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RESUMO

Teoria do Caos Aplicada à Definição do Conjunto de En-
tradas de Modelos Neurais Autônomos para Previsão de
Carga em Curto Prazo
Após 1991, a literatura sobre previsão de carga passou a ser
dominada por propostas baseadas em modelos neurais. En-
tretanto, um empecilho na aplicação destes modelos reside na
possibilidade do ajuste excessivo dos dados, i.e, overfitting.
O excesso de não-linearidade disponibilizado pelos mode-
los neurais de previsão de carga, que depende da represen-
tação do espaço de entrada, vem sendo ajustado de maneira
heurística. Modelos autônomos incluindo técnicas automáti-
cas e acopladas para seleção de entradas e controle de com-
plexidade dos modelos foram propostos recentemente para
previsão de carga em curto prazo. Entretanto, estas técnicas
necessitam da especificação do conjunto inicial de entradas
que será processado pelo modelo visando determinar aquelas
mais relevantes. Este trabalho explora a teoria do caos como
ferramenta de análise não-linear de séries temporais na defi-
nição automática do conjunto de atrasos de uma dada série de
carga a serem utilizados como entradas de modelos neurais
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autônomos. Neste trabalho, inferência Bayesiana aplicada a
perceptrons de múltiplas camadas e máquinas de vetores re-
levantes são utilizadas no desenvolvimento de modelos neu-
rais autônomos.

PALAVRAS-CHAVE: Previsão de carga, Redes Neurais Ar-
tificiais, Seleção de Entrada, Teoria do Caos, Sincronização
caótica, Inferência Bayesiana, Perceptron de Multi-camadas
, Máquinas de Vetores Relevantes.

ABSTRACT

After 1991, the literature on load forecasting has been dom-
inated by neural network based proposals. However, one
major risk in using neural models is the possibility of ex-
cessive training, i.e., data overfitting. The extent of non-
linearity provided by neural network based load forecast-
ers, which depends on the input space representation, has
been adjusted using heuristic procedures. The empirical na-
ture of these procedures makes their application cumbersome
and time consuming. Autonomous modeling including auto-
matic input selection and model complexity control has been
proposed recently for short-term load forecasting. However,
these techniques require the specification of an initial input
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set that will be processed by the model in order to select the
most relevant variables. This paper explores chaos theory as
a tool from non-linear time series analysis to automatic se-
lect the lags of the load series data that will be used by the
neural models. In this paper, Bayesian inference applied to
multi-layered perceptrons and relevance vector machines are
used in the development of autonomous neural models.

KEYWORDS: Load Forecasting, Artificial Neural Networks,
Input Selection, Chaos Theory, Chaotic Synchronization,
Bayesian Inference, Multi-layered Perceptron, Relevance
Vector Machines.

1 INTRODUCTION

The decision making process in power systems, including
economic dispatch, hydrothermal coordination, automatic
generation control, energy trading and so on, requires the
knowledge of the future behavior of the load dynamics.
Along the last two decades, many load forecasting models
have been proposed, with the neural network based mod-
els receiving great attention. This is because they have
been showing superior prediction performance, specially for
short-term applications (Hippert, et. al., 2001). In fact, the
neural network based models have been presenting outstand-
ing results for multivariate problems envolving databases
with huge cardinality, as the short-term load forecasting
problem (Ferreira and Alves da Silva, 2007), (Ferreira and
Alves da Silva, 2009) and (Ferreira and Alves da Silva,
2010). Even been more robust than traditional models, criti-
cal questions like input space representation and complexity
control of neural network have not received the necessary at-
tention.

The input selection stage is the one of the most important
tasks in the development of load forecasting models. Feature
extraction via non-linear techniques like wavelets uses only
information about the time-series to be predicted without di-
rect concern with the forecasting accuracy. In this sense, an
input selection methodology directly related with the neural
network model is required. The methods that use the model
itself in the input selection step are called wrapper methods,
and the ones that consider only the dynamics and statistics
of the time-series are called filter methods (Guyon and Elis-
seeff, 2003). For forecasting purposes, the wrapper methods
are more indicated since these techniques aim to select the
inputs that are most sutiable to the model in terms of fore-
casting performance.

The complexity control of neural models has the objective
of adjusting the non-linear extent of the neural network to
the regularity exhibited by the data. This step is necessary
to avoid the harmful modeling of the noisy component of the
data, named overfitting. This can compromise the general-

ization capacity of the neural model, i.e., good predictions
for unseen data.

Autonomous neural forecasting models, including automatic
input selection, complexity control and structure selection,
are necessary to reduce the necessity of intervention from ex-
perts. These automatic procedures allow the extension of the
forecasting to the bus load level. Autonomous Neural Net-
work Load Forecasting models have been proposed in the
literature (Ferreira and Alves da Silva, 2007) using Bayesian
Inference Applied to Multi-Layered Perceptrons (BIAMLPs)
and Support Vector Machines (SVMs) training and specifica-
tion. These procedures include automatic and coupled proce-
dures for input selection, complexity control and model spec-
ification. However, these procedures still require the defini-
tion of an initial set of inputs.

In order to improve the autonomous capability of the models
proposed in (Ferreira and Alves da Silva, 2007), techniques
for automatic definition of the initial set of inputs from the
available time-series are necessary. This paper investigates
the application of Chaos Theory as a tool for automatic def-
inition of the initial set of inputs to be used with the au-
tonomous neural models proposed in (Ferreira and Alves da
Silva, 2007). The BIAMLPs are used in this paper and they
are compared with Relevance Vector Machines (RVMs). Be-
ing a sparse kernel model, a RVM can be seen as a SVM de-
rived from the application of Bayesian Inference. The fore-
casting performance of the models are compared using three
public load and temperature databases. The main contribu-
tions of the paper can be summarized as follows:

a) proposal of an automatic method for selecting inputs of
neural network load forecasting models, based on time-
series and calendar information, only; and

b) evaluation of the applicability of RVMs to the load fore-
casting problem.

This paper is organized as follows. In Section 2, Chaos The-
ory is presented in the context of Input Space Reconstruction.
BIAMLPs are described in Section 3. Section 4 is devoted to
the description of the RVMs. The database description and
results are shown in Section 5. The discussion, main conclu-
sions and future work are presented in Section 6.

2 CHAOS THEORY

The Chaos Theory development is motivated by the study of
dynamical systems sensitive to initial conditions. After the
transient effects, a dynamical system F (X) : R

D → R
D

evolving in a state space X ∈ R
D can be defined by the

following expression:
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X (k + 1) = F [X (k)] (1)

From the actual state X (k), all of the adjacent states of the
deterministic system described by equation (1) can be ob-
tained. The sensitivity to the initial conditions makes the
trajectory of the system dependent on the knowledge of the
function F (X) and the value of the initial state. The set of
initial conditions that drives asymptotically the system to a
given region of the space is called basin of attraction, and the
region where the system is driven is named attractor (Kantz
and Schreiber, 1997).

2.1 TAKENS THEOREM

The above definitions are valid in the multidimensional space
where the system F (X) is confined. However, in practice,
only scalar measures x (k), k = 1, 2, ..., N , are avaliable
through a measurement function s (X) : R

D → R, i.e.,

x (k) = s [X (k)] + η (k) (2)

where η (k) represents the measurement noise.

The measurement function s (X) comprises the multivariate
information contained in X (k) in a scalar measure x (k),
projecting non-observable variables of the system in a real
scale. Since s (X) is unknown, in the presence of measure-
ment noise η (k) , the perfect reconstruction of X (k) from a
set of measures x (k) is impossible. However, the perfect es-
timation of the original space is unnecessary, being sufficient
the definition of a new representation space with a equivalent
attractor (Takens, 1981). Called embedded space, this space
can be obtained from the equation:

x (k) = [x (k) , x (k − τ) , . . . , x (k − (d − 1) τ)]
t (3)

where τ and d are parameters named delay and embedding
dimension, respectively.

Takens’ Theorem (Takens, 1981) defines the conditions for
which the attractor in the embedded space x ∈ R

d, given
by equation (3), is equivalent to the attractor in the original
space X ∈ R

D. In case of unlimited data, noise free and
assuming the existence of a mapping Z (x) : R

d → R
D and

the corresponding inverse mapping Z−1 (X) : R
D → R

d,
both smoth, continuous, bi-unique and continuously differ-
entiable, x ∈ R

d will be a immersion of X ∈ R
D if d > 2D

for τ arbitrarily chosen. While the Takens’ Theorem devotes
attention only to the embedding dimension d, in practical ap-
plications the choice of the embedding delay τ is also vital

for the definition of the embedded space (Abarbanel et.al.,
1993).

There are many criteria proposed in the literature for the def-
inition of τ , including techniques based on geometrical and
statistical foundations, with the statistical ones been more
used and suitable for time-series applications (Kantz and
Schreiber, 1997). Among the statistical criteria, the analysis
of the autocorrelation function of x (k), rxx (k), is the sim-
plest technique. In order to pursue a trade-off between attrac-
tor compression and reconstruction based on almost uncor-
related directions, the first minimum of the absolute value of
rxx (k), |rxx (k)|, can be used as an estimate for τ . Although
simple, generally the definition of τ based on the analysis of
rxx (k) does not avoid the attractor collapse, since non-linear
interdependences can fold the attractor along trajectories of
this nature.

Information Theory provides indices for the evaluation of
general relationships (linear or non-linear) among random
variables. The mutual information, Ix (r), measures the de-
gree of information that x (k − r) gives about x (k), i.e., the
reduction of uncertainty about x (k) due to the knowledge of
x (k − r). Using variable discretization to estimate the re-
quired probabilities, Ix (r) is given by:

Ix (r) = Hx (0) + Hx (r) − Hxx (r) (4)

Hx (r) = −
p∑

i=1

P [x (k − r) ∈ νi]× log P [x (k − r) ∈ νi]

Hxx (r) = −
p∑

i=1

p∑
j=1

P [x (k) ∈ νi, x (k − r) ∈ νj ]×

log P [x (k) ∈ νi, x (k − r) ∈ νj ]
(5)

where p represents the number of intervals in the dis-
cretization; P [x (k − r) ∈ νi] is the marginal probability of
x (k − r) in the νi interval; P [x (k) ∈ νi, x (k − r) ∈ νj ]
the joint probability of the discretized x (k) and x (k − r).
Similarly to the analysis of rxx (k), the first minimum of
Ix (r) can be used as an estimate of τ (Fraser and Swinney,
1986).

The literature about the estimation of the embedding dimen-
sion d shows several techniques based on the calculation of
invariant features of the attractor (Kantz and Schreiber, 1997)
and (Abarbanel et.al., 1993). Besides being computation-
aly intensive, these techniques are very subjective, requiring
constant intervention of experts during the modeling stage.
One of the most popular techniques for estimation of embed-
ding dimension d is based on the identification of spurious
trajectories, being known as false nearest neighbors method
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(Kennel et. al., 1992). This denomination is based on the
way the spurious intersections of the attractor are identified;
through the observation of changes in the neighborhood of
a given point due to the increase of the dimension. Neigh-
boring points due to the system dynamics remain in this con-
dition (neighbors) when d increases. Points that leave the
neighborhood due to the dimension increase are called false
nearest neighbors. These points were located in the neigh-
borhood of the testing point because of the incomplete re-
construction of the attractor.

In order to increase the automation level of the false near-
est neighbors method, Cao (Cao, 1997) proposes a practical
method for estimation of d. Let ∆(i, j, d) be the distance
between points x (i) and x (j), both reconstructed in the di-
mension d, given by:

∆(i, j, d) = max
l=1,...,d

|xl (i) − xl (j)| (6)

In equation (6), xl (i) represents the l-th element of the vec-
tor xl (i) at instant i and ∆(i, j, d) the infinite norm of the
difference between x (i) and x (j). The nearest neighbor of
x (i) is the point for which ∆(i, j, d) is minimum, i.e.,

n (i, d) = arg

[
min

j=(d−1)τ+1,...,N
∆(i, j, d)

]
(7)

where n (i, d) is the index of the vector x [n (i, d)] closest to
x (i) in the space of dimension d, according to the ∆(i, j, d)
metric.

Additionally, let a (i, d) be the relation between nearest
neighbors in consecutive dimensions d and (d + 1) given by:

a (i, d) =
∆ [i, n (i, d) , d + 1]

∆ [i, n (i, d) , d]
(8)

In equation (8), if ∆[i, n (i, d) , d] is zero, n (i, d) is replaced
by the index of the next (adjacent) nearest neighbor. The
mean value of a (i, d) is used to define the J (d) statistic:

J (d) =
1

N − (d − 1) τ

N∑

i=(d−1)τ+1

a (i, d) (9)

The relative variation δ (d) of this statistic due to the increase
on the embedding dimension d is given by:

δ (d) =
J (d + 1)

J (d)
(10)

According (Cao, 1997), for time-series originated from an
attractor, the variation δ (d) stabilizes when the embedding
dimension d is greater than a value d0. In other words, in
dimensions above d0 the number and location of false nearest
neighbors do not change, so that J (d) stops changing. Thus,
the embedding dimension is given by d = d0 + 1.

For automatic detection of the stabilization dimension d0, let
dmax be the maximum embedding dimension for which the
statistic δ (d) is calculated, supposing that the stabilization
of δ (d) occurs for d0 < dmax. Given the pairs [d, δ (d)],
d = 1, 2, ..., dmax, a linear regression model of the evolution
of δ (d) along d is estimated, i.e.,

δ (d) = κ + νd + ζ (11)

A hypothesis test about the linear model given by is per-
formed, at α significance level and null hypothesis defined
as ν equal to zero, i.e., the angular coeficient of the model
being null (Griffiths et. al., 1993). If the null hypothesis is
rejected, the first pair [d, δ (d)] is removed and a new lin-
ear regression model like is estimated considering only the
points d = 2, 3, ..., dmax. This procedure is repeated until
the null hypothesis can not be rejected, i.e., the hypothesis of
constant δ (d) can not be discarded. Then, the stabilization
point of δ (d) statistic is found, with the embedding dimen-
sion given by the first dimension used in the estimation of the
linear regression model for which the null hypothesis is not
rejected.

The heuristic defined above depends on the definition of two
parameters, dmax and α. The choice of significance level
α, although heuristic, is more intituive than the choice of
the parameters that must be specified in other embedding
dimension estimation approaches. The definition of dmax

is directly related to computational effort. In this work,
dmax = 30 and α = 0.01.

2.2 CHAOTIC SYNCHRONIZATION

Let’s assume two discrete chaotic systems, an autonomous
driving system X ∈ R

D and the response system Y ∈ R
R

with dynamics given by the equations:

X (k + 1) = F [X (k)]
Y (k + 1) = U [Y (k) , X (k)]

(12)

In , F (X) : R
D → R

D and U (Y ,X) : R
R × R

D → R
R

represent the dynamics of the driving and response systems,
respectively. These systems will be in generalized synchro-
nism if their trajectories along their state spaces are related,
i.e., a function ϕ (X) : R

D → R
R can be defined such that:

Y (k) = ϕ [X (k)] (13)
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Since the equations that define the functions F (X),
U (Y ,X) and ϕ (X) are unknown, methods for detection of
synchronism based on data collected from these systems are
required.

Rulkov and co-workers (Rulkov, et. al., 1995) propose a
method based on the idea of false nearest neighbors for syn-
chronism detection. Called mutual false nearest neighbors,
the method assumes that the function ϕ (X) exists and it is
smooth and differentiable. In this case, neighbor points in X

space will be associated with neighbor points in the response
system Y .

Let X [n (i,D)] be the nearest neighbor of X (i). Assum-
ing that ϕ (X) exists and that the distance between nearest
neighbors in each state space is small, the aproximated rela-
tion between neighbors can be derived (Rulkov, et. al., 1995)
as follows:

Y (i) − Y [n (i,D)] ≈ D [X (i)] {X (i) − X [n (i,D)]}
(14)

In equation (14), D (X) : R
D → R

R × R
D is the Jacobian

matrix of ϕ (X). Similarly, observing the nearest neighbor
of Y (i) in the state space of the response system denoted by
Y [n (i, R)],

Y (i) − Y [n (i, R)] ≈ D [X (i)] {X (i) − X [n (i, R)]}
(15)

The ratio between the Euclidean norms of equations (14) and
(15) is given by:

M [X (i) , Y (i)] =

‖Y (i)−Y [n(i,D)]‖
‖X(i)−X[n(i,D)]‖

‖Y (i)−Y [n(i,R)]‖
‖X(i)−X[n(i,R)]‖

(16)

If the mapping ϕ (X) exists, then the index M [X (i) , Y (i)]
will be close to one for all i.

Since the original state spaces X and Y are unknown, let
y (k) ∈ R

r be the reconstructed space of the response system
Y and x (k) ∈ R

D the reconstruction of the driving system
X , both obtained from Takens’ Theorem given by equation
(3). Let x′ (k) ∈ R

r be an auxiliar reconstruction of the
driving system X with embedding dimension equal to the
one obtained for the response system Y . The nearest neigh-
bors in the sense of the infinite norm given by equation (6)
for each point in each embedded space are calculated, with
y [n (k, r)] being the nearest neighbor of y (k), x [n (k, d)]
the nearest neighbor of x (k), and x′ [n (k, d′)] the nearest
neighbor of x′ (k). Then, the index m

[
x (t) , y (t)

]
known

as mutual false nearest neighbors can be defined by the fol-

lowing equation (Rulkov, et. al., 1995):

m
[
x (k) , y (k) , d, r

]
=

‖x′(k)−x′[n(k,d′)]‖
‖x′(k)−x′[n(k,d)]‖

‖y(k)−y[n(k,r)]‖
‖y(k)−y[n(k,d)]‖

(17)

Similar to the index M [X (k) , Y (k)] the value of
m
[
x (k) , y (k) , d, r

]
is expected to be close to 1 for all

k. However, since the embedded spaces y (k), x (k) and
x′ (k) are constructed from noisy data, the mean value of
m
[
x (k) , y (k) , d, r

]
calculated from all avaliable data, is

used for synchronism detection. In this case, if the mapping
ϕ (X) exists, the mean value of m

[
x (k) , y (k) , d, r

]
is ex-

pected to be close to 1. Otherwise, the mean value will be
greater than 1.

2.3 CHAOS INPUT SELECTION ALGO-
RITHM

The application of Takens’ Theorem and chaotic synchro-
nization for input selection for neural network forecasting
models can be summarized as follows:

1. Given a time-series database, define the one to be pre-
dicted, y (k) ∈ R, k = 1, 2, ..., N , and the exogenous
time-series, xi (k) ∈ R, k = 1, 2, ..., N , i = 1, 2, ..., S,
where N is the number of points and S the number of
avaliable exogenous time-series;

2. Define the maximum dimension parameter dmax and the
confidence level α. In this work, dmax = 30 and α =
0.01;

3. Estimate the embedding parameters τy and dy using
the methods described in section , obtaining the recon-
structed space y (k) ∈ R

dy via Takens’ Theorem, given
by equation (3) , with k = (dy − 1) τy+1, (dy − 1) τy+
2, ..., N ;

4. For each exogenous time-series xi (k) ∈ R, do:

(a) Estimate the embedding parameters τxi
and dxi

for the reconstructed space xi (k) ∈ R
dxi given

by equation (3) with k = (dxi
− 1) τxi

+
1, (dxi

− 1) τxi
+ 2, ..., N ;

(b) Detect the existence of synchronism between
y (k) ∈ R

dy and xi (k) ∈ R
dxi by calcu-

lating the mean of m
[
x (k) , y (k) , d, r

]
, i.e.,

m
[
x (k) , y (k)

]
, required by the mutual false

nearest neigbhors method (section )

(c) If the synchronism does not exist, i.e., m � 1, dis-
card the reconstruction xi (k) ∈ R

dxi . Otherwise,
include xi (k) ∈ R

dxi in the input set.
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5. If another information is avaliable, i.e., qualitative in-
formation, binary variables, etc., insert them in the input
representation.

Once defined the initial input space representation, a neural
network can be applied to model the equation (12), i.e., the
function that maps Y (k) and X (k) on Y (k + 1), the first
element of vector Y (k + 1).

3 BAYESIAN INFERENCE APPLIED TO
MLPS TRAINING AND SPECIFICATION

Let x ∈ R
n be the vector containing the input signals and

w ∈ R
M the vector with all weights and biases of the MLP

with one hidden layer and only one output, being M = mn+
2m + 1 with m equal to the number of neurons in the hidden
layer. The biases of the sigmoidal functions in the hidden
layer are represented by bk, with b being the bias of the single
linear neuron of the ouput layer. The output of this MLP is
given by:

f(, ) =
m∑

k=1

[
wkϕ

(
ak

n∑

i=1

(wikxi) + bk

)]
+ b (18)

Given a dataset U =
{
X,Y

}
with N input-output pairs,

X ∈ R
N × R

n, Y ∈ R
N , Y = [d1, d2, ..., dN ]

t, dj ∈ R be-
ing the desired output, the objective of training a MLP from
the Bayesian perspective is the estimation of the vector w

that maximizes the posterior probability given by:

p
(
w|X,Y

)
=

p
(
X,Y

∣∣w
)
p (w)

p
(
X,Y

) (19)

From the definition of joint probability,

p (A,B) = p (A|B) p (B)
p
(
X,Y

)
= p

(
Y ,X

)
= p

(
Y |X

)
p
(
X
) (20)

and

p
(
Y ,X

∣∣w
)

= p
(
Y |X,w

)
p
(
X
∣∣w
)

= p
(
Y |X,w

)
p
(
X
)

(21)

since the input patterns X are independent of the value of w.
Putting these results in equation (19):

p
(
w|X,Y

)
=

p
(
Y |X,w

)
p (w)

p
(
Y |X

) (22)

In equation (22), p
(
Y |X,w

)
is the likelihood of Y ,

p (w) the prior probability of w and p
(
Y |X

)
=∫

p
(
Y |X,w

)
p (w) dw a normalization factor.

The prior probability p (w) represents the prior knowledge of
the behavior of w. Prior insights about specific values for w

for general problems are unknown, but models with small
weights can reproduce smooth mappings (Bishop, 1995).
The likelihood p

(
Y |X,w

)
represents the knowledge about

the distribution of the noise in the desired output. Assum-
ing that w follows a Gaussian distribution with null mean
vector and diagonal covariance matrix equal to α−1I , where
I is the identity matrix of dimension M × M , and that the
desired output is corrupted by aditive gaussian white noise
with variance β−1, i.e., dj = f(xj , w) + ζj , the application
of equation (22) results:

p
(
w|X,Y

)
=

e[−S(w)]

∫
e−S(w)dw

(23)

where

S(w) =
β

2

N∑

j=1

[dj − f (xj , w)]
2

+
α

2

M∑

l=1

w2
l (24)

Therefore, maximize the posterior probability p
(
w|X,Y

)

is equivalent to minimize S(w).

For multivariate problems, the use of a single prior for all
weights and biases is not recommended (Ferreira and Alves
da Silva, 2007). It is not expected that weights that connect
different kinds of inputs have the same distribution in weight
space. In (Ferreira and Alves da Silva, 2007), the weights
that connect each input to the neurons in hidden layer are
grouped, with each group having its own prior distribution
p (wi). All priors are Gaussian with null mean vector and
respective diagonal covariance matrix αi

−1I
i
, with I

i
being

the identity matrix of dimension Mi × Mi where Mi rep-
resents the number of weights or bias included in the i-th
group. The same idea is applied to the groups of weights as-
sociated with the biases (one αi for the connections with the
hidden neurons and another for the output neuron connec-
tion). One last αi is associated with all connection weights
between the hidden and output layers. Therefore, for n di-
mensional input vectors x, the total number of αis is n+3. In
this case, S(w) is given by:

S(w) =
β

2

N∑

j=1

[dj − f (xj , w)]
2

+
1

2

n+3∑

i=1

αi

M∑

l=1

w2
il (25)

Details about the iterative algorithm for minimization of
S(w) and estimation of parameters and hyperparameters αi’s
and β can be find in (Mackay, 1992) and (Bishop, 1995).

The magnitude of αi’s related to the inputs connections can
be used for ranking the relevance of each input signal in the
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calculation of the output. This characteristic makes this spec-
ification of the priors be known as Automatic Relevance De-
termination (ARD) (Mackay, 1992). Besides ranking capac-
ity, irrelevance levels must be specified to determine the ir-
relevant inputs that should be discarded by the model. Since
this irrelevant threshold is problem dependent, (Ferreira and
Alves da Silva, 2007) proposed an empiric method for au-
tomatic determination of the referred threshold. Artificial
probe signals, unrelated with the desired output and gener-
ated from uniform distributions, are included in the original
input space. After training the MLP with this augmented
input space, the αi related to the probe signals is used as ir-
relevance threshold. The relevant inputs are selected and the
final model is trained. For continuous variables, the probe
signal are generated from a uniform distribution defined in
the same scale as the original normalized inputs. For dummy
variables, a discrete uniform distribution is used. Since this
technique uses the model along the input selection step, it
can be included in the group of wrapper methods (Guyon
and Elisseeff, 2003). More details can be find in (Ferreira
and Alves da Silva, 2007).

The Bayesian inference can also be applied to the selection
of the most probable MLP structure to represent a given map-
ping among a set of hypothesis H = {H1, H2, ..., HK}. The
set of relevant inputs for each hypothesis was previously de-
fined by ARD with probe signals, and the difference between
hypothesis is the number of neurons in the hidden layer.
Assuming that all hypothesis are equiprobable and using a
Gaussian aproximation around the parameters and hyperpa-
rameters previously estimated, the logarithm of the evidence
for the models, ln p (Y |Hh), can be obtained by (Bishop,
1995):

ln p (Y |Hh) = −S (w) − 1
2 ln

∣∣A (w)
∣∣+ 1

2

n+3∑
i=1

Miαi

+ ln(β
N
2 m2m!) + 1

2

n+3∑
i=1

ln
(

2
γi

)
+ 1

2 ln
(

2
N−γ

)

(26)

4 RELEVANCE VECTOR MACHINES

Relevance Vector Machines (RVMs) (Tipping, 2001) are
kernel-based sparse probabilistic models. Sparse in the sense
that only some vectors of the training set contribute for the
estimation of the regression surface. These points are called
relevant vectors.

Given a dataset U =
{
X,Y

}
including the input-output

pairs, let’s assume the traditional probabilistic formulation
considering an additive noise ζk ∈ present in the desired out-
put, i.e., dk = F (xk) + ζk. In order to model F (x) : R

n →
R, let f (x,w) : R

n → R be a function formed by the linear

combination of functions Φ(x, z) : R
n × R

n → R centered
at each point of the dataset D:

f (x,W ) =
N∑

i=1

wiΦ(x, xi) + b = [Φ (x)]
t
W (27)

In equation (27), w ∈ R
N , b ∈ R, W ∈ R

N+1, W =[
wt b

]t
, with Φ (x) : R

n → R
N+1, a matrix including

the functions Φ(x, xi) = Φi (x) and a constant term equal
to one representing the bias.

Using Bayes’ rule, the posterior probability p
(
W |X,Y

)
is

given by:

p
(
W |X,Y

)
=

p
(
Y |X,W

)
p (W )

p
(
Y |X

) (28)

As in equation (19), p
(
Y |X

)
=
∫

p
(
Y |X,w

)
p (w) dw is

a normalization factor, p (W ) the prior probability of W and
p
(
Y |X,W

)
is the likelihood function related to the dis-

tribuition of the additive noise ζk presented in the desired
output.

Assuming that the samples of ζk are generated independently
from the same Gaussian distribution with zero mean and vari-
ance σ2 ∈ R, the likelihood function p

(
Y |X,W

)
is given

by:

p
(
Y |X,W, σ2

)
=

1

(2πσ2)
N
2

exp

(
−
∥∥Y − ΦW

∥∥2

2σ2

)

(29)

where Φ ∈ R
N ×R

N+1 is the modeling matrix including all
the functions Φi (x) evaluated at each point of the training
set, i.e., the ij-th element is Φ

ij
= Φj (xi) and Φ

i(N+1)
= 1.

The prior probability p (W ) can be defined as a product of
Gaussian distributions given by:

p (W |α) =

N+1∏

i=1

1√
2παi

−1
exp

(
− 1

2αi
−1

W 2
i

)
(30)

In equation (30) distinct Gaussian distributions are consid-
ered, all of them with zero mean but different variances.
These hyperparameters are responsible for magnitude con-
trol of each parameter Wi. As in ARD, weights with large αi

will tend to be highly centered around the null vector. The
estimation of αi and identification of weights with sufficient
large αi can be used to select the functions Φi (x) that will
be included in the final model. This feature enables RVMs to
present a sparse representation such as in other kernel meth-
ods like Support Vector Machines (SVMs).
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The definition of hyperparameters σ2 and α requires the
specification of prior probabilities for them. Non-informative
gamma distributions are used, reflecting the prior absence
of knowledge about hyperparameters’ distributions (Tipping,
2001).

Using the prior and the likelihood distribuitions defined by
equations (29) and (30), respectively, in equation (28), and
making a convolution of Gaussians to calculate the normal-
ization factor p

(
Y |X

)
=
∫

p
(
Y |X,w

)
p (w) dw, the pos-

terior probability p
(
W |X,Y , α, σ2

)
can be written as:

p
(
W |X,Y , α, σ2

)
=

exp
[
− 1

2

(
W − µ

)t
Σ−1

(
W − µ

)]

(2π)
N+1

2

∣∣Σ
∣∣ 12

(31)

where Σ ∈ R
N+1 × R

N+1 and µ ∈ R
N+1 are given by

Σ =
(
σ2ΦtΦ + A

)−1

µ = σ−2ΣΦtY
(32)

with A ∈ R
N+1 being a diagonal matrix with the ii-th el-

ement aii = αi. The expected value of the desired output
d̂N+1 and the estimate of the corresponding variance σ̂2 as-
sociated with a testing point xN+1 are obtained through the
expressions:

d̂N+1 = f
(
xN+1, µ

MP
)

=
[
Φ
(
xN+1

)]t
µMP

σ̂2 =
(
σMP

)2
+
[
Φ
(
xN+1

)]t
ΣMP Φ

(
xN+1

) (33)

In equation (33), µMP and ΣMP are calculated by equations
(32) using estimated αMP and σMP . An iterative method for
calculating hyperparameters αMP and σMP , based on evi-
dence maximization, analogous to Mackays’s evidence max-
imization for MLPs, can be found in (Tipping, 2001).

Unlike other sparse kernel-based models whose basis func-
tions must agree with Mercer’s Theorem conditions (Vapnik,
1998), (Schölkopf and Smola, 2002), the function Φ(x, z)
used in RVMs does not need to meet the Mercers’ conditions.
In this work a Gaussian function is used:

Φ(x, z) = e
−

n
P

k=1

ηk(xk−zk)2

(34)

In equation (34), ηk ∈ R
+ denotes another set of hyper-

parameters that are iteratively estimated by evidence max-
imization (Tipping, 2001). This choice for Φ(x, z) allows
the creation of a input selection method analogous to ARD
(presented in section ). After the estimation of ηk’s, inputs
with smallest ηk contribute less for output calculation. In
other words, the magnitude of ηk can be used for ranking the

input variables. Similarly to the input selection method used
for MLPs and presented in section , artificial probe signals
are included in the original input space to define irrelevant
thresholds for the inputs. After training with augmented in-
put space including the probe signals, the relevant inputs are
selected for re-training the model and making predictions.

5 AUTONOMOUS MODELING

Chaos Theory, BIAMLP and RVM are combined in this
paper in order to develop an analytic, coupled and unified
framework for autonomous forecasting using neural models.
This framework includes input space representation selec-
tion, structure definition and complexity control of the fore-
casting model, all of them disregarding the necessity of a
validation set. The use of validation sets brings some prac-
tical and theoretical problems as described in (Amari et. al.,
1996) and (Cataltepe et. al., 1999). A pratical disadvantage
of cross-validation, specially in time series applications, is
related to the definition of the validation set, since serial cor-
relations or recent information can be neglected in the train-
ing phase. Using all the available data for model develop-
ment, the framework proposed here can be summarized as
follows:

1. Apply the Chaos Input Selection algorithm (section 2.3)
to define the initial input representation space;

2. Use BIAMLP or RVM to model the mapping between
input-output pairs;

3. Discard the irrelevant inputs using the wrapper methods
described in sections 3 (BIAMLP) and 4 (RVMs);

4. Make predictions by recursion for all the forecasting
horizon.

The autonomous modeling proposed can be summarized by
the flowchart in Figure 1.

6 RESULTS

The models presented in previous section are evaluated
through the application of them to three public databases.
The first database presents hourly load L(k), temper-
ature T(k) and temperature squared T2(k) for the pe-
riod of January 1, 1985 to March 31, 1991. This
database was used in a forecasting competition (Ra-
manathan et. al., 1997) and can be found in the web
at the adress http://www.ee.washington.edu/class/555/el-
sharkawi/datafiles/forecasting.zip. For this database, hourly
load must be predicted from 16 to 49 steps ahead for week-
days and from 16 to 80 steps ahead for weekend. The fore-
casts are made daily by 9 a.m., with the testing period starting
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Figure 1: Proposed autonomous neural modeling

in November 1, 1990 and finishing in March 31, 1991. For
definition of the lags by Chaos Theory, the data from January
1, 1985 to October 31, 1990 (database avaliable at the begin-
ing of the forecasting period) are used. After the definition
of the lags that will be used as inputs to the model, the input-
output pairs used for training the models corresponds to the
data from the current month, the two previous months and
the corresponding pairs from the same period in the last year.
This subset of the training data is used for training in order
to reduce the computational effort for training. Some statis-
tics for this database are shown in Table 1 to Table 3, where
mean, standard deviation and the relation between then are
presented, respectively. This statistics are calculated after de-
trending of the load time-series using a time linear regression
model.

Table 1: Mean value (µ) of load [MW] for each hour of each
day of the week for Case 1
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Table 2: Standard deviation (σ) of load [MW] for each hour of
each day of the week for Case 1
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Table 3: Relation between mean and standard deviation
(µ/σ) for load for each hour of each day of the week for Case
1
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The second database includes daily load L(k) and daily max-
imum temperature T (k) from the period of January 1, 1997
to January 31, 1999. As the first database, this one was also
used in a forecasting competition (Chen et. al., 2004), where
the objective was the daily prediction of the load from Jan-
uary 1, 1999 to January 31, 1999, i.e., forecasts for 1 to 31
steps ahead. The data from January 1, 1997 to December
31, 1998 was used for input space definition and training
of the models. This database can be found at the website
http://neuron.tuke.sk/competition. As for case 1, some statis-
tics for this database are presented in Table 4. These statis-
tics are estimated after detrending the load time-series using
a time linear regression model.

The third database shows half-hourly load L(k) and tem-
perature T (k) for the period of December 4, 2001 to De-
cember 31, 2003. The hourly databases are obtained by
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the mean value between two registers in the hour (Man-
dal et. al., 2005). The objective is to forecast hourly
load from one to six hours ahead along the period from
September 1, 2003 to September 7, 2003. The data from
December 4, 2001 to August 31, 2003 are used for ini-
tial input space definition. The same subset selected for
training the models in Case 1, i.e., data from the current
month, the two previous months and respective pairs from
the same period in the last year, are used for development
of the models in this case. This database is related to
Victoria State and can be found in web at the address at
http://www.aemo.com.au/data/aggPD_2000to2005.html. As
for case 1, Table 5 to Table 7 presented some statistics for
this load time-series, all of them calculated after detrending
the load time-series using a time linear regression model.

Table 4: . Mean ( µ ) [MW], standard deviation ( σ ) [MW] and
relation between them (µ/σ ) of load for each day of the week
for Case 2

� ������ �	���� 
������ �������� 
������� ������ ��������

������µ � ������ ������ ������ ������ ������ ������ ������

��������� �!����	���σ � ����� ����� ����� ����� ����� ����� �����

"�#���	���µ/σ � ���� ���� ���� ���� ���� ���� ���� �

Table 5: Mean value (µ ) of load [MW] for each day of the
week for Case 2

���� �����	 
����	 �����	 �������	 ������	 �����	 �������	

� ������ ������� ������� ������ ������� ������� �������

� ������� ������� ������� ������� ������ ������� �������

� ������� ������� ������� ������� ������� ������� �������

� ������� ������ ������ ������� ������ ������� �������

� ������� ������� ������� ������� ������� ������� �������

� ���� ������� ������� ������� ������ ���� �������

� ������� ������� ������� ������� ������� ������� �������

� ������� ������� ������� ������� ������� ������� �������

� ������ ������� ������� ������� ������� ������� �������

�� ������� ������� ������ ������ ������� ������� �������

�� ������� ������� ������� ������� ������ ������� �������

�� ������� ������� ������� ������ ������ ���� �������

�� ������� ������� ���� ������� ������ ������� �������

�� ������� ������ ������� ������� ������� ������� �������

�� ������� ������� ������� ������� ������� ������� �������

�� ������� ������� ������ ������� ������� ������� �������

�� ������� ������� ������� ������� ������ ������� �������

�� ������� ������� ������� ������� ������� ������� �������

�� ������� ������� ������� ������ ������� ������� �������

�� ������� ������� ������� ������� ������� ������� �������

�� ������� ������� ������� ������� ������� ������ �������

�� ������� ������� ������ ������� ������� ������� �������

�� ������� ������� ������� ������� ������� ������ �������

�� ������� ������� ������� ������� ������� ������� ������� �

The hourly and daily load data used in this paper present sea-
sonal patterns widely known in load forecasting area namely:
hour, week and yearly seasonal pattern (Ferreira and Alves
da Silva, 2007), (Hippert et. al., 2001). The yearly pattern
is related to the seasons and is modelled by the temperature
information. The other patterns are modelled as qualitative
information, being represented as binary variables indicating
the hour of the day (24 dummies) and day of the week (7
dummies) to be forecasted. The daily database (Case 2) uses
only the dummies for day of the week.

Table 8 shows the estimated embedding parameters τ and
d via the first minimum of the mutual information Ix (r)

Table 6: Standard deviation (σ ) of load [MW] for each hour of
each day of the week for Case 1
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Table 7: Relation between mean ( µ) and standard deviation
( σ ) for load for each hour of each day of the week for Case 1
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and false nearest neighbors method, respectively, and the
mean value of the mutual false nearest neighbors statistic
m
[
x (k) , y (k)

]
. As expected, the value of m

[
x (k) , y (k)

]

confirms that there is synchronism between the reconstructed
load and temperature for all cases. The results presented in
Table 8 for case 1 confirms that the calculated embedded pa-
rameters are invariant characteristics of the attractor, since
the values calculated for T (k) and T2(k) are very close.

Table 9 shows the mean absolute percentage error (MAPE)
for the three databases studied in this paper. For case 3,
the results are discretized by step ahead to compare with the
benchmark of the literature (Mandal, et. al., 2005). The last
line of this Table presents the best results found in the lit-
erature for these databases. The analysis of Table 9 shows
that the autonomous models proposed in this paper, specially
the BIAMLP, are competitive against the best results in the
literature. It is noteworthy that the benchmark results pre-
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sented in Table 2 was obtained by highly specialized and
dedicated group of modeling experts, while the autonomous
models proposed here are mainly automatic, requiring little
manual intervention. Further, among the usual parameters
that must be specified in neural network training, the ana-
lyst must specifies only the maximum dimension parameter
dmax, the confidence level α (Chaos Input Selection Algo-
rithm) and the maximum number of neurons in the hidden
layer to be tested in BIAMLP. Compared with the effort to
define heuristically the input space representation, together
with the necessity of criteria to neural network structure defi-
nition, the autonomous modeling proposed here shows a con-
siderable level of automation.

Table 8: Embedding parameters ( (τ , d) and mutual false
nearest neighbors statistic m [·, ·]

Case 1 Case 2 Case 3
D τ d τ d τ

L(k) 10 6 12 4 12 13
T (k) 18 13 14 15 19 13
T2(k) 17 13 - - - -

m [l (k) , t (k)] 2.96 1.72 1.95
m
[
l (k) , t2 (k)

]
2.97 - -

Table 9: MAPE for forecasting period

Case Case Case 3 (steps ahead)
1 2 1 2 3 4 5 6

BIAMLP 4.83 3.25 0.64 1.02 1.55 1.69 1.87 1.88
RVM 8.64 3.00 1.09 1.80 2.10 2.29 2.72 2.94

Benchmark 4.73 1.98 0.56 0.83 1.00 1.15 1.20 1.30

Despite the distinct statistical features of the databases un-
der consideration, as presented in Tables 1 to 7, which show
significant differences both in level (mean) and variability
(standard deviation), the performance of the proposed au-
tonomous models, particularly from BIAMLP, was always
robust. Even for Case 2, for which BIAMLP presents the
worst result when compared with the benchmark, BIAMLP
would be ranked in the top five competitors (Chen et. al.,
2004). For Case 1 data, BIAMLP’s results are statistically
equivalent to the ones obtained by the winner of the compe-
tition. Statistical equivalence between the results from BI-
AMLP and the corresponding benchmark is also confirmed
for Case 3. These findings highlight the robustness of the BI-
AMLP’s performance with respect to different time-series.

The importance of qualitative information is demonstrated
in Table 10 with the results obtained by BIAMLP when the
dummy variables are discarded from the initial input set. In
this case, the inputs are all selected from the time-series data,
discarding the prior knowledge about the dynamics of the
data. The consistent increase on MAPE for the forecasting

period confirms the importance of qualitative information,
and shows that Chaos Theory itself does not deal with sea-
sonality modeling. Since the calendar information are avail-
able for time-series data, the use of this qualitative informa-
tion does not reduce the level of automation of the proposed
models. In fact, qualitative information (general electric load
seasonal characteristics) is included based on the premise
that calendar information (time, day of the week, and cor-
responding month) is available. Therefore, for electric load
time series, such qualitative information is automatically in-
serted as dummy variables (“1 of n” binary coding). Besides,
as the developed neural networks can disregard irrelevant in-
formation, such inputs are automatically excluded from the
forecasting model when a general seasonal characteristic is
not present in a particular dataset.

Table 10: MAPE for forecasting period using Chaos Input Se-
lection Algorithm without qualitative information

Case Case Case 3 (steps ahead)
1 2 1 2 3 4 5 6

BIAMLP 11.62 4.37 1.20 1.70 1.88 2.41 2.28 2.66
Benchmark 4.73 1.98 0.56 0.83 1.00 1.15 1.20 1.30

7 CONCLUSION

This work investigates the application of Chaos Theory as
a input space representation tool in the development of au-
tonomous neural network load forecasting models. Auton-
omy should be understood here as a set of automatic and
coupled procedures for input space definition and selection,
structure specification and complexity control (regulariza-
tion). In this work, two neural network-based models are
used: the Bayesian Inference Applied to MLPs training and
specification (BIAMLPs) and Relevance Vector Machines
(RVMs). The obtained results, comparable with the bench-
marks available in the literature, specially for the BIAMLPs,
show the potential of the proposal. The automation level
of the techniques proposed in (Ferreira and Alves da Silva,
2007) has been increased, enabling the application of the new
models to problems envolving multiple time series, as for ex-
ample, bus load forecasting. Bus load forecasting is needed
for feeding important power system control center functions,
such as state estimation, generation scheduling, and security
assessment.

In terms of computational effort, BIAMLP requires about
10 minutes to estimate the model and to provide the one to
eighty hours ahead load forecasts for Case 1 (with Matlab R©
in a PC Intel R© CoreTM 2 Duo 2,66 GHz, 3323 MB RAM
Memory, running Windows Vista 32 Bits). Therefore, BI-
AMLP’s computational effort is suitable for short-term load
forecasting.
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The result for RVMs, although competitive, can be improved
by selecting more appropriate basis functions Φi (x). One in-
teresting theoretical feature of RVMs is the possibility of us-
ing different basis functions, such as periodical functions, in
order to model seasonal patterns without the use of dummy
variables. The development of BIAMLPs considering non-
Gaussian noise in the output is another interesting research
area, by means of Monte Carlo methods for BIAMLPs defi-
nition (Neal, 1996). Beyond those issues, the local modeling
of the attractor against the global one used here can still im-
prove the results. In order to automate the identification of
the regions to be independently modeled, automatic cluster-
ing methods are required.
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