Three New Natural Cyclopentenedione Derivatives from Piper carniconnectivum

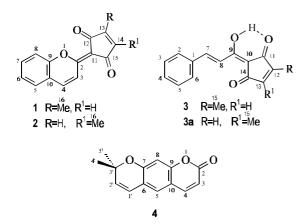
Valdir A. Facundo^a, Amanda L. Sá^a, Silane A. F. Silva^a, Selene M. Morais^b, Carlos R. R. Matos^c and Raimundo Braz-Filho^{*,c}

^aDepartamento de Química, Universidade Federal de Rondônia, 78.900-000 Porto Velho - RO, Brazil

^bDepartamento de Física e Química, Universidade Estadual do Ceará, 60740-000 Fortaleza - CE, Brazil

^cSetor de Química de Produtos Naturais, Universidade Estadual do Norte Fluminense, 28013-600 Campos - RJ, Brazil

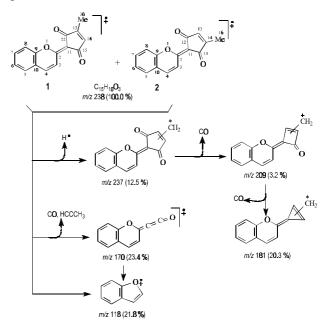
Três novos derivados ciclopentenodiônicos e a conhecida cumarina xantiletina foram isoladas das raízes de *Piper carniconnectivum*. As estruturas foram estabelecidas por RMN 1D e 2D e por espectrometria de massas.


Three new natural cyclopentenedione derivatives (1-3) and the known coumarin xanthyletin (4) were isolated from the roots of *Piper carniconnectivum*. The structures were established by spectroscopic data, mainly 1D and 2D NMR and EIMS.

Keywords: Piper carniconnectivum, Piperaceae, cyclopentenedione derivatives, xanthyletin

Introduction

Piperaceae is a tropical family that comprises many pharmaceutically important plants, useful in folk medicine and as bioproducer of essential oils. *Piper carniconnectivum* is a species found in the Amazon in the northern part of Brazil.¹


Results of an investigation of a specimen of *Piper* carniconnectivum collected in Porto Velho, Rondônia, Brazil, are reported in this paper. Three new natural cyclopentenediones (1-3) and the known coumarin xanthyletin (4) were isolated from the ethanol extract from roots.

Results and Discussion

The known coumarin xanthyletin (4) was identified by spectral data, involving mainly ¹H and ¹³C NMR spectra and comparison with literature values.²

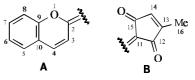
The EIMS (Scheme 1) of **1** and **2** showed molecular peaks at m/z 238 daltons ([M]⁺). The ¹H and ¹³C (HBBD

Scheme 1. Proposed fragmentation mechanisms of 1 and 2 (only peaks classified as principals).

* e-mail: braz@uenf.br

	1 ¹ H- ¹³ C-C		2		1 and/or 2 ¹ H- ¹³ C-COSY- ⁿ J _{CH}	
	$\delta_{ m c}$	$\delta_{_{ m H}}$	$\delta_{\rm C}$	$\delta_{_{ m H}}$	$^{2}J_{\rm CH}$	³ <i>J</i> _{CH}
С						
2	159.39	-	159.66	-	H-3	H-4
)	152.22	-	152.22	-		H-4; H-5; H-7
0	120.23	-	120.20	-		H-3; H-6
1	102.23	-	102.22	-		H-13 (2); H-14 (1)
12	192.34	-	192.90	-	H-13 (2)	H-14 (1); 3H-16 (1)
3	155.57	-	-	-	H-14; 3H-16	
4	-	-	155.73	-	H-13; 3H-16	
5	194.04	-	194.78	-		3H-16 (2)
CH						
;	117.59	8.11 (d, 9.5)	117.82	8.13 (d, 9.5)		
Ļ	137.72	7.54 (d, 9.5)	137.64	7.54 (d, 9.5)		H-5
	127.57	7.41 (br d, 7.7)	127.54	7.42 (br d, 7.7)		H-4; H-7
5	125.15	7.32-7.20	125.15	7.32-7.20		
,	132.20	7.60-7.50	132.20	7.60-7.50		H-5
3	117.25	7.60-7.50	117.39	7.60-7.50		H-6
3	-	-	139.37	6.63 (q, 1.4)		
4	139.23	6.62 (q, 1.5)	-	-		
CH ₃						
6	10.95	2.09 (d, 1.5)	11.05	2.08 (d, 1.4)		H-13 (2); H-14 (1)

Table 1. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data for **1** and **2**, including heteronuclear 2D shift-correlated obtained by ¹H-¹³C-COSY-ⁿJ_{CH} (n=1, HNQC; n=2 and 3, HMBC) experiments, in CDCl₃ as solvent, chemical shifts (δ , ppm) and coupling constants (*J*, Hz, in parenthesis)^a


^aNumber of hydrogens bound to carbon atoms deduced by comparative analysis of HBBD- and DEPT-¹³C NMR spectra. Chemical shifts and coupling constants (*J*) obtained from 1D ¹H NMR spectrum. Superimposed ¹H signals are described without multiplicity and chemical shifts deduced by HMQC, HMBC and ¹H-¹H-COSY spectra.

and DEPT) NMR data (Table 1) coupled with the $[M^{+*}]$ allowed us to deduce the molecular formula, $C_{15}H_{10}O_3$ for 1 and 2 (eleven degrees of unsaturation). This formula suggests the presence of a modified coumarin skeleton (C_9H_6O , chromenylidene-) linked to a $C_6H_4O_2$ moiety.

Comparative analysis of HBBD- and DEPT-¹³C NMR spectra was used to identify signals attributed to quaternary [(C)₁₄, all sp², (C)₇ attributed to each component, including two ketone C=O (1: δ_{c} 194.04 and 192.34; 2: δ_{c} 194.78 and 192.90], two involved in an ether function (1: δ_{c} 159.39 and 152.22; 2: δ_{c} 159.66 and 152.22] and one conjugated with a carbonyl group (1: δ_{c} 155.57; 2: δ_{c} 155.73], methine [(CH)₁₄, all sp², (CH)₇ representing each compound] and methyl [(CH₃)₂, one for each component] carbon atoms (Table 1). The ¹H (1D and 2D ¹H-¹H-COSY) and ¹H-¹³C-COSY-ⁿJ_{CH} (n=1, HMQC; n=2 and 3, HMBC) spectra are in agreement with these deductions (Table 1 and 2).

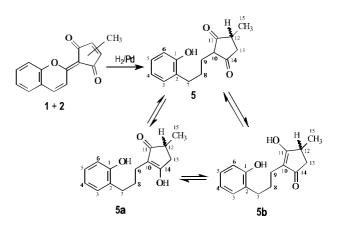
The ¹H NMR spectra (1D and 2D ¹H-¹H-COSY) of **1** + **2** (Table 1) displayed signals of an AB system (*J* 9.5 Hz) attributed to *cis*-related H-3 [$\delta_{\rm H}$ 8.11 (**1**) and 8.13 (**2**)] and H-4 [$\delta_{\rm H}$ 7.54 (**1** and **2**)], correlated via one bond (¹J_{CH}) with the corresponding carbon atoms by cross-peaks observed in the HMQC spectrum (Table 1), which in combination with the ¹H and ¹³C signals due to four aromatic methines (CH-5 to CH-8) and three non-hydrogenated (C-2, C-9 and C-10), suggested the presence of a chromenylidene moiety

A (C₀H₆O, coumarin type). The peaks at m/z 170 (23.4 %) and 118 (21.8%) observed in the EIMS are in agreement with the presence of this moiety (Scheme 1). The remaining signals observed in the ¹H [singlet signals at $\delta_{\rm H}$ 6.62(H-14)/6.63 (H-13) and 2.09/2.08 (3H-16 linked to sp² carbon atom)] and ¹³C [four sp² quaternary: δ_{c} 194.04/194.78 (conjugated ketone carbonyl group), 192.34/192.90 (conjugated ketone carbonyl group), 155.57/155.73 (nonhydrogenated olefinic carbon conjugated with carbonyl group); and one sp² methine: δ_c 139.23/139.37] NMR spectra were used to establish the partial structure **B**, which was also confirmed by homonuclear 2D1H-1H-COSY (longrange spin-spin interaction of the H-14 and 3H-16 and H-13 and 3H-16) and heteronuclear 2D shift-correlated ¹H-¹³C-COSY-ⁿ J_{CH} (n=1, HMQC; n=2 and 3, HMBC)³ summarized in Table 1.

The junction of two **A** and **B** moieties was confirmed by a heteronuclear long-range coupling $({}^{3}J_{CH})$ of C-11 [δ_{C} 102.23 (**1**) and 102.22 (**2**)] and H-14 (δ_{H} 6.62) and H-13

 $(\delta_{\rm H} 6.63)$, respectively, allowing to postulate the isomeric structures **1** ([M]^{•+} 238) and **2** ([M]^{•+} 238).

The presence of **1** and **2** in the mixture was additionally confirmed by 1D and 2D ¹H and ¹³C NMR spectra recorded in benzene- d_6 , which revealed best resolution induced by aromatic solvent effect (Table 2).


The results of the extensive application of 1D and 2D NMR spectral techniques in CDCl_3 and benzene- d_6 were also used to confirm the structures and to establish the ¹H and ¹³C resonance assignments of **1** and **2** (Tables 1 and 2).

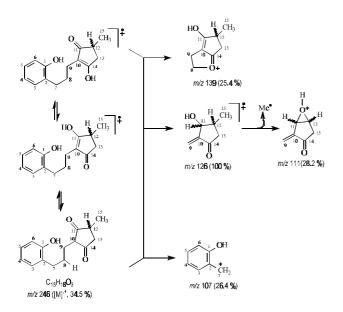
Catalytic reduction ($H_2/10 \%$ Pd-C, MeOH, 50 psi, 6 h) of the mixture of **1** and **2** yielded 1,3-diketooctahydroderivative **5** {2-[3-(2-hydroxyphenyl)propyl]-4methylcyclopentan-1,3-dione}, which appears in a ketoenol tautomerism represented by enols **5a** {3-hydroxy-2-[3-(2-hydroxyphenyl)propyl]-5-methyl-2-cyclopenten-1one} and **5b** {3-hydroxy-2-[3-(2-hydroxyphenyl)propyl]-4-methyl-2-cyclopenten-1-one}, as shown in Scheme 2. These enols were characterized on the basis of EIMS (Scheme 2) and 1D and 2D NMR (Table 3). At room temperature, a relatively rapid interconversion between the enol forms probably occurs and consequently average ¹H and ¹³C NMR spectra are observed (Table 3).

Therefore, the structures of the new natural products isolated from *Piper carniconnectivum* were postulated as 2-(2*H*-2-chromenyliden)-4-methyl-4-cyclopenten-1,3-

dione (1) and 2-(2*H*-2-chromenyliden)-5-methyl-4-cyclopenten-1,3-dione (2).

The isomeric structures **1** and **2** are very similar and are clearly in agreement with the ¹H and ¹³C NMR spectral data, revealing ¹H and ¹³C chemical shifts with slight differences. The attribution of ¹H and ¹³C chemical shifts of **1**, present in the mixture (about 50% of each component) was based in a major γ effect (shielding) of the heterocyclic oxygen atom on the carbonyl carbon C-12, justifying the its minor ¹³C chemical shift, as observed (e. g.) in the

Scheme 2. Products obtained by catalytic reduction $(H_2/Pd/C)$ of the mixture of 1 and 2.

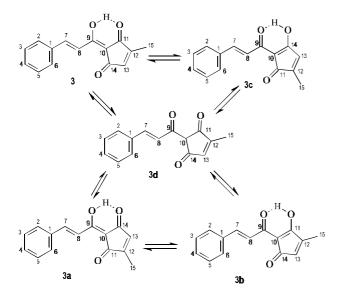

Table 2. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data for 1 and 2, including heteronuclear 2D shift-correlated obtained by ¹H-¹³C-COSY-ⁿJ_{CH} (n=1, HNQC; n=2 and 3, HMBC) experiments, in benzene- d_6 as solvent, chemical shifts (δ , ppm) and coupling constants (J, Hz, in parenthesis)^a

	1 'H- ¹³ C-CO		2		1 and/or 2 ¹ H- ¹³ C-COSY- ⁿ J _{CH}	
	$\delta_{\rm c}$	$\delta_{\rm H}$	$\delta_{\rm C}^{\rm CH}$	$\delta_{_{ m H}}$	² J _{CH}	³ J _{CH}
С			-			
2	158.96	-	159.24	-	H-3	H-4
)	152.53	-	152.53	-	H-8	H-4; H-5; H-7
0	120.82	-	120.78	-	H-4	H-3; H-6; H-8
1	103.03	-	104.64	-		H-13 (2); H-14 (1)
2	191.89	-	191.15	-	H-13 (2)	H-14 (1); 3H-16 (1)
3	155.96	-	-	-	H-14; 3H-16	-
4	-	-	155.53	-	H-13; 3H-16	
5	193.54	-	194.48	-	H-14 (1)	H-13 (2); 3H-16 (2)
CH						
	118.15	8.17 (d, 9.5)	117.94	8.13 (d, 9.5)		
Ļ	136.80	6.49 (d, 9.5)	136.88	6.49 (d, 9.5)		H-5
	127.44	6.55 (br d, 7.7)	127.44	6.55 (br d, 8.4)		H-4; H-7
i	124.61	6.62 (br dd, 7.7, 8.4)	124.61	6.62 (br dd, 7.7, 8.4)		H-8
,	131.86	6.81 (br t, 8.4)	131.94	6.81 (br t, 8.4)		H-5
	117.36	7.16 (br d, 8.4)	117.44	7.19 (br d, 8.4)		H-6
3	-	-	139.86	6.26 (q, 1.8)		3H-16
4	139.59	6.25 (q, 1.8)	-	-		3H-16
CH ₃						
6	10.76	1.68 (d, 1.8)	10.76	1.66 (d, 1.8)		H-13 (2); H-14 (1)

^aNumber of hydrogens bound to carbon atoms deduced by comparative analysis of HBBD- and DEPT-¹³C NMR spectra. Chemical shifts and coupling constants (*J*) obtained from 1D ¹H NMR spectrum. ¹H-¹H-COSY spectrum was also used in these assignments.

comparative analysis of the ¹³C chemical shifts of the methylene carbon atoms CH₂-3 of cyclohexane (δ_c 27.6), methylcyclohexane (δ_c 26.6, Δ_c = -1.0 ppm) and cyclohexanol (δ_c 24.4, Δ_c = -2.2 ppm).

Comparative analysis of HBBD- and DEPT-¹³C NMR of **3** was used to recognize signals corresponding to


Scheme 3. Proposed fragmentation mechanisms of 5 (only peaks classified as principals).

quaternary $[(C)_6, \text{ all } \text{sp}^2, \text{ including two ketone } C=O(\delta_C)$ 192.64 and 201.08), one oxygenated (δ_{c} 168.11) and one conjugated with carbonyl group (δ_c 158.46)], methine (CH₂). The ¹H (1D and 2D ¹H-¹H-COSY) and ¹H-¹³C-COSY-ⁿJ_{CH} (n=1, HMQC; n=2 and 3, HMBC) spectra are in agreement with these deductions (Table 1). The Econfiguration of the double bond between the carbon atoms CH-7 (δ_{μ}/δ_{c} 7.79/143.56) and CH-8 (δ_{μ}/δ_{c} 7.75/117.90) was defined by a coupling constant J 16.0 Hz observed in the 1D ¹H NMR spectrum. The 2D ¹H-¹H-COSY spectrum was used to confirm the spin-spin interaction $({}^{3}J_{HH})$ of these hydrogen atoms. The chemical shift of the olefinic quaternary carbon C-9 (δ_{c} 168.11) was assigned on the basis of its heteronuclear long-range coupling with both hydrogens H-7 ($\delta_{\rm H}$ 7.79, ${}^{2}J_{\rm CH}$) and H-8 ($\delta_{\rm H}$ 7.75, ${}^{3}J_{\rm CH}$) and, consequently, the two ketone carbonyl groups (δ_c 192.64, C-11, and 201.08, C-14) were located at a methylcyclopentene ring, which was confirmed by heteronuclear long-range of these carbons with H-13 and 3H-15 (Table 4). The NMR spectra only showed the presence enol tautomer 3 and/or 3a when the experiments were done in CDCl₂, allowing to postulate the absence of the tautomers **3b**, **3c** and **3d** (Scheme 4) based in the ¹H and ¹³C chemical shifts of the signals observed in the ¹H and ¹³C NMR spectra (Table 4). At room temperature, a relatively rapid interconversion between the tautomer forms probably

Table 3. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data for octahydroderivative **5**, including heteronuclear 2D shift-correlated obtained by ¹H-¹³C-COSY-ⁿJ_{CH} (n=1, HNQC; n=2 and 3, HMBC) experiments, in CDCl₃ as solvent. Chemical shifts (δ , ppm) and coupling constants (J, Hz, in parenthesis)^a

		$^{1}\text{H}-^{13}\text{C}-\text{COSY}-^{1}J_{CH}$	¹ H- ¹³ C-COSY- ⁿ J _{CH}		
	$\delta_{ m c}$	$\delta_{_{ m H}}$	${}^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	
С					
1	156.34	-		H-3; H-5; 2H-7	
2	129.84	-	2H-7	H-4; H-6; 2H-8	
10	115.74	-	2H-9	2H-8	
11	202.14	-	H-12	2H-9; H-13a; 3H-15	
14	193.12	-	2H-13	2H-9; H-12	
СН					
3	131.00	7.03 (dd, 7.3, 1.5)		H-5; 2H-7	
4	120.05	6.69 (dt, 7.3, 1.4)		H-6	
5	127.41	6.95 (ddd, 7.3, 8.1, 1.5)		H-5	
6	116.30	6.77 (dd, 8.1, 1.4)		H-4	
12	37.93	2.45 (qdd, 7.3, 7.3, 2.2)	3H-15	2H-13	
CH ₂					
7	30.66	2.59 (t, 7.7)	2H-8	2H-9	
8	30.39	1.70 (tt, 7.7, 7.3)	2H-7; 2H-9		
9	21.58	2.15 (t, 7.3)	2H-8	2H-7	
13	39.62	2.65 (dd, 17.6, 7.3) 1.99 (dd, 17.6, 2.2)		3H-15	
СН,					
15	18.23	1.12 (d, 7.3)	H-12	2H-13	

^aNumber of hydrogens bound to carbon atoms deduced by comparative analysis of HBBD- and DEPT-¹³C NMR spectra. Chemical shifts and coupling constants (*J*) obtained from 1D ¹H NMR spectrum. ¹H-¹H-COSY spectrum was also used in these assignments.

Scheme 4. Tautomer forms of 3.

occurs and consequently average ¹H and ¹³C NMR spectra of **3** and/or **3a** are observed (Table 4).

Therefore, the structure of this unknown natural product was established as 2-[1-hydroxy-3-phenyl-(Z,2E)-2-propenylidene]-4-methyl-4-cyclopentene-1,3-dione (**3**and/or**3a**).

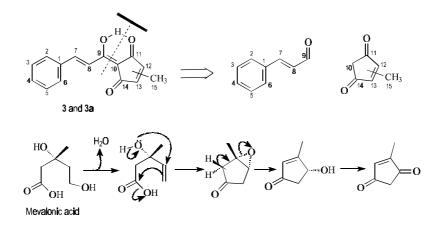
The results of the extensive application of 1D and 2D NMR spectral techniques were also used to confirm the structure and to establish the ¹H and ¹³C resonance assignments of the natural products**1**, **2** (Tables 1 and 2)

and **3** (Table 4), and of the derivative **5** (Table 3) obtained by catalytic reduction of the mixture of **1** and **2**.

The biosynthesis of these new compounds has not yet been investigated. Structural examination of the compounds **1**, **2** and **3** in view of biosynthetic arguments and application of a biosynthetic retroanalysis led us to suggest a biogenetic route. Cyclopentenoids are metabolites of varied biogenetic routes.⁴ Thus, the methylcyclopentene-1,3-dione ring present in the compounds **1**, **2** and **3** can be postulated as a bioproduct of mevalonic acid, as summarized speculatively in Scheme 5. The C₆-C₃ moiety (cinnamoyl type) is in accordance with the shikimate (shikimic pathway) route,⁴ similar to the route of the bioformation of coumarins (e. g. xanthyletin, a prenylated coumarin, **4**, which was also isolated of this plant) and other compounds isolated from *Piper* genus.⁵

The compound **3** may be postulated as precursor of **1** and **2** after it appropriated *ortho*-hydroxylation to produce the intermediary 2-hydroxy derivative.

Experimental


General experimental procedures

Mps are uncorr. NMR spectra were run on Bruker -Advance 500 (¹H: 500 MHz; ¹³C: 125 MHz) and Jeol – 400 (¹H: 400 MHz; ¹³C: 100 MHz) spectrometers in CDCl₃ (**1-4**) or benzene- d_6 (**1** and **2**) using TMS as internal standard

Table 4. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR spectral data for 3 including heteronuclear 2D shift-correlated obtained	by ¹ H- ¹³ C-COSY- ⁿ J _{CH}
(n=1, HNQC; n=2 and 3, HMBC) experiments, in CDCl ₃ as solvent, chemical shifts (δ , ppm) and coupling constants (J, 1)	Hz, in parenthesis) ^a

	¹ H- ¹³ C	-COSY- ¹ J _{CH}	$^{1}\text{H}^{-13}\text{C-COSY}^{-n}J_{\text{CH}}$		
	$\delta_{ m c}$	$\delta_{\rm H}$	${}^{2}J_{\rm CH}$	³ <i>J</i> _{CH}	${}^{4}J_{ m CH}$
С					
1	135.24	-		H-3/H-5; H-8	
9	168.11	-	H-8	H-7	
10	103.55	-			
11	201.08	-		H-13; 3H-15	
12	158.46	-	3H-15		
14	192.64	-	H-13		3H-15
СН					
2,6	129.05	7.67-7.65 (m)		H-4; H-7	
3,5	129.39	7.44-7.42			
4	131.11	7.44-7.42		H-2/H-6	
7	143.56	7.79 (d, 16.0)	H-8	H-2/H-6	
8	117.90	7.75 (d, 16.0)	H-7		
13	137.39	6.70 (q, 1.6)		3H-15	
CH ₃		- .			
15	11.79	2.12 (d, 1.6)			
НО	-	12.12 (sl)			

^aNumber of hydrogens bound to carbon atoms deduced by comparative analysis of HBBD- and DEPT-¹³C NMR spectra. Chemical shifts and coupling constants (*J*) obtained from 1D ¹H NMR spectrum. Superimposed ¹H signals are described without multiplicity and chemical shifts deduced by HMQC, HMBC and ¹H-¹H-COSY spectra.

Scheme 5. Biosynthetic retroanalysis of 3/3a and possible biogenetic pathway of methylcyclopentene-1,3-dione from mevalonic acid.

or by reference to the solvent signal (CHCl₃ at $\delta_{\rm H}$ 7.24 or C₆D₅H at $\delta_{\rm H}$ 7.26 and CDCl₃ at $\delta_{\rm C}$ 77.00 or C₆D₆ at $\delta_{\rm C}$ 128.00). EIMS were obtained at 70 eV on a Shimadzu QP-2000 spectrometer. The IR spectra were recorded on a Perkin-Elmer FT-1500 spectrometer. Column chromatography was carried out with silica gel 0.063-0.2 mm and TLC was done employing silica gel Kieselgel 60 from Merck and spots were visualized by UV ($\lambda_{\rm max}$ 259 and 360 nm) and exposure to I₂ vapour.

Plant material

Roots of *Piper* carniconnectivum were collected from the same specimen, in Porto Velho, Rondônia, Brazil. The botanical identification (exsiccate number 211718) was confirmed by Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil.

Isolation of the compounds

A mixture of chromenylidene- (1 and 2), a hydroxyphenylpropenylidenecyclopentenedione (3) and xanthyletin (4) were isolated by the use of column chromatography, after partition of the EtOH extract with hexane, CHCl₃, EtOAc and MeOH. The residue obtained from the CHCl₃ solution was submitted to a silica gel column chromatography and fractions 5 and 6 eluted with hexane-CHCl₃ yielded a mixture of 1 + 2 (yellow crystals, m. p. 128-136° C) and 3 (yellow crystals, m. p. 122-124° C), whereas the fraction 7 afforded 4 and additional quantity of the mixture of 1 + 2.

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and FAPERJ for grants and CNPq to research fellowship. The Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil, is gratefully acknowledged for botanical identification (exsiccate number 211718).

References

- Ribeiro, J.E.L. da S.; Hopkins, M.J.G.; Vicentin, A.; Sothers, C.A.; Costa, M.A. da S.; de Brito, J.M.; de Souza, M.A.D.; Martins, L.H. P.; Lohmann, L.G.; Assunção, P.A..C.L.; Pereira, E. da C.; Mesquita, M.R.; Procópio, L.C.; *Flora da Reserva Ducke – Guia de Identificação das Plantas Vasculares de uma Floresta de Terra-Firme na Amazônia Central*; INPA-DFID: Manaus, Amazonas, Brasil, 1999. pp 181-167.
- Márquez, W.B.; Pessoa, O.D.L.; Lemos, T.L.G.; Braz-Filho, R.; *Rev. Latinoamer. Quim.* 2000, 28, 111.
- Claridge; T. D. W. In *High-Resolution NMR Techniques in* Organic Chemistry; Baldwin, J. E.; Willians, R. M.; Willians, F. R. S., eds.; Tetrahedron Organic Chemistry Series, Pergamon: Oxford, UK, 1999.
- Torssell, K. B. G.; *Natural Product Chemistry A Mechanistic, Biosynthetic and Ecological Approach*, 2nd ed.; Swedish Pharmaceutical Press: Stockholm, Sweden, 1997.
- Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O. D.; Prasad, A. K.; Wengel, J.; Olsen, C. E.; Boll, P. M; *Phytochemistry* **1997**, *46*, 597.

Received: July 24, 2003 Published on the web: October 21, 2003