Article

Synthesis and Structural Confirmation of Natural 1,3-Diarylpropanes

Paulo A. de Almeida^a, Silas V. Fraiz Jr.^a, and Raimundo Braz-Filho^b*

^aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23851-970 Seropédica - Rio de Janeiro, Brazil; ^bSetor de Química de Produtos Naturais, LCQUI - CCT, Universidade Estadual do Norte Fluminense, 28051-620 Campos - RJ, Brazil

1-(4'-Hidroxi-5'-metil-2'-metoxifenil)-3-(2"-hidroxi-4",5"-metileno-dioxifenil)propano (7), 1,3-diarilpropano isolado de *Iryanthera laevis* (Myristicaceae), 1-(4'-hidroxi-2'-metoxifenil)-3-(4"-hidroxifenil)propano (2, broussonina B) e 1-(2'-hidroxi-4'-metoxifenil)-3-(4"-hidroxifenil) propano (1, broussonina A), isolados de *Broussonetia papyrifera* Vent. (Moraceae), e 1-(2',4'-dimetoxifenil)-3-(4"-hidroxifenil)propano (4), um produto sintético oriundo da hidrogenação catalítica da 4-O-benzil-2',4'-dimetoxichalcona, foram sintetizados. A rota sintética utilizada envolveu hidrogenação catalítica (Pd-C 10%) de chalconas obtidas por condensação aldólica de acetofenonas e benzaldeídos adequadamente substituídos.

1-(4'-Hydroxy-5'-methyl-2'-methoxyphenyl)-3-(2"-hydroxy-4",5"-methylenedioxyphenyl) propane (**7**), 1,3-diarylpropane isolated from *Iryanthera laevis*, 1-(4'-hydroxy-2'-methoxyphenyl)-3-(4"-hydroxyphenyl)propane (**2**, broussonin B) and 1-(2'-hydroxy-4'-methoxyphenyl)-3-(4"-hydroxyphenyl)propane (**1**, broussonin A), isolated from *Broussonetia papyrifera* Vent. (Moraceae), and 1-(2',4'-dimethoxyphenyl)-3-(4"-hydroxyphenyl)propane, a synthetic product prepared by catalytic hydrogenation of 4-O-benzyl-2',4'-dimethoxychalcone, were synthesized. The synthetic pathway employed in this work involved the catalytic hydrogenation of chalcones obtained by base condensation of acetophenones and benzaldehydes.

Keywords: Iryanthera laevis, 1,3-Diarylpropanes, reduction of chalcones

Introduction

1,3-Diarylpropanes have been isolated mainly from *Virola* and *Iryanthera* species (Myristicaceae)¹⁻⁴. However, in 1980 Takasugi and co-workers reported the structures of the new 1,3-diarylpropanes broussonins A (1), B (2) and C (3) isolated from *Broussonetia papyrifera* Vent. (Moraceae), which revealed antifungal activities in tissues of this plant inoculated with *Fusarium solani* f. sp. *mori*⁵. These diarylpropanoids, classified as phytoalexins, were not detected in the uninoculated tissues of this same plant and showed activity against *Bipolaris leersiae* at $10^{-4} - 10^{-5}$ M⁶.

1,3-Diarylpropanes have been synthesized to confirm structures of natural products⁷⁻⁹. In a previous study⁷, the synthesis of 1-(2'-hydroxy-5'-methyl-4'-methoxyphenyl)-3-(2"-hydroxy-4",5"-methylenedioxyphenyl)propane (**6**) was described, in order to confirm the structure proposed

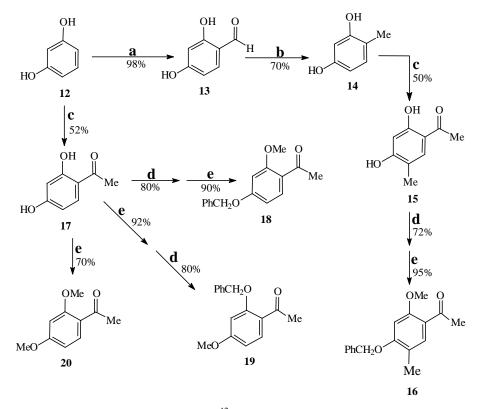
for the natural product previously isolated from *Iryanthera laevis*². Comparison of the spectral data of the synthetic and natural products revealed different compounds and, consequently, a new isomeric structure 1-(4'-hydroxy-5'-methyl-2'-methoxyphenyl)-3-(2"-hydroxy-4",5"-methyle nedioxyphenyl)propane (**7**) was proposed⁷.

In this paper, we report the synthesis of four 1,3-diarylpropanes: 1-(4'-hydroxy-2'-methoxyphenyl)-3-(4''-hydroxyphenyl)propane (**2**, broussonin B) to confirm the structure proposal for the natural product isolated from *Broussonetia papyrifera* Vent.⁵, 1-(4'-hydroxy-5'-methyl-2'-methoxyphenyl)-3-(2"-hydroxy-4", 5"-methylenedioxyphenyl)propane (**7**) to confirm the structure proposal⁷ for the natural product isolated from *Iryanthera laevis*², 1-(2'hydroxy-4'-methoxyphenyl)-3-(4''-hydroxyphenyl) propane (**1**, broussonin A), a product previously synthesized by another synthetic pathway⁹, and 1-(2',4'-di-

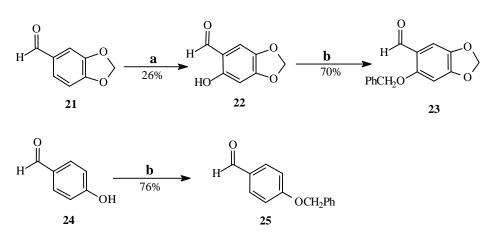
^{*} e-mail: pafonso@ufrrj.br

Almeida et al.

The structures of the synthetic compounds were characterized by analysis of spectral data, mainly mass, one-(1D) and two-dimensional (2D) ¹H and ¹³C-NMR.


Results and Discussion

The synthetic pathway employed in order to obtain the desired 1,3-diarylpropanes (1, 2, 4 and 7) involved the


OR₁ OR₁ OH R₃ В OR₄ R_2O R_2O Мe 1 $R_1=R_3=R_4=H$, $R_2=Me$ (Broussonin A) $R_1 = Me$, $R_2 = R_3 = R_4 = H$ (Broussonin B) R₁=H, R₂=Me 2 6 **3** $R_1 = R_2 = R_4 = H$, $R_3 = Prenyl$ (Broussonin C) R₁=Me, R₂=H 7 **4** $R_1 = R_2 = Me$, $R_3 = R_4 = H$ **5** R₁=R₄=Me, R₂=H, R₃=OH OR₁ OCH₂Ph MeO В В R_2C OCH₂Ph PhCH₂O Me R₁=Me, R₂=CH₂Ph 8 R₁=CH₂Ph, R₂=Me 9 11 **10** $R_1 = R_2 = Me$ OCH₂Ph OCH₂Ph В В MeO MeO OF A A Ö 0 9a 9b δ_c 121.25 δ_c 120.36 δ_c 154.66 δ_c15<u>7</u>.58 $\delta_{c}^{122.19}$ δ_c 157.68 δ. 100.84 OH δ 98.14 δ_c 97.61 OMe OMe δ 157.99 δ_c 155.20 δ_c158.36 A А Α MeO но MeO δ 129.68 δ_c 129.47 δ_c 129.27 $\delta_c 103.17$ δ 103.85 δ 105.82 **1**a 4a 2a

base-catalysed condensation of the appropriate acetophenones (16, 18, 19 and 20, Scheme 1) with benzaldehydes (23 and 25, Scheme 2) to produce the corresponding chalcones (8, 9, 10 and 11) which were submitted to catalytic hydrogenation. Acetophenones 15 and 17 were prepared from resorcinol (12, Scheme 1) and protected by hydroxyl group benzylation, before or after appropriate methylation to furnish 16, 18 and 19 or dimethylated 20. Benzaldehyde 22 obtained from piperonal (21, Scheme 2) and 24 were protected by hydroxyl group benzylation, in order to stabilize the substrates towards the basic conditions of the condensation reaction: $18 + 25 \rightarrow 8$; $19 + 25 \rightarrow 9$; $20 + 25 \rightarrow$ 10; $16 + 23 \rightarrow 11$. Thus, 1,3-diarylpropanes 1, 2, 4 and 7 were prepared by catalytic hydrogenation of the chalcones 8, 9, 10, and 11, respectively. Chalcone 9a which has an unprotected 2'-hydroxyl group can undergo chalcone(9a)flavanone(9b) equilibrium under the catalytic hydrogenation conditions which were used. Thus, a mixture of 1,3-diarylpropane and the corresponding dihydrochalcone was obtained. Using the same conditions, this partial reduction was not observed after the isomeric equilibrium was blocked by a 2'-hydroxyl group benzylation (9) or methylation (10).

The structure of 1-(4'-hydroxy-2'-methoxyphenyl)-3-(4''-hydroxyphe-nyl)propane (**2**) proposed for the natural product isolated from *Broussonetia papyrifera* Vent.⁵ and 1-(4'-hydroxy-5'-methyl-2'-methoxyphenyl)-3-(2"-hydroxy-4",5"-methylenedioxyphenyl)propane (**7**) proposed for the natural product isolated from *Iryanthera laevis*² were confirmed by comparison with the synthetic products.

Scheme 1. a) 1. Zn(CN)₂, HCl, ether; 2. H₂O, Δ (Gatterman-Adams)¹². b) Zn/Hg, HCl (d = 1.19), H₂O, toluene, Δ (Clemmensen reduction)¹³. c) 1. AcOH, ZnCl₂, Δ ; 2. HCl (1:1) (Houben/Hoesch reaction)¹⁴. d) PhCH₂Cl, K₂CO₃, KI, acetone, Δ ¹⁵. e) Me₂SO₄, K₂CO₃, acetone, Δ ¹⁶.

Scheme 2. a) 1. HNO₃ (d = 1.38); 2. FeSO₄, NH₄OH, EtOH; 3. NaNO₂, CuSO₄, H₂SO₄⁸. b) PhCH₂Cl, K₂CO₃, KI, acetone, Δ^{15} .

Comparative analysis of the ¹³C-NMR spectral data of 1, 2 and 4 revealed chemical shift values for the characterization of the aromatic ring A 2'-methoxy-4'-hydroxy-, 2'-hydroxy-4'-methoxy- and 2',4'-dimethoxy-, as shown in the partial structures 1a, 2a and 4a corresponding to 1,3-diarylpropanoids 1, 2 and 4, respectively. This analysis also allowed observation of chemical shift modifications of the signals of the methine carbons CH-3' and CH-5' as a consequence from a γ -effect of the methyl group of the 2'-methoxy or 4'-methoxy: i) CH-3' [$\delta_C = 97.61(4a)$ -100.84(1a) = -3.23 ppm and $\delta_C = 97.61(4a) - 98.14(2a) =$ - 0.53 ppm]; ii) CH-5' [δ_C =103.17(4a) - 105.82(2a) = -2.65 ppm]. The modifications, a consequence of methylation of a hydroxyl group, may be deduced by comparison of the chemical shifts of the quaternary carbons C-2' and C-4' revealing a deshielding β -effect.

The homonuclear ¹Hx¹H-COSY and heteronuclear (¹³C detected, conventional method) ¹³Cx¹H-COSY-¹J_{CH} (direct spin-spin interaction of carbon-13 and hydrogen via one bond) and ¹³Cx¹H-COSY-ⁿJ_{CH} [n = 2 and 3, COLOC, long-range coupling of carbon-13 and hydrogen via two (²J_{CH}) and three (³J_{CH}) bonds] 2D shift-correlated NMR spectra of the synthetic products were also used to assign unambiguously the chemical shifts of the carbon and hydrogen atoms and to reexamine values described in the literature^{10,11}. The results obtained by careful analysis of these spectra of **1**, **2**, **4** and **7** are summarized in Tables 1-4.

The ¹H-NMR, ¹Hx¹H-COSY, ¹³C-NMR, ¹³Cx¹H- $COSY^{-1}J_{CH}$ and ${}^{13}Cx^{1}H^{-}COSY^{-n}J_{CH}$ (n = 2 and 3) spectra of the 1,3-diarylpropane 1 [2'-hydroxy-4'-methoxy- (1a)] and 2 [4'-hydroxy-2'-methoxy- (2a)] were used to unambiguously assign the ¹H and ¹³C chemical shifts of the aromatic ring A (Tables 1 and 2) and on the basis of these data to confirm the presence of a 4'-hydroxy-2'methoxyphenyl (ring A) moiety in the structure of the natural 1-(4'-hydroxy-2'-methoxyphenyl)-3-(3"-hydroxy-4"-methoxyphenyl)propane (5) isolated from Knema austrosiamensis (Myristicaceae) and reported by Gonzaléz et al.¹⁰, as well as revealing the interchanged chemical shifts attributed to C-2' and C-4' and CH2-1(shielded by y-effect of the OR located at C-2') and CH₂-2. The structure 5, 1-(4'-hydroxy-2'-methoxyphenyl)-3-(3"-hydroxy-4"-me thoxyphenyl)propane, had been previously proposed for a natural product isolated from Virola multinervia⁴. However, this structure was later revised to 1-(2'-hydroxy-4'-methoxyphenyl)-3-(3"-hydroxy-4"- methoxyphenyl) propane⁷. Therefore, the 1,3-diarylpropane **5** isolated from Knema austrosiamensis can be regarded as a novel natural product structure.

Comparative analysis of the ¹H-NMR spectra of the synthetic 1,3-diarylpropanes **6** (previously sinthesized)⁷ and **7** (this paper) with the natural product isolated from *I*. *Laevis*² showed, as anticipated, small but significant differ-

Table 1. ¹H (200 MHz, CDCl₃), ¹³C (50.3 MHz CDCl₃ + MeOH-d₄), ¹³Cx¹H-COSY-¹J_{CH} and ¹³Cx¹H-COSY-ⁿJ_{CH} (n = 2 and 3) NMR of 1-(2'-hydroxy-4'-methoxyphenyl)-3-(4"-hydroxyphenyl)propane (**1**)*.

	¹³ Cx ¹ H-COSY - ¹ J _{CH}		$\frac{^{13}\text{Cx}^{1}\text{H-COSY} - ^{n}\text{J}_{CH}}{(n = 2 \text{ and } 3)}$		
	$\delta_{\rm C}$	δ_{H}	$^{2}J_{CH}$	³ J _{CH}	
С					
1'	120.36	-	2H-1	2H-2; H-3'; H-5'	
2'	154.66	-	Н-3'	2H-1; H-6'	
4'	157.99	-	H-3'; H-5'	H-6; MeO-4'	
1"	132.94	-	2H-3	2H-2; H- 3", 5"	
4"	153.83	-	H-3", 5"	2H-2", 6"	
СН					
3'	100.84	6.37 (<i>d</i> , J = 2.5)	-	H-5'	
5'	103.85	6.43 (<i>dd</i> , J = 8.3 and 2.5)	-	Н-3'	
6'	129.68	7.00 (<i>d</i> , J = 8.3)	-	2H-1	
2"	6"	128.50	7.05 (<i>d</i> , J = 8.5)	-	
3"	5"	114.36	6.75 (<i>d</i> , J = 8.5)	-	
\mathbf{CH}_2					
1	28.34	2.59 (<i>t</i> , J = 8.1)	2H-2	H-6'	
2	31.88	1.87 (<i>m</i>)	2H-3; 2H-1	-	
3	33.96	2.56 (<i>t</i> , J = 7.5)	2H-2	2H-2", 6"	
\mathbf{CH}_3					
4'-OMe	54.03	3.76 (s)	-	-	
OH	-	5.23 (s)	-	-	

* Multiplicity of signals of carbon atoms deduced by comparative analysis of PND- and DEPT-¹³C-NMR. Homonuclear ¹Hx¹H-COSY spectrum was also used for these assignments. Chemical shifts and coupling constants (J) of the hydrogen atoms were obtained from the ¹H-NMR (1D).

ences in the chemical shifts of H-3' and H-3", which were clearly revealed only after recording these spectra: i) natural product isolated from *I. laevis* [¹H-NMR (60 MHz, CDCl₃): $\delta_{\rm H}$ 6.40 (*sl*, H-3' and H-3"), $\Delta\delta_{\rm H} = 0$ ppm]; ii) synthetic **6** [¹H-NMR (100 MHz, CDCl₃): $\delta_{\rm H}$ 6.37 (*s*, H-3'), 6.32 (*s*, H-3"), $\Delta\delta_{\rm H} = 0.05$ ppm]]; iii) synthetic **7** [¹H-NMR (200 MHz, CDCl₃): $\delta_{\rm H}$ 6.38 (*s*, H-3'), 6.36 (*s*, H-3"), $\Delta\delta_{\rm H} =$ 0.02 ppm]. On the basis of this comparative analysis, the

 $\begin{array}{l} \label{eq:Table 2. } {}^{1}\!\!\! H \mbox{ (200 MHz, CDCl_3), } {}^{13}\!\!\! C \mbox{ (50.3 MHz CDCl_3 + MeOH-d4),} \\ {}^{13}\!\!\! Cx^1\!\!\! H \mbox{-}COSY \mbox{-}{}^1\!\!\! J_{CH} \mbox{ and } {}^{13}\!\!\! Cx^1\!\!\! H \mbox{-}COSY \mbox{-}{}^n\!\!\! J_{CH} \mbox{ (n = 2 and 3) NMR of } \\ {}^{1-(4'-hydroxy \mbox{-}2'-methoxyphenyl) \mbox{-}3 \mbox{-}(4''-hydroxyphenyl) \mbox{propane (2)*.} \end{array}$

-	¹³ Cx ¹ H-COSY - ¹ J _{CH}		$^{13}Cx^{1}H$ -COSY - $^{n}J_{CH}$ (n = 2 and 3)	
	δ _C	δ_{H}	$^{2}J_{CH}$	$^{3}J_{CH}$
С				
1'	121.25	-	2H-1	2H-2; H-3'; H-5'
2'	157.68	-	H-3'	MeO-2'; 2H- 1; H-6'
4'	155.20	-	H-5'	H-6'
1'	133.28	-	2H-3	2H-2; 2H- 3", 5"
4"	153.74	-	2H-3", 5"	2H-2", 6"
СН				
3'	98.14	6.40 (<i>d</i> , J = 2.4)	H-5'	-
5'	105.82	6.33 (<i>dd</i> , J = 7.9 and 2.4)	-	Н-3'
6'	129.47	6.95 (<i>d</i> , J = 7.9)	-	2H-1
2"	6"	128.80	7.06 (<i>d</i> , J = 8.5)	-
3"	5"	114.26	6.75 (<i>d</i> , J = 8.5)	2H-2", 6"
\mathbf{CH}_2				
1	28.42	2.57 (<i>t</i> , J = 8.0)	2H-2	H-6'
2	31.43	1.83 (<i>m</i>)	2H-3; 2H-1	-
3	33.98	2.56 (t, J-7.3)	2H-2	2H-2", 6"
CH ₃				
2'-OMe	53.99	3.78 (s)	-	-
ОН	-	4.70 (s)	-	-

 $\begin{array}{l} \label{eq:Table 3. } {}^{1}\!H (200 \mbox{ MHz, CDCl}_3), \, {}^{13}\!C (50.3 \mbox{ MHz, CDCl}_3 + \mbox{ MeOH-d}_4), \\ {}^{13}\!Cx^1\!H - \mbox{ COSY-}^1\!J_{CH} \mbox{ and } \, {}^{13}\!Cx^1\!H - \mbox{ COSY-}^n\!J_{CH} \mbox{ (n = 2 and 3) NMR of } \\ {}^{1-(2',4'-\mbox{ dimethoxyphenyl)-}3-(4''-\mbox{ hydroxyphenyl)propane } (4). \\ \end{array}$

	¹³ Cx ¹ H-COSY - ¹ J _{CH}		13 Cx ¹ H-COSY - ⁿ J _{CH} (n = 2 and 3)	
-	δc	δΗ	$^{2}J_{CH}$	$^{3}J_{CH}$
С				
1'	122.19	-	2H-1	2H-2; H- 3'; H-5'
2'	157.58	-	Н-3'	MeO-2'; 2H-1; H-6'
4'	158.36	-	Н-3'; Н-5'	MeO-4'; H- 6'
1''	132.99	-	2H-3	2H-2; 2H- 3", 5"
4"	153.96	-	-	2H-2", 6"
СН				
3'	97.61	6.45 (s)	-	-
5'	103.17	6.43 (<i>d</i> , J = 8.1)	-	-
6'	129.27	7.02 (<i>d</i> , J = 8.1)	-	-
2"	6"	128.67	7.06 (<i>d</i> , J = 8.4)	-
3"	5"	114.45	6.75 (<i>d</i> , J = 8.4)	-
\mathbf{CH}_2				
1	28.49	2.58 (<i>t</i> , J = 7.5)	2H-2	H-6'
2	31.28	1.85 (<i>m</i>)	2H-3; 2H-1	-
3	34.04	2.58 (<i>t</i> , J = 7.5)	2H-2	2H-2", 6"
CH ₃				
4'-ÓMe	54.27	3.79 (s)	-	-
2 ['] -OMe	54.27	3.81 (s)	-	-
OH	-	5.10 (s)	-	-

* Multiplicity of signals of carbon atoms deduced by comparative analysis of PND- and DEPT- 13 C-NMR. Homonuclear 1 Hx 1 H-COSY spectrum was also used for these assignments. Chemical shifts and coupling constants (J) of the hydrogen atoms were obtained from the 1 H-NMR (1D).

synthetic product 7 confirms the structure proposed⁷ for the natural diarylpropanoid isolated from *I. laevis*².

Comparison of the ¹³C-NMR spectral data of the synthetic 1,3-diarylpropane **7** with values reported by Conserva *et al*¹¹, for the same natural product isolated later from *I. ulei*, confirmed the identity of these two compounds. However, the possibility of interchange of the chemical shifts of C-1' (δ_C 119.4) and C-1'' (δ_C 119.6) was re* Multiplicity of signals of carbon atoms deduced by comparative analysis of PND- and DEPT- 13 C-NMR. Homonuclear 1 Hx 1 H-COSY spectrum was also used for these assignments. Chemical shifts and coupling constants (J) of the hydrogen atoms were obtained from the 1 H-NMR (1D).

ported¹¹. Homonuclear ¹H x ¹H-COSY and heteronuclear ¹³C x ¹H-COSY - ⁿJ_{CH} (n = 1; n = 2 and 3, COLOC) 2D shift-correlated spectra of the synthetic product **7** were used for unambiguous assignment of chemical shifts of hydrogen and carbon atoms (Table 4). In fact, the chemical shifts of the quaternary carbon atoms C-1' (δ_C 119.4) and C-1''

Table 4. ¹H (200 MHz, CDCl₃), ¹³C (50.3 MHz, acetone-d₆), ¹³Cx¹H-COSY-¹J_{CH} and ¹³Cx¹H-COSY-ⁿJ_{CH} (n = 2 and 3) NMR of 1-(4'-hydroxy-5'-methyl-2'-methoxyphenyl)-3-(2"-hydroxy-4"-5"-methylenedi oxyphenyl)propane (**7**)*.

	¹³ Cx ¹ H-COS	SV ¹ Icu	¹³ Cx ¹ H-COSY - ⁿ J _{CH}		
	CX H-CO.	SI - JCH	(n = 2 and 3)		
	$\delta_{C}{}^{a}$	δ_{H}	$^{2}J_{\mathrm{CH}}$	$^{3}J_{CH}$	
С					
1'	121.95 (119.4)	2H-1	H-3'		
2'	156.93 (154.9)	-	-	MeO-2'; H-6'	
4'	154.45 (152.7)	-	-	Me-5'; H-6'	
5'	115.63 (113.7)	-	Me-5'	Н-3'	
1"	121.35 (119.6)	-	2H-3	H-3"	
2"	149.88 (148.2)	-	-	H- 6", OCH ₂ O; 2H-3	
4"	146.40 (144.3)	-	-	H- 6", OCH ₂ O	
5"	141.08 (138.8)	-	-	H-3"	
СН					
3'	99.45 (97.5)	6.38 (s)	-	-	
6'	132.27 (130.2)	6.83 (s)	-	Me-5'	
3"	98.30 (96.2)	6.36 (s)	-	-	
6"	109.90 (107.9)	6.59 (s)	-	2H-3	
\mathbf{CH}_2					
1	29.81 (28.2)	2.49 (<i>t</i> , J = 8.1)		H-6'	
2	31.42 (29.5)	1.80 (<i>m</i>)	2H-3 and/or 2H-1	-	
3	30.34 (27.3)	2.54 (<i>t</i> , J = 7.2)		H-6"	
OCH ₂ O	101.23 (99.2)	5.85 (s)	-	-	
\mathbf{CH}_3					
2'-OMe	55.42 (53.61)	3.74 (s)	-	-	
5'-Me	15.27 (13.31)	2.14 (s)	-	H-6'	
OH	-	5.23 (s)	-	-	

* Multiplicity of signals of carbon atoms deduced by comparative analysis of PND- and DEPT-¹³C-NMR. Homonuclear ¹Hx¹H-COSY spectrum was also used for these assignments. Chemical shifts and coupling constants (J) of the hydrogen atoms were obtained from the ¹H-NMR (1D). ^a Chemical shifts of carbon atoms (50.3 MHz, acetone-d₆) of natural product 7 (in parenthesis) described in the literature¹¹.

(δ_C 119.6) had been interchanged [δ_C 121.95 (C-1') and 121.35 (C-1'')], the same occurring with C-1 (δ_C 29.81) and

C-3 (δ_C 30.34), as shown in Table 4. Other heteronuclear spin-spin interactions (ⁿJ_{CH}, n = 1; n = 2 and 3) of hydrogen and carbon-13 are summarized in Table 4.

Homonuclear ¹H x ¹H-COSY and heteronuclear ¹³C x ¹H-COSY - ⁿJ_{CH} (n = 1; n = 2 and 3, COLOC) 2D shift-correlated spectra were also used for unambiguous assignment of chemical shifts of hydrogen and carbon atoms of the compounds **1** (Table 1), **2** (Table 2) and **4** (Table 3).

Experimental

General experimental procedures

Melting point determinations were made in open capillaries and are uncorrected. Identification of compounds was established by TLC, IR, MS, ¹H-NMR, ¹³C-NMR (PND and DEPT) and two-dimensional (2D) carbon-hydrogen shift correlation [carbon-hydrogen spin-spin interaction via one bond (¹J_{CH}) and two (²J_{CH}) and three (³J_{CH}) bonds, long-range coupling of carbon-hydrogen]. TLC was carried out on Merck kieselgel 60 GF 254. TMS was used as int. standard in NMR spectra. EIMS spectra were recorded at 70 eV on a low resolution spectrometer.

Preparation of the chalcones

In accordance with the literature¹², appropriately substituted acetophenones and benzaldehydes gave, by aldol condensation, **8** (yield, 85 %), **9** (88 %), **10** (72 %) and **11** (74 %).

4,4'-Di-O-benzyl-2'-methoxychalcone (8)

Mp 88-90° (MeOH). IR (neat) 1648, 1620, 1602, 1575 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃) $\delta_{\rm H}$ 7.71 (*dd*, J = 8.5, 2,0 Hz, H-6), 7.63 (*d*, 16.0 Hz, H-7), 7.53 (*d*, J = 8.3 Hz, 2H-2',6'), 7.36 (*d*, J = 16.0 Hz, H-8), 7.35 (*m*, phenyl), 6.96 (*d*, J = 8.3 Hz, 2H-3',5'), 6.61 (*d*, J = 8.5 Hz, H-5), 6.57 (*d*, J = 2.0 Hz, H-3), 5.10 (*s*, OCH₂C₆H₅), 5.08 (*s*, OCH₂C₆H₅), 3.86 (*s*, OMe).

2',4-Di-O-benzyl-4'-methoxychalcone (9)

Mp 101-103° (MeOH). IR (neat) 1652, 1624, 1604, 1575, 1512 cm⁻¹. ¹H-NMR (200 MHz,CDCl₃) $\delta_{\rm H}$ 7.89 (*d*, J = 8.4 Hz, H-6), 7.66(*d*, J = 15.8 Hz,H-7), 7.52 (*d*, J = 15.8 Hz, H-8), 7.44 -7.26 (*m*, phenyl and 2H-2',6'), 6.86 (*d*, J = 8.9 Hz, 2H-3',5), 6.60 (*dd*, J = 8.4 and 2.4 Hz, H-5), 6.58 (*d*, J = 2.4 Hz, H-3), 5.14 (*s*, 2'-OCH₂C₆H₅), 5.10 (*s*, 4-OCH₂C₆H₅), 3.88 (*s*, OMe).

4-O-Benzyl-2',4'-dimethoxychalcone (10)

Mp 74-76° (MeOH). IR (neat) 1644, 1619, 1575, 1512 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃) $\delta_{\rm H}$ 7.74 (*d*, J = 8.5 Hz, H-6), 7.65 (*d*, J = 15.8 Hz, H-7), 7.55 (*d*, J = 8.8 Hz, 2H-2', 6'), 7.39 (*d*, J = 15.8 Hz, H-8), 7.35 (*s*, phenyl), 6.99 (*d*, J = 8.5 Hz, 2H-3', 5'), 6.56 (*dd*, J = 8.7 and 2.1 Hz, H-5),

6.50 (*d*, J = 2.1 Hz, H-3), 5.11 (*s*, OCH₂C₆H₅), 3.90 (*s*, OMe), 3.87 (*s*, OMe).

4',2-Di-O-benzyl-5'-methyl-4,5-methylenedioxy-2'methoxychalcone (**11**)

Yellow oil. IR (neat) 1648, 1624,1610, 1580, 1500 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃) $\delta_{\rm H}$ 8.06 (*d*, J = 16.0 Hz, H-7), 7.50 (*d*, J = 16.0 Hz, H-8), 7.53 (*s*, H-6), 7.46-7.26 (*m*, phenyl), 7.08 (*s*, H-2'), 6.53 (*s*, H-3), 6.44 (*s*, H-6'), 5.93 (*s*, O-CH₂-O), 5.13 (*s*, OCH₂C₆H₅), 3.75 (*s*, OMe), 2.20 (*s*, MeAr).

Hydrogenation of the chalcones

A soln. of chalcone (1 g) in CHCl₃ (5 ml) and EtOH (50 ml), in Parr apparatus was flushed with N₂. Catalyst (0.5 g, 10 % Pd-C) and AcOH (10 mL) was added, vacuum applied and H₂ was admitted under pressure (50 psi, 4.5 hr). The usual work-up, followed by crystallization or silica gel chromatography of the crude reaction mixture, gave from $\mathbf{8} \rightarrow \mathbf{2}$ (yield 98 %), $\mathbf{9} \rightarrow \mathbf{1}$ (85 %), $\mathbf{10} \rightarrow \mathbf{4}$ (80 %) and $\mathbf{11} \rightarrow \mathbf{7}$ (90 %).

1-(2'-Hydroxy-4'-methoxyphenyl)-3-(4"-hydroxyphenyl) propane (1)

Mp 81-82° (C₆H₆). IR (neat) 3388, 1617, 1590, 1512 cm⁻¹. EIMS m/z (rel. int.): 258 ([M]⁺, 20), 151 (9), 137 (100), 121 (10), 120 (14), 107 (38), 91 (6). ¹H and ¹³C-NMR: Table 1.

1-(4'-Hydroxy-2'-methoxyphenyl)-3-(4"-hydroxyphenyl) propane (**2**)

Mp 80-82° (C_6H_6). IR (neat) 3230, 1617, 1605, 1513 cm⁻¹. EIMS *m*/*z* (rel. int.): 258 ([M].⁺, 14), 152 (23), 151 (13), 138 (10), 137 (100), 121 (6),107 (55), 78 (30), 77 (19). ¹H and ¹³C-NMR: Table 2.

1-(2',4'-Dimethoxyphenyl)-3-(4"-hydroxyphenyl) propane (**4**)

Oil. IR (neat) 3408, 1617, 1584, 1512 cm⁻¹. EIMS m/z (rel. int.) : 272 ([M]⁺, 28), 165 (10), 151 (100), 138 (6), 120 (5). ¹H and ¹³C-NMR: Table 3.

1-(4'-Hydroxy-5'-methyl-2'-methoxyphenyl)-3-(2"-hydroxy-4",5"-methylenedi-oxyphenyl)propane (**7**)

Mp 137-139° (C₆H₆). IR (neat) 3322, 1623, 1602, 1520, 1499 cm⁻¹. EIMS *m*/*z* (rel. int.): 316 ([M]⁺⁺, 4), 178 (11), 165 (7), 166(25), 152 (26), 151 (100), 149 (10), 121 (16). ¹H and ¹³C-NMR: Table 4.

Acknowledgments

The authors are grateful to CAPES and FAPERJ for fellowships and to professor Anselmo A. Morais for furnishing the 2-hydroxy-4,5-methylenedioxybenzaldehyde.

References

- 1. Braz-Filho, R.; Leite, M.F.F.; Gottlieb, O.R. *Phytochemistry* **1972**, *12*, 417.
- 2. Braz-Filho, R.; Silva, M.S.; Gottlieb, O.R. *Phytochemistry* **1980**, *19*, 1195.
- 3. Braz-Filho, R.; De Diaz, P.P.; Gottlieb, O.R. *Phyto-chemistry* 1980, *19*, 455.
- 4. Braz-Filho, R.; Gottlieb, O.R; Pinho, S.L.V. *Phytochemistry* **1976**, *15*, 567.
- 5. Takasugi, M.; Anetai, M.; Masamune, T.; Shirata, A.; Takahashi, K. *Chem. Lett.* **1980**, 339.
- 6. Takasugi, M.; Kumagai, Y.; Nagao, S.; Masamune, T.; Shirata, A.; Takahashi, K. *Chem. Lett.* **1980**, 1459.
- Morais, A.A.; Braz-Filho, R.; Fraiz Júnior, S.V. *Phy-tochemistry* 1989, 28, 239.
- 8. Morais, A.A.; Braz-Filho, R.; Gottlieb, O.R. *Phytochemistry* **1985**, *24*, 3023.
- 9. Ronald, R.C.; Wheeler, C.J. J. Org. Chem. 1984, 49, 1658
- Gonzaléz, M.J.T.G.; Pinto, M.M.M.; Kijjoa, A.; Anaatachok, C.; Herz, W. *Phytochemistry* **1993**, *32*, 433.
- 11. Conserva, L.M; Yoshida, M.; Gottlieb, O.R. *Phyto-chemistry* **1990**, *29*, 3986.
- Miquel, J.F. Bull. Soc. Chim. Fr. 1961, 1369. Seshadri, T.R.; Jain, A.C.; Sapal, P.D. Indian J. Chem. 1965, 3, 369.
- 13. Adams, R. J. Am. Chem. Soc. 1923, 45. 2375.
- 14. Martin, E.L. Org. Synth. Coll. 1943, 2, 499.
- 15. Cooper, S.R. Org. Synth. Coll. 1955, 3, 761.
- Bhrara, C.S.; Jair, C.A; Seshadri, T.R. *Tetrahedron* 1965, 21, 963.

Received: March 16, 1998