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Com o objetivo de melhor entender as informações paramétricas contidas em descritores
bidimensionais (2D) e tridimensionais (3D), os escores de 87 descritores 2D e 798 variáveis  3D
(ALMOND) obtidos de uma série de 5998 compostos de interesse em química medicinal, foram
analisados através de análise de componentes principais. A fração de variância explicada (r2) e a
validação cruzada (q2) para sete grupos, em duas componentes PLS, foram de 40%. Uma análise
individual dos componentes, mostra que as duas primeiras PCs obtidas a partir dos descritores 2D
estão relacionadas com a primeira e terceira PCs dos descritores 3D. A primeira componente 3D é
explicada (61%) por descritores relacionados ao tamanho, enquanto que o conteúdo da terceira é
essencialmente hidrofóbico, mas com pequena variância (25%). Surpreendentemente, descritores
relacionados a ligações hidrogênio não contribuíram de forma significativa para a análise final. Estes
resultados não permitem, a priori, a escolha de um método em detrimento de outro, quando da
realização de estudos em QSAR.

To gain better understanding on the information content of two-dimensional (2D) vs. three-
dimensional (3D) descriptor systems, we analyzed principal component analysis scores derived
from 87 2D descriptors and 798 3D (ALMOND) variables on a set of 5998 compounds of medicinal
chemistry interest. The information overlap between ALMOND and 2D-based descriptors, as modeled
by the fraction of explained variance (r2) and by seven-groups cross-validation (q2) in a two PLS
components model was 40%. Individual component analysis indicates that the first and second
principal components from the 2D-descriptors are related to the first and third dimensions from the
ALMOND PCA model. The first ALMOND component is explained (61%) by size-related
descriptors, whereas the third component is marginally explained (25%) by hydrophobicity-related
descriptors. Surprisingly, 2D-based hydrogen-bonding descriptors did not contribute significantly
in this analysis. These results do not a priori justify the choice of one methodology over the other,
when performing QSAR studies.
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Introduction

There are currently over 3000 molecular descriptors1

that can be used in QSAR (Quantitative Structure Activity
Relationship) studies.2  Their application to QSAR has been
recently surveyed.3  Significant information about a QSAR
dataset can be extracted using 2D- (two-dimensional)
descriptors, i.e., descriptors that do not use information
related to the three-dimensional characteristics of model
compounds. Most of these descriptors can be classified as:
i) Size-related: molecular weight – MW; calculated4

molecular refractivity – CMR; molecular volume and
molecular surface area, pre-computed from tabulated
values (e.g., using Van der Waals radii), etc.;

ii) Hydrophobicity-related: the logarithm of the octanol-
water partition coefficient, LogP 5  – besides CLOGP,6

several other LogP estimating programs are available;7

the π fragmental constant;8  the logarithm of the (molar)
aqueous solubility9 ,10  (LogS

w
); iii) Descriptors related to

electronic effects: CMR; the (tabulated) estimated
polarizability;11  Hückel-level estimates of the highest-
occupied, and lowest-unoccupied, molecular orbitals;
partial atomic charges based on electronegativity
equilibration schemes;12 ,13  counts of positive or negative
ionic centers; etc; iv) Hydrogen bonding descriptors that
estimate the basicity or acidity factors, e.g., the HYBOT 14 ,15

or Abraham descriptors,16  or electro-topological (E-state)
descriptors,17  or counts18  of hydrogen bond acceptors or
donors; v) Topological descriptors19  derived from
connectivity20  matrices.21 ,22
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The above types of descriptors have been successfully
used to derive QSAR models for the past four decades.
However, for the past 15 years, our ability to investigate
the third dimension in a meaningful way, e.g., by analyzing
conformers, has led to the development of 3D (three
dimensional) QSAR methods.

Best represented by CoMFA23  (Comparative Molecular
Field Analysis) or by the combination of GRID24  and PLS25

(Partial Least Squares), 3D-QSAR methods26-28 try to explain
the variance in biological activity by monitoring
variations in the 3D structures of chemical compounds.
CoMFA, for example, attempts to relate molecular
interaction fields, MIFs, of a series of molecules, to
biological activity via PLS,25 thus matching differences or
similarities in the MIFs (steric and electrostatic are default)
to differences or similarities in the biological activity. Quite
early, the use of graphical analysis29  to evaluate CoMFA-
PLS results was recognized as the main strength of 3D-
QSAR methods.

However, the value of 3D descriptors was put to
question in the context of cheminformatics. As Brown and
Martin have shown, simple (2D-based) substructure keys
are more successful in grouping active compounds,
compared to more elaborate 3D-based keys.30  Brown and
Martin went further to show that 2D-based descriptors are
more useful in predicting LogP and pKa, compared to 3D
descriptors.31  Yvonne Martin further discusses the balance
between 2D and 3D-QSAR models.32  However, LogP and
pKa are physico-chemical properties where the third
dimension (conformational flexibility) bears little, if any,
relevance. This is not the case for the vast majority of
biological activities.

To gain better understanding on the information
content of 2D vs. 3D descriptors, we analyzed principal
component analysis (PCA) scores derived from SaSA33 and
ALMOND34 on a set of 5998 compounds of medicinal
chemistry interest.35 This paper discusses the relevance of
2D vs. 3D descriptors, in part discussed elsewhere,36 in the
absence of any property correlations (Y vectors).

Materials and Methods

SaSA descriptors

SaSA33 computes 72 descriptors starting from the 2D
structures. Size-related descriptors included MW, the
number of heavy atoms, the number of carbons, and CMR.4

Polarizability is estimated by CMR and by an atom-based
scheme.11 Flexibility and rigidity are estimated18 by
counting the total number of bonds, the number of rings
and the number of rotatable bonds and the number of rigid

bonds, and by several topological indices that estimate
other properties22 as well. The Wiener, Balaban, Randic
and Motoc indices, as well as the Kier and Hall suite of
connectivity descriptors20 are also computed in SaSA.
Hydrogen-bonding capacity is estimated using HYBOT14

descriptors. Furthermore, SaSA uses simple counts for
oxygen, nitrogen, H-bond donors and H-bond acceptors,
positive and negative ionization centers, as well as the
maximum positive and negative charge, as calculated
using electronegativity methods.13

Additional 2D descriptors

For this dataset, hydrophobicity was estimated using
two LogP methods: CLOGP6 (default in SaSA) and
Kowwin.37,38  LogS

w
 was estimated with Wskowwin39,40  for

all compounds.

ALMOND descriptors

Based on previous work from the Clementi group,41

ALMOND34 computes MIFs for three GRID24 probes: the
DRY probe (hydrophobic), the carbonyl O probe (hydrogen
bond acceptor) and the amide nitrogen (N1) probe
(hydrogen bond donor). A fixed number of GRID points
(nodes) are then selected from each MIF, according to the
GRID energy level and to the inter-node distance between
two nodes. The auto-correlogram is generated via MACC-
2 (Maximum Auto- and Cross-Correlation),42  by storing
only the highest pair-wise product of interaction energies
between all 2-node pairs, according to the inter-node
distance. The results are then managed according to each
MIF category, as discussed elsewhere.43  The three auto-
correlograms are: DRY-DRY (hydrophobic); O-O (hydrogen
bond donor); N1-N1 (hydrogen bond acceptor). The three
cross-correlograms are: DRY-O (hydrophobic and
hydrogen bond donor); DRY-N1 (hydrophobic and
hydrogen bond acceptor); O-N1 (hydrogen bond donor
and hydrogen bond acceptor). 3D structures for the 5998
compounds were automatically generated with CORINA.44

ALMOND descriptors were generated using 133 variables
per correlogram (798 variables in total), 50% field weight,
and 0.8 smoothing window in MACC-2.

Statistical analysis

The 5998 2D structures were processed with SaSA,33

HYBOT,14 Kowwin38 and Wskowwin.40 Principal
component analysis using block scaling for the eighty-
seven 2D descriptors was then performed using SIMCA.45

Multivariate analyses for the 3D dataset, using block-wise
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normalization (six blocks, 133 variables each), were
performed using the ALMOND34 implementation of the
PCA method.

Six latent variables were modeled for both the 2D and
3D descriptor sets. These represented 78.3% of the
explained variance for the 2D descriptors (in SIMCA), and
58.2% for the 3D descriptors (in ALMOND). The six PCA
scores were extracted from both 2D and ALMOND
descriptors for each compound, and the results were further
analyzed in SIMCA.45 The degree of information overlap
between SaSA and ALMOND was evaluated by computing
reciprocal PLS models: PCA scores from 2D descriptors
were used as X-block, while the PCA scores from ALMOND
were used as the Y-block (Table 1, top). Vice versa, the
scores derived from ALMOND descriptors were used as
the X-block to model the PCA scores obtained from 2D
descriptors (Table 1, bottom). No centering, scaling or
normalization was performed for these sets.

Results and Discussion

The PLS model overview presented in Table 1
illustrates the fact that there is a 40% overlap between
ALMOND (3D) and 2D-based descriptors, as modeled by
the fraction of explained variance (r2) and by seven-
groups36 cross-validation (q2) in a two PLS components
model. Individual component analysis indicates that the
first and second latent variables from the 2D-descriptors
PCA model are related to the first and third latent
dimensions from the ALMOND PCA model, with a clear
emphasis on the first component. Pair wise correlations
between ALMOND and 2D components further support
these results (see Table 2). The first PLS component in
Table 1 can be explained by size-related descriptors, e.g.,
the total number of heavy atoms, molecular volume,
molecular surface, MW, CMR and polarizability. These
descriptors encode approximately 60% of the first
ALMOND latent variable, mostly in a 1-PLS model (Table
1, top). This can be interpreted by the fact that large
variability of inter-node distances and MIF energies
dominate the first PCA component.

The third ALMOND latent variable has a weaker
relationship (25%) to hydrophobicity descriptors such as
CLOGP,6 Kowwin,38 LogS

w
 (Wskowwin40), the non-polar

surface area, and the number of non-polar atoms.46  It is not
surprising that size- and hydrophobicity- related 2D
descriptors are correlated to ALMOND descriptors, since
the DRY probe is present in one auto- and two cross-
correlograms.43 However, less than 25% of the ALMOND
fourth component appear to be related to 2D-based
hydrogen bond descriptors such as HYBOT 15 and the count

of nitrogens and oxygens (see Table 2). This is unexpected,
since two auto-correlograms, N1-N1 (hydrogen-bond
acceptor) and O-O (hydrogen bond donor), and one cross-
correlogram (O-N1), are extracted from MIFs related to
hydrogen bonding. The information extracted from these
MIFs preserves directionality (3D orientation) and is
region-based, i.e., it encodes information applicable to
certain chemical moieties, not to the entire molecule. By
contrast, HYBOT15 capacity factors are free energies
summed for the entire molecule. This may explain why
ALMOND descriptors do not have a direct correspondent
at the 2D level.

The second, fifth and sixth ALMOND principal
components did not display any significant relationships
to 2D-based descriptors (see Table 2). The PLS modeling
summarized in Table 1 is further supported by mapping the
fraction of explained variance (r2 values) of the pair wise
correlations between ALMOND and 2D components (Table

Table 1. Information overlap between 2D and 3D (ALMOND) de-
scriptors at the PCA score level for 5998 compounds, detailed for
individual components. Insignificant r2 and q2 values were omitted;
a is the principal component number

Model Type a r2 q2

2D/X, ALMOND/Y 1 0.35 0.35
2 0.40 0.40

t
1
-ALMOND/Y 1 0.59 0.59

2 0.62 0.61

t
3
-ALMOND/Y 1 0.02 0.02

2 0.25 0.25

ALMOND/X, 2D/Y 1 0.32 0.32
2 0.40 0.40

t
1
-2D/Y 1 0.57 0.57

2 0.59 0.59

t
2
-2D/Y 1 0.06 0.06

2 0.39 0.39

Table 2. Pair wise correlation (r2 values) between 2D- and AL-
MOND (3D) descriptors, derived for the first six PCA scores for
5998 compounds

PCA score t
1
-2D t

2
-2D t

3
-2D t

4
-2D t

5
-2D t

6
-2D

t
1
-ALMOND 0.549 0.061 0.002 0.009 0.008 0.000

t
2
-ALMOND 0.000 0.001 0.118 0.022 0.012 0.009

t
3
-ALMOND 0.039 0.188 0.027 0.016 0.000 0.045

t
4
-ALMOND 0.007 0.165 0.003 0.000 0.013 0.001

t
5
-ALMOND 0.018 0.004 0.001 0.024 0.002 0.001

t
6
-ALMOND 0.016 0.002 0.024 0.008 0.036 0.031
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2). Similar results were obtained when comparing VolSurf 47

descriptors (3D) to SaSA, as the first latent variable from
both VolSurf and SaSA appeared to be significantly
correlated.48 This further stresses the dominance of size-
related descriptors in the first latent variable.

Conclusions

While capturing similar information with respect to
size, hydrophobicity, and polarizability, the 2D-based
descriptors used in this study do not encode the same type
of information as ALMOND (3D) descriptors, in particular
information related to pharmacophoric patterns and
hydrogen bonding. Designed with the virtual receptor site
paradigm in mind,43 the ALMOND descriptor system relies
on statistical analyses such as PLS to appropriately select
those variables that are relevant to ligand-receptor
interactions. Therefore, the extraction of six principal
components for a large set of compounds does not reflect
the intended utility of this system. It does, however, point
out that 3D descriptor systems encode different
information, compared to 2D-based systems, since the
information redundancy is around 40%. This partial
information overlap between ALMOND and 2D descriptors
does not justify a priori the choice of one methodology
over the other when performing QSAR studies. Naturally,
this choice becomes available a posteriori, when one or
several classes of descriptors may be identified as
statistically suitable to model the target property. It is
therefore advisable to use both 2D- and 3D-based
descriptors when modeling receptor-mediated events.36
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