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Inibidores de corrosão são largamente utilizados na prevenção de corrosão em operações de
estimulação em poços de petróleo. Investigações teóricas e experimentais detalhadas de vinte e
três compostos incluindo aminas, derivados de tiouréia e álcoois acetilênicos foram realizadas
para estimar a sua eficiência na inibição de corrosão do aço 22% Cr (de estrutura austenítico-
ferrítica; duplex) em soluções de ácido clorídrico (15% m/v). Os dados obtidos foram
interpretados teoricamente com respeito à análise de regressão (OLS), análise de componentes
principais (PCA), predição e análise de regressão parcial (PLS) empregando descritores quânticos
e baseados na contribuição de grupos. Em nosso estudo vemos vantagem no uso da função de
adsorção de Langmuir isoestérica em peso (WILA), ln(θM/(1-θ)) or ln(K

ads
). Excelentes

correlações foram obtidas para a maioria dos modelos e algumas equações, resultados, curvas
de calibração e validação estão descritas no texto. O resultado do presente trabalho representa
um esforço preliminar no sentido de prover um eficiente método para a estimativa da eficiência
da inibição de corrosão, de inibidores arbitrários em vários metais, ligas e tipos de aço.

Corrosion inhibitors have been widely used to prevent corrosion on stimulation operations
on petroleum wells. Detailed experimental and theoretical investigation of twenty three different
compounds including amines, thiourea derivatives, and acetylenic alcohols were carried out to
estimate their inhibition corrosion efficiency on 22% Cr stainless steel (austenitic-ferritic, duplex)
in hydrochloric acid (15% m/v) solutions. The obtained data were theoretically interpreted
with respect to prediction, regression analysis (OLS), principal analysis component (PCA) and
partial regression analysis (PLS) employing quantum and group contribution descriptors. In
our study we found advantage in the use of the weight isoesteric Langmuir adsorption function
(WILA), ln(θM/(1-θ)) or lnK

ads
. Excellent correlations were obtained for most models and few

equations, results, calibration and validation plots were discussed in the text. The content of the
present work represents a first step toward an efficient estimation of the inhibition corrosion
efficiency (ICE) of arbitrary inhibitors towards several metals, alloys and steel types.

Keywords: corrosion inhibitor, regression analysis, QSPR (Quantitative Structure Properties
Relationship), interfaces

Introduction

Corrosion inhibitors have been widely used in
stimulation operations on petroleum wells.1,2 Due to the

ready removal of iron oxides and carbonated minerals,
these operations make extensive use of hydrochloric acid
solutions (15% m/v) at temperatures up to 80 oC exposed
to several steel types. Under such aggressive media the
use of corrosion inhibitors (CI) are mandatory, whether
used singly or as mixtures. Among the well known CI1
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currently used to prevent corrosion on HCl media are
amines, amides, nitriles, imidazolines, triazoles, pyridine
and quinoline derivatives, thiourea derivatives,
thiosemicarbazide and thiocyanates as some of the
molecular inhibitors currently used to prevent corrosion
in hydrochloric acid medium.

The 22% Cr stainless steel (austenitic-ferritic),
hereafter simply the duplex steel, is extensively used
in the petroleum industry due to excellent mechanical
properties and a better corrosion resistance for co-
produced fluids in the oil/gas production, that is
credited to its high chromium, molybdenum and
nitrogen content.1-3 However many authors pointed out
that under acid solutions the corrosion rate is
significantly larger, a condition that requires the use of
CI mixtures. Besides the corrosion inhibitors commonly
used to protect low alloy steels showed very poor
efficiencies to protect high chromium steels in acid
medium, especially when the chloride ion is present.
Therefore intense work is in progress in order to develop
high efficiency inhibitor mixtures to be used for high
chromium alloys, like duplex steel, in acid solution at
high temperatures, a common condition found during
acidification process of oil wells.

Despite the intense empirical searches for new
commercial inhibitors, few articles address chemometric
analysis of the inhibition corrosion efficiency (ICE). Such
a procedure represents a challenge to the application of
regular structure-activity chemometric thinking applied in
biological fields, since the physical adsorption is non-
specific, in opposition to the key-lock mechanism found in
molecular biology. Although under such circunstance we
should expect lower statistical correlations than those found
on biological studies, early corrosion studies, on the
contrary, showed several successful results4-9 correlating
small number of inhibitors and quantum descriptors.

Lukovits et al.4 employed a polynomial regression
analysis for the Langmuir adsorption constant for a set of
seven thiourea derivatives obtaining correlations within
0.969-0.982 for R-values with few quantum chemical
descriptors. Bentiss et al.,8 based on inhibition efficiency
found an excellent correlation between the charge transfer
resistance of six triazole and oxadiazole derivatives to three
AM1 quantum descriptors. Bentiss8 obtained correlations
within 0.91-0.96 for the R-values. Recently, Khalil9

extended this study by correlating twelve thiosemicarbazone
and thiosemicarbazide derivatives to five quantum MNDO/
PM3 descriptors. All these studies concern carbon steel and
up to our knowledge no similar study has been carried out
yet for duplex steel. Clearly much work must be done to
improve predictability in this field.

This work is part of a continuous effort aiming the
efficient prediction of molecular properties based on
the QSPR (Quantitative Structure Properties
Relationship) methodology. Although is possible to
recognize, in the literature, many articles and authors
employing common-sense descriptors (HOMO/LUMO
energies, the energy gap, the dipole moment,
polarizability and others), it is clear that remains a lack
of studies searching for efficient quantum and group
contribution molecular descriptors for general use in
inhibition corrosion prediction. Once defined, these
variables could be used to calculate corrosion
efficiencies as well as being useful in a general
methodology to generate molecular random structures
searching for new molecular structures with an optimum
property value. This procedure, however, has a
bottleneck related to the ability to perform ICE
predictions for compounds, which do not belong to the
calibration family information. This particular
condition requires an intense effort toward finding
molecular descriptors useful for predicting correct ICE
in cross-validation calculations. These “universal”
variables should be very important in the search for
new structures as it is now for the recognition of
physical processes occurring at the corrosion metal-
solution interface.

In the present work we carried out detailed
experimental and theoretical investigations of 23
different IC compounds including amines, thiourea
derivatives, and acetylenic alcohols to estimate its ICE
on 22% Cr stainless steel in hydrochloric acid (15%
m/v) solutions at 60 oC. These inhibition corrosion
efficiencies are then used to build the WILA function,
the weight isoesteric Langmuir adsorption function,
defined as ln(θM/(1-θ)) or ln(K

ads
). This WILA function

is then correlated to quantum and group contribution
parameters. The systematic obtaining of these data, for
such a large set of molecules, offered the unique
opportunity for searching possible correlations between
the inhibitors efficiency and molecular properties. In
the next sections we shall present experimental details,
followed by the principal component analysis (PCA),
a simple model based on the minimization of the
second-order cross-validation error with ordinary least
squares method (OLS) and a partial least squares (PLS)
analysis.

Principal component analysis (PCA) is a classic
statistical method well described in the literature.14 Briefly,
it attempts to describe the data variation in multidimensional
analysis by employing a reduced number of new orthogonal
variables, named principal components or latent variables.
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The loadings are the weights that link the original variables
to each latent variable. This means that their values may be
used as an indication of the importance of each original
variable to a given principal component. It is often used
searching for linear dependencies or as classification tools.

Ordinary Least Squares (OLS) and Partial Least
Squares Regression (PLS) are widely used methods for
correlating the variations of a response function to the
variations of several descriptors. The OLS is based on the
minimization of the sum of the squared error functional.
When the data present intense correlation PLS becomes
widely used in order to simplify this relationship into a
small number of components, known as latent variables.
We complement this work with the PLS methodology
aiming to offer a balanced analysis of the calibration and
prediction problem in the IC field.

Experimental

All inhibition corrosion data here reported have been
obtained though weight loss experiments of rectangular steel
specimens of 2 × 1 × 0.5 cm dimensions with a central
hole. These have been cleaned with acetone, washed with
water, dried and then weighed with a 0.1 mg precision.
The exposed surface represents the active state of the metal.
Two results were averaged for each inhibitor. The
experiments were carried out in cylindric autoclaves
internally covered with teflon. These autoclaves have been
placed on a rolling oven at 60 oC for 3 h. All solutions were
made up with 300 mL of HCl (15% m/v), 2% m/v of the
chemical inhibitor and 0.6% m/v of formaldeyde to
minimize hydrogen penetration. The experimental
conditions were set up to avoid complete dissolution of the
reference electrodes and strictly followed industrial
recommendations, for which no more than 2% m/v on active
components are allowed for matrix acidification operations.

Usually the inhibition corrosion efficiency (ICE) is
employed as the response property, however, since in our
study all experiments are carried out with equal inhibitor
weight (2%) a second function is more adequate to QSPR
correlation studies. Since ΔG

ads
 is a thermodynamic

property that shows linear dependence to energies,
volumes and the inhibitor polarizability we propose the
use of the weight isoesteric Langmuir adsorption function
(WILA), defined as ln(θM/(1-θ)) (hereafter simply
ln(K

ads
)) as the response property in QSPR runnings. Table

1 lists the 23 inhibitors employed in our study, its name,
and the WILA function value. It is important to remark
that is not required that any specific inhibitor fit the
Langmuir isotherm to obtain good results on regular OLS
calculations, actually we are not aware of any inhibitor/

metal system following Langmuir isotherms. It is enough
that the WILA function works as the logarithm of a true
adsorption equilibrium constant, and we obtain better
results than those employing the logarithm of inhibitor
efficiencies.

Among the most efficient inhibitors are many thiourea
derivatives, 1,3-dibutyl, 1,3 dimethyl and 1,3 diethyl
thiourea, followed by few amines like diphenyl amine,
aniline, thiourea itself and 3-butyne-1-ol alcohol. On the
other side we point out the aliphatic amines among the
less efficient inhibitors isopropylamine, sec-butylamine,
prophylamine and diethylamines. Such data provide
important chemometric information related to the absence
of any inhibitor efficiency.

Calculations

The AM1 methodology coded on Mopac 6.010 was
employed for the quantum descriptor calculations, except
for the volume calculation that was carried out with
Pcmodel11 program. For the QSPR calculations we used
the QSAR program, written by Fedders and Ponder,12 and
slightly modified in our laboratory. The PCA and PLS were
carried out with the Unscrambler 6.11 software.13

Additionally to the quantum descriptors, a group
contribution descriptors have been employed to offer a well-
balanced descriptor set. Implicitly this is related to the
balance between the classical theories, which have local

Table 1. The twenty-three inhibitors employed and its WILA value for
the function, ln(θM/(1-θ))

Compound ln(θM/1-θ)

1 Tributylamine 7.45
2 Aniline 7.96
3 n-Octylamine 6.44
4 Diphenylamine 8.46
5 Dodecylamine 7.03
6 di-n-Butylamine 5.99
7 Cyclohexylamine 5.32
8 n-butylamine 4.02
9 Triethylamine 5.06
10 Hexylamine 4.64
11 sec-Butylamine 3.46
12 Diethylamine 3.73
13 Propylamine 3.47
14 Isopropylamine 2.95
15 1,3-Dibutyl-2-thiourea 9.60
16 1,3-Diethyl-2-thiourea 9.17
17 1,3-Dimethyl-2-thiourea 8.99
18 Thiourea 7.80
19 Propargyl alcohol 7.63
20 2-Pentyn-1-ol 4.68
21 3-Butyn-1-ol 7.60
22 2-Butyn-1-ol 4.28
23 2-Butyne-1,4-diol 4.56
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and group contribution and the quantum theories, collective
by the nature of the chemical theories.

The group descriptors used were the following: A1 is
the number of RNH

2
 groups (primary amines); A2 is the

number of R
1
R

2
NH groups (secondary amines); A3 is the

number of R
1
R

2
R

3
N groups (tertiary amines); NB is the

number of phenyl groups; NC is the number of cyclic
carbon rings; NCS is the number of CS bonds; NT is the
number of triple CC bonds; NOH is the number of OH
groups; NCR is the average number of carbon atoms within
a branch; NR is the branching number; while N is the
inhibitor number of moles present in the vessel. These
group contribution descriptors are listed on Table 2, and
totalize eleven descriptors of simple and ready evaluation.

The quantum set of descriptors concerns the following
molecular properties: ED is the dimerization energy; M is
the molecular IC mass; P is the polarizability given in atomic
units; C is the charge of the polar group, C1 is the charge
of the S, N and triple CC adsorption site; C2 is the charge
of the aromatic ring (or C in presence of a polar group),
C12 is the charge of two neighbor atoms to the polar group;
C13 is the charge of the three neighbor atoms to the polar
group; C14 is the charge of the four neighbor atoms to the
polar group; EH is the HOMO energy; EL is the LUMO
energy; DIF is the energy gap, DP is the dipole; V is the
calculated volume. The fourteen quantum descriptors are
listed on Table 3 while the whole set employs twenty-five
molecular descriptors. The polar group is defined as the
amine, alcoholic or amide group present.

Results and Discussion

The calculations were carried out with centered and
self-scaled descriptors and the response function. The
calculations employed up to the 25 descriptors previously
described.

Principal Component Analysis (PCA)14,15

A preliminary principal component analysis (PCA)
has been carried out in order to identify possible linear
dependencies and the descriptor variance. The energy
gap have been identified as an obvious linear
dependency to the HOMO and LUMO energy. The main
component, PC1, is a mixture of volume and molecular
masses with minor contributions from dimerization
energies, polarizability, the energy gap and the LUMO
energy. The second component, PC2, showed a small
participation of dipole moment. These results are
expected since the whole set has masses within the 56-
188 au range and therefore masses, volume and
polarizability, three strongly correlated descriptors, are
dominant terms in the main components.

A cluster analysis was conducted to identify possible
anomalous molecules. Figure 1 presents the score
cluster plot for PC2/PC1. Other scoring functions are
available upon request. The whole family of alcohols
(19-23) has been grouped with negative values of PC1
while the aliphatic amine family (1,3,5-14) and the

Table 2. Table with all the groups contributing descriptors values for each corrosion inhibitor

Compound A1 A2 A3 NB NC NCS NT NOH NCR NR N

1 0 0 1 0 0 0 0 0 4 3 0.032
2 1 0 0 1 0 0 0 0 0 0 0.064
3 1 0 0 0 0 0 0 0 8 1 0.046
4 0 1 0 2 0 0 0 0 0 0 0.035
5 1 0 0 0 0 0 0 0 12 1 0.032
6 0 1 0 0 0 0 0 0 4 2 0.046
7 1 0 0 0 1 0 0 0 0 0 0.060
8 1 0 0 0 0 0 0 0 4 1 0.082
9 0 0 1 0 0 0 0 0 2 3 0.059
10 1 0 0 0 0 0 0 0 6 1 0.057
11 1 0 0 0 0 0 0 0 3 2 0.082
12 0 1 0 0 0 0 0 0 2 2 0.082
13 1 0 0 0 0 0 0 0 3 1 0.101
14 1 0 0 0 0 0 0 0 1 2 0.101
15 0 2 0 0 0 1 0 0 4 2 0.031
16 0 2 0 0 0 1 0 0 2 2 0.045
17 0 2 0 0 0 1 0 0 1 2 0.057
18 2 0 0 0 0 1 0 0 0 2 0.078
19 0 0 0 0 0 0 1 1 3 1 0.108
20 0 0 0 0 0 0 1 1 5 1 0.059
21 0 0 0 0 0 0 1 1 4 1 0.071
22 0 0 0 0 0 0 1 1 4 1 0.071
23 0 0 0 0 0 0 1 2 4 1 0.069
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aromatic amine family (2,4) showed a preference for
extreme values of PC2, i.e. a superior and inferior
stripes of molecules with large positive and negative
(absolute) values of PC2. The thiourea derivatives (15-
18) can be seen with positive values for PC2 within the
19-30 range forming a stripe in the superior part of the
score plot. The stripping profile of the score plot shows
that each family interacts with the duplex steel in a
different way, with a major distinction for the aromatic
amine molecules. It is also interesting to note that the
largest aliphatic amines (1,5,6,9) are slightly apart from
the main group, especially the larger ones like tributyl
amine (1) and dodecylamine (5). This might be an

indication of a different interaction mechanism with
amines having large number of carbon atoms.

Ordinary Regression Analysis (OLS)14,15

In order to assess the physical/chemical most
relevant descriptors to the prediction of ihnibition
efficiency we shall present results for the use of the
weigth isoesteric Langmuir adsorption function, ln(Mθ/
1-θ), correlated to the previous twenty-five molecular
descriptors. To search for the most representative set
among all descriptors for inhibition prediction we shall
introduce the average error function, defined as the
squared deviations sum of the L corrosion inhibitors
WILA functions to the fitted results as shown below:

(1)

where the a
j
 coefficient was obtained through a OLS

calculation employing all molecular IC available as the
calibration ensemble. Unfortunately such a type of
model is well suited to reproduce the calibration data,
especially when using a large descriptor set, but is not
adequate to predict ICE of molecules that are not
present on the calibration ensemble. In order to improve
the predictability of our model we shall present a model
based on the minimization of an error based on the

Table 3. Table with all quantum descriptors values for each corrosion inhibitor

Compound ED M P C C1 C2 C12 C13 C14 EH EL DIF DP V

1 -11.10 185.35 15.054 -0.447 -0.281 -0.447 -0.338 -0.333 -0.338 -8.900 2.852 11.75 0.805 397
2 -1.78 93.13 8.643 0.091 -0.327 -0.685 0.272 -0.145 -0.145 -8.523 0.635 9.16 1.538 139
3 -1.55 129.24 10.540 -0.140 -0.348 -0.140 -0.426 -0.203 -0.207 -9.703 3.435 13.14 1.422 270
4 0.90 169.23 17.724 0.086 -0.263 -0.643 -0.198 -0.048 -0.193 -8.251 0.204 8.46 0.833 257
5 -10.86 185.35 15.173 -0.423 -0.336 -0.423 -0.423 -0.197 -0.198 -9.798 3.614 13.41 1.582 379
6 -3.36 129.24 10.691 -0.294 -0.299 -0.294 -0.374 -0.146 -0.373 -9.248 3.352 12.60 1.203 274
7 2.165 99.18 7.938 -0.091 -0.334 -0.091 -0.369 -0.197 -0.192 -9.726 3.463 13.19 1.485 190
8 -1.570 73.13 5.731 -0.144 -0.338 -0.144 -0.423 -0.198 -0.199 -9.788 3.666 13.45 1.550 151
9 -5.360 101.19 8.454 -0.451 -0.275 -0.451 -0.335 -0.331 -0.335 -8.960 2.890 11.85 0.902 224
10 -3.420 87.00 8.147 -0.140 -0.348 -0.140 -0.426 -0.203 -0.207 -9.701 3.467 13.17 1.424 211
11 1.060 73.13 5.721 -0.093 -0.333 -0.093 -0.372 -0.197 -0.192 -9.802 3.603 13.40 1.469 155
12 -0.770 73.13 5.973 -0.299 -0.305 -0.299 -0.378 -0.155 -0.378 -9.286 3.226 12.51 1.164 163
13 -1.580 59.00 4.565 -0.141 -0.349 -0.141 -0.427 -0.208 -0.204 -9.695 3.586 13.28 1.439 124
14 3.970 59.11 4.530 -0.094 -0.335 -0.094 -0.373 -0.193 -0.197 -9.838 3.619 13.46 1.502 123
15 -5.650 188.33 15.822 -0.810 -0.338 -0.810 -0.186 -0.154 -0.165 -8.450 0.151 8.60 5.844 328
16 -6.150 132.23 10.960 -0.811 -0.336 -0.811 -0.184 -0.155 -0.166 -8.463 0.140 8.60 5.786 211
17 -8.530 104.18 8.083 -0.834 -0.319 -0.834 -0.160 -0.177 -0.178 -8.292 0.314 8.61 5.039 153
18 -7.670 76.12 5.132 -0.944 -0.328 -0.944 -0.154 -0.221 -0.221 -8.536 0.326 8.86 5.566 69
19 -4.450 56.06 3.833 -0.582 -0.356 -0.582 -0.356 -0.082 -0.488 -10.633 1.696 12.33 1.716 92
20 1.630 84.12 6.741 -0.577 -0.350 -0.577 -0.350 -0.129 -0.447 -10.304 1.503 11.81 1.943 157
21 -3.440 70.09 5.073 -0.481 -0.373 -0.481 -0.373 -0.259 -0.186 -10.675 1.839 12.51 1.724 126
22 -3.440 70.09 5.500 -0.580 -0.353 -0.580 -0.357 -0.130 -0.187 -10.339 1.480 11.82 1.950 125
23 0.140 86.09 5.947 -0.598 -0.368 -0.598 -0.368 -0.099 -0.499 -10.562 1.149 11.71 0.938 140

Figure 1. PCA scorings for the molecular descriptor variance. The X
axis represents the PC1 while Y axis represents PC2.
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cross-validation of a large ensemble of molecules. In
this procedure a single or a pair of molecules is
excluded from the OLS procedure defining the model,
and then the squared deviations is summed for the
excluded molecules. In the case of pairs, considering
the existence of L(L-1)/2 different pairs of possible
exclusions the error is summed over all possibilities.

Therefore the first order cross-validation error is shown
on equation 2 below, defined by the calculation of a single
molecule through an OLS model calibrated with all but
this particular inhibitor. The overall error is divided by L,
the number of inhibitor corrosion molecules.

(2)

Our results rely on a model based on the second-
order cross-validation, which is defined by a large
number of predictive OLS calculations including all
molecule pairs. In this case a particular pair is chosen
and the OLS is determined without this information.
The response function is then evaluated for these pair
of molecules and the errors is summed up to include
all possible pairs on the molecular set. In our case,
considering the original 23 molecules, there exists 253
different molecular pairs and the second-order cross-
validation error sums up all these 253 bootstraps. The
average second order cross-validation error is shown
below

(3)

It is well known the effect of successive new variable
additions to the descriptor set on the OLS calculation.
Usually the calibration error lowers together with the first
order cross-validation error, while the second order cross-
validation error shows an irregular behaviour with an
initial diminishing followed by a clear divergence with
large descriptor number.

In order to seek for the most representative set of
descriptors for inhibition efficiency corrosion to be used
we developed a simple model based on additions of a
single descriptor to a previous set. In this procedure
we start with a single descriptor, chosen as the one with
the lowest second-order cross-validation error. On a
particular iteration the second order cross-validation
error is calculated for each descriptor addition, and the
model decides to employ the one, which proved to show
the smallest second order cross-validation error. For
each variable selection the model carries out 253×25

OLS calculations, i.e. 6325 bootstrap calculations,
choosing the set with smallest predictive error. The
procedure is then continued with successive single
additions of several descriptors until the original set
with 25 descriptors is re-obtained. Figure 2 shows the
variation of the calibration, first and second order cross-
validation errors plotted against the employed number
of descriptors.

Among the most relevant predictive descriptors our
model points out the energy gap (DIF), the molecular mass
(M), the charge between four close atoms (C14), the dipole
and the ramification number (NR) as the five main
descriptors. The number of tertiary amines (A3), the
number of secondary amines (A2), the average number
of carbon atoms within a branch (NCR), the number of
phenyl groups (NB), and the number of moles of the
inhibitor (N) are among the ten most relevant descriptors
for inhibition prediction. On the contrary the number of
primary amines (A1), the number of sulfur-carbon groups
(NCS), the charge of the three neighbor atoms to the polar
group (C13) and the charge of the S,N an C molecular
sites (C1) are the descriptor which showed the minor
relevance to predict ICE values.

Comparing the most representative descriptors with
those previously reported in the literature its noticeable
the presence of the HOMO-LUMO energy gap, i.e. the
dipole moment and the molecular mass in agreement
to previous articles present in the literature. Surprisingly
we find the branching ratio (NR) and the charge
between the three neighbor atoms (C13) as unusual very
important predictive descriptors, in contrast to our
previous experience that found these descriptors not
relevant to calibration purposes. On the contrary the
NCS and A1 has been found surprisingly as not relevant

Figure 2. Variation of <E
0
>, lower curve, <Q

1
>, intermediate curve, and

<Q
2
> upper curve for the OLS results with the number of most represen-

tative descriptors.
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for predicting variables, even though experiences based
on calibration optimizations showed these variables to
be very important in many cases.

A detailed inspection of Figure 2 shows a minimum
in the second order cross-validation error with seven
variables. We present this particular model, Y

7
, the

descriptors and its respective weights below. It must be
pointed out that the symbols M, C14, DIF, D, A2, A3 and
NR stands for the standard deviation of these molecular
properties values. This particular model showed
R2 = 0.7961 and Q2 = 0.6755 with a fairly good results for
the correlation of 23 IC molecules.

(Y-Y
m
)/σ

Y
 = Σ c

i
 (X

i
 – X

im
) /σ

Xi
 = 0.358 M – 0.438 C14 +

0.0544 DIF + 0.337 D + 0.1572 A2 + 0.2535 A3 – 0.3764 NR

Figure 3 shows the calibration results for the Y
7
 model

while Figure 4 presents the simple cross-validation
results. The cross-validation results showed a similar
performance to the calibration plot (Figure 3) with a few
ICs exhibiting larger errors, e.g. dodecylamine, di-n-
butylamine and 1,3-diethyl-2-thiourea.

Although the reported values for R2 = 0.7961 and
Q2 = 0.6755 are somewhat lower than those observed in
traditional biological studies, we must point out that
these values results from a major concern regarding
predictibility on second-order cross-validation
procedures. Results with larger values for R2 and Q2 could
have been found with a different model choice, for
instance one based on the maximization of R2 or Q2.
Actually we obtained previous results in this study with
regression coefficients as large as R2 = 0.9323 and
Q2 = 0.8037 with the nine best descriptors by the
maximizing the R2 value. These values, however, are
excellent for calibration, while the Y

7
 reported values

are the best possible for cross-validation procedures of

second order. We expect that our results should be a better
way of finding the most representative descriptors for
predicting inhibition corrosion efficiencies in the future.

Partial Least-Squares (PLS)14,15

In order to assess the physical/chemical relevant
descriptors of the adsorption and corrosion inhibition
process we shall present results for the partial least-squares
analysis carried out. Picking out two latent components
and carrying a PLS for the WILA function as the response
property, we obtain a value for R of 0.874. Clearly, much
better results were obtained for the WILA function.

Figure 4. OLS validation correlation graph for the duplex steel.

Table 4. The PLS loadings for the two main components

Descriptors PC1 loadings PC2 loadings

A1 -0.003547 -0.007547
A2 0.010750 0.029840
A3 0.000177 -0.003600
NB 0.003762 0.010850
NC -0.000446 -0.001446
NCS 0.006380 0.021710
NT -0.000991 0.003010
NOH -0.001879 0.000886
NCR -0.006234 -0.072410
NR 0.000042 -0.006614
N -0.000328 -0.000414
ED -0.06186 -0.145000
M 0.646000 0.71800
P 0.060780 0.007262
C -0.003507 -0.012530
C1 0.002324 0.008491
C2 0.000191 0.001208
C12 0.000639 0.001806
C13 0.000132 -0.000031
C14 -0.005315 -0.018410
EH 0.001164 0.029530
EL -0.026010 -0.09535
Diff -0.003766 -0.125000
DP 0.025670 0.09117
V 0.757000 -0.645000

Figure 3. OLS calibration correlation graph for the duplex steel.
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Concerning the validation coefficient correlation (Q) we
shall point out the value of 0.816.

The PLS results show similar results and points to
an intense mixture with no dominant effect. Table 4
presents the regression coefficient loadings for the two-
component PLS obtained with the WILA response
function. The largest contributions, in descending order
of importance are V, M, ED, DIFF, DP, P, EL, NCR, EH
and NCS. Table 4 presents the main components
loadings and the remaining from a tenth to a hundreth
of the major descriptor contributions. Four (M, DP, NCS
and EL) of the nine also appear in the OLS model as
the most important descriptors. Figure 5 shows the
calibration while Figure 6 shows the validation results
for the measured-predicted plot for the WILA function.

It is very informative to investigate the molecular
systems with the poorest predictions by PLS
methodology. Clearly the alcohol family, 3-butine-1-ol,
propargylic alcohol, 2-butine-1-ol and 2-butine-1,4-ol
are the ones with the worse prediction results. All these
systems have triple bonds conjugated to alcohol groups
and our results suggest that a different mechanism

should be taking place within this set. Several authors
obtained spectroscopic evidence of a IC polymerization
over carbon-steel, however no information yet is
available for the duplex steel. Alternativelly the ICE
for thiourea and its derivatives are much smaller for
the duplex steel than it is for other steel types. Similarly
other alcohols show very disappointing inhibition
corrosion efficiencies, another point favoring a different
inhibition corrosion mechanism between amines and
alcohols. The referee kindly suggested the use of few
alcohols conjugated to double bonds in the inhibitor
molecule set in order to investigate this particular
structure in the process.

Conclusions

Many chemometric studies have been reported in
the literature concerning inhibition corrosion and
quantum descriptors. Most of these studies employed
six to eight molecules and few (four to six) descriptors.
Our ICE results reports were obtained with a large
number of molecules and correlate to few relevant
descriptors. The final equation obtained with R2 =
0.7961 and Q2 = 0.6755 with 7 descriptors within the
OLS methodology points the most relevant descriptors
for predicting these ICEs while the R-value of 0.8872
and Q-value of 0.8310 obtained for the PLS procedure
points the performance of a three component fit. Both
results compare well, especially if we consider how
scarce are the studies with such large number of
molecules in the literature.

Many activities within this article dealt with
descriptor selection through calibration, validation or
combination and very reliable results were obtained
with selected descriptors. Although the selection of
these descriptors might indicate mechanistic
information care must be taken when using this
information due to its statistical nature. Actually most
of the descriptors show strong correlations between
themselves and it will always be not clear if the
elimination of a single variable should be credited to
its specific (chemical) role, to its statistical role or to
the correlations with other descriptors. So the indication
of descriptors selection sets should be interpreted only
as a slight indication of mechanistic value, that should
be complemented and cross-checked. This imprecise
pattern on the descriptor set comes with a model of
very accurate predictive power, and most predictions
show errors never superior to 5%.

Quantum and group contribution descriptors were
used, and the results show that the use of a mixed

Figure 5. PLS calibration correlation graph.

Figure 6. PLS validation correlation graph.
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character descriptors offer a well-balanced description
between quantum and group contributions. From our
studies it is clear that quantum descriptors are a better
choice when predictivity is the main issue. Among the
descriptors with major contribution we should point out
the molecular dipole, the energy gap, the branching
ratio (NR) and the charge between the four neighbor
atoms (C14) are important predictive descriptors.

Finally we should report that no previous work have
been found with QSPR study for the inhibition corrosion
efficiency on duplex steel. Therefore, more work is still
required toward understanding structure-property
correlation on inhibition corrosion studies, particularly
concerning the analysis of different steel types. Work
is in progress dealing with this point.
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