. From (27), we conclude that
the mechanism has three effective degrees of freedom,
which allow us to control the position and orientation
of the platform respectively, in order to perform planar
positioning tasks.

3.3.1 Forward kinematics

The solution of the forward kinematics problem for a
Gough-Stewart platform is a very difficult task due to
the large number and complicated form of the con-
straints. From the length of the links, we can solve the
structure equations to find the joint angles and then de-
termine the platform posture. The forward kinematics
map of the mechanism can be obtained by calculating
the position and orientation of the frame Ēs with re-
spect to the base frame Ē0, specified for each kinematic
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Figure 2: Planar Gough-Stewart platform.

chain:

ps = p01+p13+p3s︸ ︷︷ ︸
chain 1

=p04+p46+p6s︸ ︷︷ ︸
chain 2

=p07+p79+p9s︸ ︷︷ ︸
chain 3

,

ϕs = θ1 + θ3︸ ︷︷ ︸
chain 1

= θ4 + θ6︸ ︷︷ ︸
chain 2

= θ7 + θ9︸ ︷︷ ︸
chain 3

, (28)

where ϕs ∈ R represents the platform orientation (for
the planar case the orientation R is an elementary rota-
tion about the z axis, i.e. R = Rz(ϕ)) and p01, p04 and
p07 are assumed to be constant and known, with

p03 = d2 R01(θ1) x⃗0 , (29)
p3s = l R01(θ1) R13(θ3) x⃗0 , (30)
p0s = p03 + p3s , (31)
p46 = d5 R04(θ4) x⃗0 , (32)
p6s = l R04(θ4) R46(θ6) x⃗0 , (33)
p4s = p46 + p6s , (34)
p79 = d8 R07(θ7) x⃗0 , (35)
p9s = l R07(θ7) R79(θ9) x⃗0 , (36)
p7s = p79 + p9s, (37)

where l ∈ R is the distance from the frame Ēs to frames
Ē3, Ē6 and Ē9 respectively.

Note that, considering a parallel mechanism, the struc-
ture equations allow the formulation of a system of equa-
tions, containing the kinematic constraint of the mecha-

nism, that can be used to calculate the angle of the pas-
sive joints θp in terms of the angle of the active joints θa.
The solution for this system of equations can be trivial,
as in the case of the Four-Bar linkage mechanism, or
be complex, for the case of the Gough-Stewart platform
presented in this section.

The forward kinematics map of the planar Gough-
Stewart platform can be obtained by using the method-
ology presented in (Zhang and Gao, 2006), where the
system with six equations and six unknowns variables
(θp ∈R6) is solved by means of the Ritt-Wu’s character-
istic set method.

3.3.2 Differential kinematics

The differential kinematics equation is obtained consid-
ering the various open chains, which compose the mech-
anism structure. The platform velocity can be derived
by differentiating the structure equation, obtaining a
Jacobian matrix for each chain:

v = SJ1

 θ̇1
ḋ2
θ̇3

=SJ2

 θ̇4
ḋ5
θ̇6

=SJ3

 θ̇7
ḋ8
θ̇9

 , (38)

where vT = [ṗT
s ϕ̇s], S ∈ R3×6 is the selection matrix

given in (15), and the Jacobian matrices J1 ∈R6×3, J2 ∈
R6×3 and J3 ∈R6×3 are:

J1 =
[

z⃗0 × p0s R01(θ1) x⃗0 z⃗0 × p3s

z⃗0 0 z⃗0

]
, (39)

J2 =
[

z⃗0 × p4s R04(θ4) x⃗0 z⃗0 × p6s

z⃗0 0 z⃗0

]
, (40)

J3 =
[

z⃗0 × p7s R07(θ7) x⃗0 z⃗0 × p9s

z⃗0 0 z⃗0

]
. (41)

It is important to note that the Jacobians J1, J2 and J3
depends on the angles of the active and passive joints.
For the planar Gough-Stewart platform, it is not triv-
ial to calculate the position of the passive joints θp in
terms of the active joints θa by using its forward kine-
matics equations. However, in order to obtain the dif-
ferential kinematics equations of the system, the posi-
tion of the passive joints can be obtained, for instance,
by integrating the velocity of the passive joints (7), i.e.
θp =

∫
J−1

cp Jcaθ̇adτ .
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The Jacobian can be rewritten in a more conventional
way, stacking the Jacobians for each open chain.

 S J1 0 0
0 S J2 0
0 0 S J3


︸ ︷︷ ︸

J



θ̇1
ḋ2
θ̇3
θ̇4
ḋ5
θ̇6
θ̇7
ḋ8
θ̇9


︸ ︷︷ ︸

θ̇

=

 I
I
I


︸ ︷︷ ︸

A

v , (42)

or, equivalently
J θ̇ = A v , (43)

where the matrix A ∈ R9×3 has full column rank. By
using this notation, it is possible to obtain the constraint
Jacobian Jc ∈R6×9 and the manipulator Jacobian Jm ∈
R3×9 by means of:

Jc = Ã J , Jm = A† J , (44)

where a possible choice for Ã and A† is given by Ã =
[I −I 0] and A† = [I 0 0].

As previously stated, from (8) and by using Jc and Jm,
the differential kinematics equation of the mechanism
is given by v = J̄ θ̇a, where J̄ ∈ R3×3 is given by J̄ =
Jma − JmpJ−1

cp Jca.

3.3.3 Kinematic control

In accordance with the Section 3.2.3, the kinematic con-
trol approach can be used again to modify the pos-
ture of the platform, in order to perform a planar
positioning task. Here, we assume that the control
objective is to follow a desired time-varying posture
xsd(t) = [pT

sd(t) ϕsd(t)]T from the current platform pos-
ture xs = [pT

s ϕs]T , that is,

xs → xsd(t) , es = xsd − xs → 0 , (45)

where es ∈R3 is the platform posture error.

Now, the control scheme to be designed has to command
the velocity of the active joint θ̇a =[ ḋ2 ḋ5 ḋ8 ]T , in order
to achieve the control objective (45). Then, using a
control law based on a proportional with feedforward
action

u = θ̇a = J̄−1 (Ks es + ẋsd) , (46)
where Ks is the controller gain matrix, the posture error
dynamics is governed by ės+Ks es =0, provided that the
platform motions are away from singular configurations.
Hence, by a proper choice of Ks as a positive definite
matrix, implies that limt→∞ es(t) = 0.

4 COOPERATING MANIPULATORS

In the robotics area, many tasks are difficult or even im-
possible to be performed by using a single robot. Typ-
ical examples include: positioning of heavy payloads,
complex assembly of multiple parts or manipulation of
flexible objects. These tasks become feasible with the
employment of more than one robot operating cooper-
atively (Caccavale and Uchiyama, 2008). The mecha-
nism presented in Figure 3 is constituted by a closed
kinematic chain, where all joints are active, and con-
siders a continuous contact of the end-effector with the
manipulated object.

In general, cooperating robots correspond to over-
actuated systems or redundant systems, where the ef-
fective degrees of freedom are higher than those strictly
required to perform a given task (ne >nt). This capac-
ity increases the dexterity of the mechanism, and can be
used to avoid joint limits, singularities and workspace
obstacles, as well as to minimize the energy consump-
tion and joint torques or to optimize a performance in-
dex (e.g., manipulability).

4.1 Forward kinematics

The forward kinematics map for a redundant robotic
system composed by two cooperating robots can be de-
scribed by means of the posture of the frame attached
to the manipulated object Ēc with respect to the base
frame Ē0, determined for each manipulator that belongs
to the robotic system. The structure equations of the
redundant mechanism illustrated in Figure 3 are given
respectively by

pc = p01 + p1c︸ ︷︷ ︸
robot 1

= p02 + p2c︸ ︷︷ ︸
robot 2

, (47)

ϕc = ϕ01 + ϕ1c︸ ︷︷ ︸
robot 1

= ϕ02 + ϕ2c︸ ︷︷ ︸
robot 2

, (48)

where

p0i ∈R3 : is the position vector of the end-effector frame
of the i-th manipulator Ēi with respect to the base frame
Ē0.

pic ∈R3 : is the position vector of the manipulated ob-
ject frame Ēc with respect to the end-effector frame of
the i-th manipulator Ēi.

ϕ0i ∈ R3 : denotes the orientation of the end-effector
frame of the i-th manipulator Ēi with respect to the
base frame Ē0.

566 Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011



x0

E0

y21

!11

EC

x21

x22

x23
x13

x12

x11
y0

y22

y23

y13

y12

y11

yC

xC

!12

!13

!23

!22

!21

l11

l12

l13

l23 l22

l21

v1+ v2+

v1-

v2-

Figure 3: Cooperating robot arms carrying a rigid object.

ϕic ∈ R3 : denotes the orientation of the manipulated
object frame Ēc with respect to the end-effector frame
of the i-th manipulator Ēi.

The structure equations introduce kinematic constraints
on the system, due to the continuous contact of the
robots with the manipulated object. In contrast with
parallel mechanism, the number of constraints is not
equal to the number of passive joints of the robots.
Indeed, for the mechanism presented in Figure 3, the
passive joints are associated to the contact points be-
tween the manipulators and the object (Caccavale and
Uchiyama, 2008).

4.2 Differential kinematics

Considering the open chain, the end-effector velocity v+
i

of the i-th manipulator is related with the velocities of
the joints θi by

v+
i = Ji(θi) θ̇i , (49)

where Ji is the Jacobian of the i-th manipulator, ob-
tained as a function of the joint angles θi.

Now, we consider vc the velocity of the frame Ēc fixed
on the manipulated object. The object velocity v−

i at
the contact points is related with vc by means of

v−
i = Ai vc , Ai =

[
I −pic×
0 I

]
, (50)

where Ai is the adjoint transformation which relates the
velocities of the object frame Ēc and the end-effector
frame of the i-th manipulator ĒEi .

The relative velocity of the each contact point can be
parameterized by a velocity vector wi by using:

v−
i = v+

i + HT
i wi , (51)

where the columns of the matrix HT
i represent the di-

rections for free motion at the contact points.

The Jacobian can be rewritten in a more conventional
way stacking the Jacobians for each open kinematic
chain as [

J1 0
0 J2

]
︸ ︷︷ ︸

J

θ̇ =
[

v+
1

v+
2

]
︸ ︷︷ ︸

v+

, (52)

or equivalently
J θ̇ = v+ . (53)

Thus, the differential kinematics relations can be rewrit-
ten as

v+ + HT w = v− , v− = A vc , (54)
where w=[wT

1 wT
2 ]T , H =[HT

1 HT
2 ]T and AT =[AT

1 AT
2 ]

has full rank.

The definition θ̇p = w and θ̇a = θ̇ allow us to represent
the system in a more generally form, according to (5)
and (6), by means of (Wen and Wilfinger, 1999)

Ã
[

J HT
]︸ ︷︷ ︸

Jc

[
θ̇a

θ̇p

]
= 0 , (55)

A† [
J HT

]︸ ︷︷ ︸
Jm

[
θ̇a

θ̇p

]
= vc , (56)

where Ã is the annihilating matrix such that,
Ã A=0, and A† is the pseudo-inverse of matrix A such
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that A† A = I. A possible choice for Ã and A† is given
by Ã = [A2 −A1] and A† = [A−1

1 0].

Note that, from (8) and by using Jc and Jm, the differ-
ential kinematics equation of the object is given by vc =
J̄ θ̇a, where J̄ ∈ R3×6 is given by J̄ = Jma −JmpJ−1

cp Jca.

4.3 Selection matrices

The kinematic constraints of the robotic system due to
the contact points are properly represented by means of
a selection matrix H. This matrix acts as a filter that
accepts or rejects components of motion at the contact
point.

Considering the example presented in Figure 3, for the
planar case a multiple robot system with compliant grip-
pers does not allow translational and rotational motions
of the manipulated object, which implies that H = 0.
On the other hand, for a multiple robot system with-
out grippers, contact points with friction can be con-
sidered. In this case, only angular motions between the
end-effector and the object are allowed and the selection
matrix H is given by

H =

 0
0
1

 . (57)

Some examples of other types of contacts and associ-
ated values of the selection matrix H are presented in
(Murray et al., 1994; Wen and Wilfinger, 1999).

4.4 Kinematic control

In this section, the kinematic control approach will be
used again to modify the posture of the robot manipu-
lators, in order to perform a planar manipulation task
with the object of interest. Here, we assume that the
control objective is to lead the current posture of the
object xc = [pT

c ϕc]T to a desired time varying posture
xcd(t) = [pT

cd(t) ϕcd(t)]T , that is,

xc → xcd(t) , ec = xcd(t) − xc → 0 , (58)

where ec is posture error of the object.

The control scheme to be designed has to command the
velocity of the all active joints of the multiple robots
system θ̇a in order to achieve the control objective (58).
According to the differential kinematics of the actuated
mechanism vc = J̄ θ̇a with ne = nt, the joint velocities
can be obtained from the simple inversion of the Ja-
cobian matrix J̄ by using θ̇a = J̄−1 v, where v denotes
the Cartesian control law, which is properly designed to
avoid singular configurations.

On the other hand, for a redundant mechanism such
that ne >nt, the same relationship can be rewritten in a
generic form as (Sciavicco and Siciliano, 2000; Chiaverini
et al., 2008):

θ̇a = J̄† v + (I − J̄† J̄)︸ ︷︷ ︸
P

θ̇a0 , (59)

where P denotes the orthogonal projection matrix in
the null space of J̄ (i.e. J̄P = 0) and θ̇a0 is a vector
of arbitrary velocities of the active joints. Note that,
the right side of (59) can be interpreted as a null space
velocity, whose effect is to generate internal motions
that reconfigure the robot structure without changing
the end-effector posture.

Considering the kinematics control problem of the over-
actuated mechanism (ne > nt = 1), the control signal is
equivalent to the velocity of the active joints, that is, u=
θ̇a. Then, using a control law based on a proportional
with feedforward action

u = J̄† ( ẋcd + Kc ec ) + ( I − J̄† J̄ ) ū , (60)

where ū is an auxiliary control signal, the posture error
dynamics is governed by ėc + Kc ec =0, where Kc is the
controller gain matrix, since the right side of the (60)
is projected in the null space of J̄ . Hence, for a proper
choice of Kc as a positive definite matrix, implies that
limt→∞ ec(t) = 0.

The auxiliary control ū can be also chosen in order to
improve the performance of the mechanism for the task
execution. A typical choice is

ū = K̄

(
∂f(θa)

∂θa

)T

, (61)

where K̄ > 0 is a gain factor and f(θa) is an objective
function in terms of the active joint variables, that can
be chosen to satisfy a specific performance index. Some
typical examples are:

Manipulability:

f(θa) =
√

det(J̄ J̄T ) ,

which vanishes at a singular configuration;

Distance from obstacles:

f(θa)=min ∥p(θa) − po∥ ,

where po is the position vector of a suitable point fixed
on the obstacle and p is the position vector of a generic
point along the mechanism structure;
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Joint limits: θami
<θai

<θaMi
,

f(θa) = − 1
2n

n∑
i=1

(
θai

− θ̄ai

θaMi − θami

)2

,

where θaMi and θami denote the maximum and min-
imum joint limits respectively, and θ̄ai

is the average
value between θaMi and θami .

4.5 Kinematic singularities

The posture of the manipulator, obtained as a function
of the joint angles θ, is said to be singular if the Jacobian
matrix J̄ has not full rank. From (8) we can observe that
when the robot is not in a singular configuration it is
possible to generate velocities and accelerations with the
end-effector in certain directions. In order to evaluate
the linear relation (8), the singular value decomposition
(SVD) method can be used to obtain the rank of the
Jacobian J̄ and study quasi-linear mappings (Chiaverini
et al., 2008).

In this context, the SVD of the Jacobian can be repre-
sented by

J̄ = U Σ V T =
m∑

i=1
σi ui vT

i , (62)

where U ∈ Rm×m is the orthogonal matrix of output
singular vectors ui, V ∈Rn×n is the orthogonal matrix
of the input singular vectors vi, and Σ ∈ diag(D, 0) ∈
Rm×n is the matrix whose diagonal submatrix D ∈
Rm×m contains the singular values σi of the matrix J̄ .
Considering that rank(J̄)=k, we have

σ1 ≥ σ2 ≥ · · · ≥ σr ≥ σk+1 = ... = 0;

R(J̄) = span{u1 , · · · , uk};

N (J̄) = span{vk+1 , · · · , vn},

where R(J̄) denotes the range space of J̄ and N (J̄)
denotes the null space of J̄ . Then, the following analysis
in terms of the rank of matrix J̄ can be established:

full rank (k =m): (i) σi ̸=0 , i=1, · · · , m , (ii) R(J̄) ∈
Rm , (iii) N (J̄) ∈ Rn−m.

rank deficient (k < m): (i) σi ̸= 0 , i = 1, · · · , k , (ii)
R(J̄) ∈ Rk ⊂ Rm , (iii) N (J̄) ∈ Rn−k.

An interpretation of this analysis in terms of velocities
is presented as follows (Chiaverini et al., 2008):

Feasible velocities: For each configuration of the ma-
nipulator, R(J̄) is the set of the end-effector velocities
that can be generated by all possible joint velocities θ̇,
and are called the feasible velocities of the end-effector.
The base of R(J̄) is obtained by the first k output
singular vectors, which represent the independent lin-
ear combinations of the single components of the end-
effector velocities. Then, the effect of a singularity
is to decrease the dimension of R(J̄), by eliminating
a linear combination of the components of the end-
effector velocities that belong to the feasible velocities
space.

Null space velocities: For each configuration of the ma-
nipulator, N (J̄) is the set of joint velocities θ̇, that do
not produce any end-effector velocity, and are called
the null space velocities. The base of N (J̄) is obtained
by the last n−k input singular vector, which represent
the independent linear combinations of the velocities
at each joint. The effect of a singularity is to increase
the dimension of N (J̄), by adding more one indepen-
dent linear combination of the joint velocities, which
produces a zero end-effector velocity.

5 NONHOLONOMIC ROBOTS

Other examples of robotic systems with constraints
are the wheeled mobile robots and multifingered robot
hands. In general, a constraint is said to be holonomic
if it restricts the robot motion to a smooth hypersurface
of the configuration space. Holonomic constraints can
be represented locally as algebraic constraints on the
robot configuration space ci(θ) = 0 for i = 1, · · · , r. On
the other hand, if the allowable motions of the robotic
system are restricted by the velocity constraint in the
form

A(θ) θ̇ = 0 ,

where A∈Rr×n represents a set of r velocity constraints
that are not integrable, the constraint is said to be non-
holonomic.

These constraints arise in robotic systems , where an-
gular moment is conserved, as well as rolling contact
is involved. Nonholonomic constraints occur when the
instantaneous velocities of the robotic system are re-
stricted to an n − r dimensional subspace, but the set
of reachable configurations is not constrained to some
n − r dimensional hypersurface in the robot configura-
tion space (Murray et al., 1994).

Analogously, the challenge is how to consider the prob-
lem from the control point of view in order to define the
system velocities which satisfy the constraints. Con-
sidering Ã ∈Rn×(n−r) the annihilator of matrix A, the
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allowable trajectories of the system can be written as
possible solutions of the control system

θ̇ = Ã(θ) u , (63)

where u ∈ Rn−r is the control signal to be designed in
order to drive the current configuration θ ∈ Rn to a
desired time-varying configuration θd(t)∈Rn.

The main difficulty arises from the fact that this sys-
tem has not right pseudoinverse, since A contains more
rows than columns, and the linearized system is not
controllable (Murray et al., 1994). However, there are
different approaches to accomplish the control of this
systems, that consists of both physical remove of the
nonholonomic constraints and the application of ad-
vanced control tools based on nonlinear control the-
ory, differential geometry or optimal control (Murray
et al., 1994; Bloch, 2003).

6 SIMULATION RESULTS

In this section, we present simulations results obtained
from a Four-Bar linkage mechanism, a planar Gough-
Stewart platform and two cooperating robot arms com-
posed by four revolution joints. The adopted struc-
tural dimensions are: l0 = 1 m, l1 = 1.2 m, l2 = 1.4 m,
l3 = 0.6 m, l4 = 1.4 m, l = 5 m, l11 = l12 = 1.2 m,
l21 = l22 = 1 m and l13 = l23 = 0.6 m. For the con-
sidered lengths of links, we define the following limits:
θ1 ∈ [ 0.72 2.27 ] rad and ϕ ∈ [ 5.88 7.89 ] rad. The con-
trol parameters are: kϕ = 50 rad s−1 and Ks = Kc =
diag(50 mm s−1, 50 mm s−1, 1 rad s−1).

The time evolution for the orientation error of the Four-
Bar linkage mechanism for train of ramps and sinusoidal
references are shown in Figures 4(b) and 4(d) respec-
tively. Figures 5(b) and 5(c) illustrate the time evolu-
tion of the position error and orientation error for the
Gough-Stewart platform. The position and orientation
errors for the object handled by two cooperating robots
are shown in Figures 6(b) and 6(c) respectively. The
trajectory following for all mechanisms are presented re-
spectively in Figures 4(a)-4(c), 5(a) and 6(a), where it
can observe that a good performance is achieved by us-
ing the presented methodology.

7 CONCLUSIONS AND PERSPECTIVES

This work presents a control methodology for robotic
systems under kinematics constraints based on a novel
scheme in the robotics literature, which regards the con-
straints on passive joint velocities. The key idea is to
consider the kinematic constraints of the mechanism
from their structure equations, rather than explicitly
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Figure 4: Four-Bar linkage mechanism: (a) end-effector orien-
tation: train of ramps, (b) orientation error, (c) end-effector
orientation: sinusoidal wave form, (d) orientation error.
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Figure 5: Gough-Stewart platform: (a) platform position, (b)
position error, (c) orientation error.

invoking the constraint equation. In order to show the
applicability of the presented methodology, simulations
results were included for a Four-Bar linkage mechanism,
a planar Gough-Stewart platform and two cooperating
robots.

It is worth mentioning that the methodology presented
in this section 3 is implemented in the suspension control
system of the Environmental Hybrid Robot, recently de-
veloped by CENPES/Petrobras, which is an amphibi-
ous 4-wheel-legged robot composed by a planar parallel
mechanism in each suspension (Freitas et al., 2010).
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Figure 6: Cooperating robots: (a) object position, (b) position
error, (c) orientation error.

Some research topics, applied to redundant manipula-
tors and parallel robots, that can be investigated fol-
lowing the ideas presented in this work are: to consider
the dynamic control problem for these mechanisms, re-
lax the assumption of the robot kinematics to be fully
known and develop a strategy for singularity and obsta-
cle avoidance.
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