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Máquinas de vetor de suporte por mínimos quadrados (LS-SVM) e mínimos quadrados 
parciais (PLS) têm recebido atenção considerável em quimiometria para análise multicomponente. 
Foi realizada uma comparação entre os métodos LS-SVM e PLS aplicando-os na determinação 
espectrofotométrica simultânea de cipermetrina, permetrina e tetrametrina. Os espectros de 
absorbância no UV de soluções metanólicas foram medidas nas faixas de concentração 0,1-12,9, 
0,1-24,9 e 0,1-13,8 mg mL-1 para cipermetrina, permetrina e tetrametrina, respectivamente. A 
determinação simultânea por espectrofotometria no UV desses analitos representa um problema 
em química analítica devido às interferências espectrais. Dessa forma foi realizada a resolução da 
mistura por métodos quimiométricos. As raízes quadradas do erro quadrático médio de previsão 
(RMSEP) para cipermetrina, permetrina e tetrametrina por PLS e LS-SVM foram 0,1629, 0,2828, 
0,1984 e 0,0766, 0,0907, 0,0467, respectivamente. A habilidade do método para análise de amostras 
em matrizes sintéticas e reais apresentou resultados satisfatórios. Os dados obtidos mostraram que 
o LS-SVM produziu melhores resultados que o PLS.

Least-squares support vector machines (LS-SVM) and partial least squares (PLS) have received 
considerable attention in the chemometrics for multicomponent analysis. A comparison was 
made between LS-SVM and PLS methods by applying them to simultaneous spectrophotometric 
determination of cypermethrin, permethrin and tetramethrin. The UV absorbance spectra of 
the methanolic solutions of the analytes were measured in the concentration ranges, 0.1-12.9, 
0.1-24.9 and 0.1-13.8 mg mL-1 for cypermethrin, permethrin and tetramethrin, respectively. The 
simultaneous determination of cypermetrin, permetrin and tetrametrin by UV spectrophotometry is 
a difficult problem in analytical chemistry, due to spectra interferences. The resolution of mixture 
of cypermetrin, permetrin and tetrametrin by chemometrics methods was performed. The root 
means square error of prediction (RMSEP) for cypermetrin, permetrin and tetrametrin by PLS 
and LS-SVM models were 0.1629, 0.2828, 0.1984 and 0.0766, 0.0907, 0.0467, respectively. The 
capability of the method for the analysis of synthesis and real matrix samples were evaluated by 
the determination of cypermethrin, permethrin and tetramethrin with satisfactory results. The 
resultant data explained that LS-SVM produced better results than PLS. 
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Introduction 

The simultaneous determination of several components 
in a mixture can be difficult task, especially when their 
analytical characteristics are not very different. In recent 
years attention has been directed toward methods of analysis 

involving multicomponent systems based on chemometrics 
methods.1 Nowadays, multivariate calibration has become 
an indispensable part of modern analytical chemistry. A 
goal of multicomponent spectral analysis is to construct 
a calibration model relating the outputs of multivariate 
spectrometer to the compositions or properties of analytical 
samples. Among the different regression methods existed 
for multivariate calibration, the factor analysis-based 
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methods including partial least squares (PLS) regression 
has received considerable attention in the chemometrics 
literatures.1-3 It is based on linear models and is used 
as satisfactory solution in most cases, where a linear 
relationship is present between the analytical signal and the 
property to be determined. However, PLSR is not always 
the best option, especially in situations where a nonlinear 
model is clearly required. Theory and application of PLSR 
have been discussed in previous studies.4-8

Support vector machine (SVM) introduced by Vapnik9,10 
is a valuable tool for solving pattern recognition and 
classification problem. SVMs can be applied to regression 
problems by the introduction of an alternative loss function. 
Due to its advantages and remarkable generalization 
performance over other methods, SVM has attracted 
attention and gained extensive application.9 SVM shows 
outstanding performances because it can lead to global 
models that are often unique by embodies the structural 
risk minimization principle,9 which has been shown to 
be superior to the traditional empirical risk minimization 
principle. Furthermore, due to their specific formulation, 
sparse solutions can be found, and both linear and nonlinear 
regression can be performed. However, finding the final 
SVM model can be computationally very difficult because 
it requires the solution of a set of nonlinear equations 
(quadratic programming problem). As a simplification, 
Suykens and Vandewalle11 proposed a modified version 
of SVM called least-squares SVM (LS-SVM), which 
resulted in a set of linear equations instead of a quadratic 
programming problem, which can extend the applications 
of the SVM. There exist a number of excellent introductions 
of SVM,12-24 and the theory of LS-SVM has also been 
described clearly by Suykens et al.11,12 and application of 
LS-SVM in quantification and classification reported by 
some of the workers.25-32 So, we will only briefly describe 
the theory of LS-SVM. 

In principle, LS-SVM always fits a linear relation  
(y = wx + b) between the regression (x) and the dependent 
variable (y). The best relation is the one that minimizes 
the cost function (Q)containing a penalized regression 
error term: 

 (1)

subject to:

 (2)

where φ denotes the feature map. The first part of this cost 
function is a weight decay which is used to regularize weight 
sizes and penalize large weights. Due to this regularization, the 

weights converge to similar value. Large weights deteriorate 
the generalization ability of the LS-SVM because they can 
cause excessive variance. The second part of cost function is 
the regression error for all training data. The relative weight of 
this part as compared to the first part indicated by the parameter 
γ , which has to be optimized by the user. 

Similar to other multivariate statistical models, the 
performances of LS-SVMs depends on the combination of 
several parameters. The attainment of the kernel function 
is cumbersome and it will depend on each case. However, 
the kernel function more used is the radial basis function 
(RBF), exp(–(||x

i
 – x

j
2||)/2s2) a simple Gaussian function, 

and polynomial functions 〈x
i
, x

j
〉d where s2 is the width 

of the Gaussian function and d is the polynomial degree, 
which should be optimized by the user, to obtain the support 
vector. For σ of the RBF kernel and d of the polynomial 
kernel it should be stressed that it is very important to 
do a careful model selection of the tuning parameters, in 
combination with the regularization constant γ, in order to 
achieve a good generalization model.

Pyrethroid insecticides are used to control a number 
of insect species on economic crops. Pyrethroids are 
effective pest control chemicals and have low mammalian 
toxicity. Cypermetrin, permetrin and tetrametrin have been 
identified as highly effective contact insecticides. Owing 
to its availability, insecticides are misused in homicidal/
suicidal poisoning cases. Consequently, detection and 
determination of these insecticides is necessary in forensic 
toxicology.33,34 In this project, least-squares support 
vector machines in conjugation with UV absorbance was 
used to simultaneous determination of cypermethrin, 
permethrin and tetramethrin in synthetic and real samples. 
A comparison was also made between LS-SVM and PLS 
regression to extent the approach existed in the filed. The 
proposed methodology is fast, simple and does not generate 
hazardous chemical wastes, thus makes it easily possible 
to be used in control analysis of cypermethrin, permethrin 
and tetramethrin in environmental. 

Experimental

Reagents and solutions

All reagents were of analytical reagent grade. Stock 
standard solutions of cypermethrin, permethrin and 
tetramethrin, 1000 µg mL-1, were prepared by dissolving 
appropriate amount of solutes in methanol. Working 
solutions of lower concentrations were prepared by proper 
dilution with methanol from the stock standard solutions. 
This solution was stored in the dark at 4 °C and was found 
to be stable for at least 2 weeks. 
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Apparatus and software

A Hewlett-Packard 8453 diode array spectrophotometer 
controlled by a Hewlett-Packard computer and equipped 
with a 1-cm path length quartz cell was used for UV spectra 
acquisition. Data acquisition between 200 and 260 nm were 
performed with UV-Visible ChemStation program (Agilent 
Technologies), running under Windows XP. 

The quantitative evaluations were carried out by using 
the PLS program from PLS-Toolbox version 2.0 for use 
with Matlab from Eigenvector Research Inc. The LS-SVM 
optimization and model results were obtained using the 
LS-SVM lab toolbox (Matlab/C Toolbox for Least-Squares 
Support Vector Machines).11 All programs were run on a 
Pentium IV (CPU at 3.0 GHz and RAM 1.0 GB) personal 
computer with windows XP operating system was used. 

Procedure

Standard calibration and prediction set
A mixture design was used to maximize statistically 

the information content in the spectra.35 According to 21 
experimental design (Table 1) solutions were used to construct 
the models (calibration set) and another 10 solutions to 
validate them (prediction set) in that these were not included 
in the calibration set but were employed for independent tests 
(Table 2). The concentrations of cypermethrin, permethrin 
and tetramethrin were varied between 0.1-12.9, 0.1-24.9 and 
0.1-13.8 mg mL-1, respectively. The mixed standard solutions 
were placed in a 10 mL volumetric flask and completed to 
the final volume with methanol. The absorption spectra were 
recorded between 200 and 260 nm against blank of methanol. 
The spectra region between 200 and 260 nm, which implies 
working with 61 experimental points for each spectra (as 

the spectra are digitized each 1.0 nm), was selected for 
analysis, because this is the zone with the maximum spectral 
information from the mixture components of interest.

Procedure for the determination of cypermethrin, per-
methrin and tetramethrin in groundwater

After addition amounts of cypermethrin, permethrin 
and tetramethrin to water samples, double extraction 
with n-hexane was used as below. Water samples 

Table 1. Concentration data of the different mixtures used in the calibration 
set for the determination of cypermethrin, permethrin and tetramethrin 
(µg mL-1)

Mixture Cypermethrin Permethrin Tetramethrin

M1 0.1 0.1 13.8

M2 2.7 0.1 10.9

M3 5.3 0.1 8.2

M4 7.9 0.1 5.5

M5 10.5 0.1 2.8

M6 12.9 0.1 0.1

M7 10.5 5.1 0.1

M8 7.9 10.1 0.1

M9 5.3 15.1 0.1

M10 2.7 20.1 0.1

M11 0.1 24.9 0.1

M12 0.1 20.1 2.8

M13 0.1 15.1 5.5

M14 0.1 10.1 8.2

M15 0.1 5.1 10.9

M16 2.7 5.1 8.2

M17 5.3 5.1 5.5

M18 7.9 5.1 2.8

M19 2.7 10.1 5.5

M20 5.3 10.1 2.8

M21 2.7 15.1 2.8

Table 2. Composition of synthetic mixtures and predicted values for determination of cypermethrin, permethrin and tetramethrin (µg mL-1)

Added Found (PLS) Error (%) Found (LS-SVM) Error (%)

Cyp. Per. Tet. Cyp. Per. Tet. Cyp. Per. Tet. Cyp. Per. Tet. Cyp. Per. Tet.

0.5 3.5 5.0 0.53 3.72 5.08 6.00 6.29 1.60 0.51 3.53 4.99 2.00 0.75 −0.16

5.5 10.0 3.0 5.62 9.23 2.97 2.18 −7.70 −0.92 5.52 9.75 3.07 0.36 −2.53 2.35

0.3 2.0 11.0 0.29 2.11 10.56 −4.94 5.50 −4.00 0.31 2.03 10.93 3.33 1.53 −0.68

8.0 0.3 2.5 7.83 0.28 2.64 −2.09 −6.67 5.60 7.95 0.29 2.54 −0.68 −3.33 1.78

2.0 2.0 2.0 2.09 1.89 1.91 4.50 −5.50 −4.50 2.02 2.05 2.03 1.05 2.55 1.38

4.2 3.5 0.3 4.34 3.34 0.29 3.44 −4.57 −3.33 4.20 3.53 0.30 −0.02 0.97 0.00

6.5 12.0 10.0 6.53 11.87 9.74 0.50 −1.07 −2.59 6.44 12.03 9.94 −0.97 0.23 −0.57

11.5 2.0 5.0 11.10 2.08 4.94 −3.48 4.00 −1.20 11.28 2.02 4.94 −1.92 1.00 −1.25

3.8 18.0 6.5 3.94 17.74 6.61 3.68 −1.46 1.75 3.81 17.90 6.48 0.16 −0.58 −0.27

2.7 16.0 8.2 2.59 16.13 7.91 −4.10 0.81 −3.48 2.74 15.97 8.17 1.57 −0.18 −0.36
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(500 mL) were shaken with 50 mL of n-hexane for 2 min. 
The collected organic phases were dried by passing 
them through anhydrous Na

2
SO

4
 and evaporated using 

a rotary vacuum evaporator. The concentrated samples 
were eluted with 1 mL acetonitrile and cypermethrin, 
permethrin and tetramethrin were determined as 
described above.  

Statistical parameters 
For the evaluation of the predictive ability of a 

multivariate calibration model, the root mean square error 
of prediction (RMSEP) can be used:

 (3)

where y
pred

 is the predicted concentration in the sample, y
obs

 
is the observed value of the concentration in the sample and 
n is the number of samples in the validation set. The square 
of correlation coefficient (R2), which indicates the fitting 
of data in a straight line, was calculated as:

 (4)

where –y  is the mean of actual concentration in the 
prediction set. 

Selection of optimum number of factors
The selection of the number of factors in the factor 

analysis-based methods is very important for achieving 
the best prediction. The model refinement procedure used 
the predicted residual errors sum of squares (PRESS) of 
the leave-one-out cross-validation (LOO-CV) to select the 
optimal number of PLS factors. The PRESS was computed, 
which is defined as follows:

 (5)

where y
i
 is the reference concentration for the ith sample 

and ^y
i
 represents the estimated concentration. To select 

the optimum number of factors, the criterion of Haaland 
and Thomas36 was used. The maximum number of factors 
used to determine the optimum PRESS was selected as 11 
(half the number of standards plus one). The F-statistic 
was used to make the significance determination. As the 
difference between the minimum PRESS and the other 
PRESS values becomes smaller, the probability that each 
additional factor is significant also decreases. Haaland and 

Thomas empirically determined that an F-ratio probability 
of 0.75 is a good choice. We selected as the optimum the 
number of factors for the first PRESS value whose F-ratio 
probability drops below 0.75.

Results and Discussion

Figure 1 shows the absorption spectra for the individual 
methanolic solution of cypermethrin, permethrin and 
tetramethrin. As this figure shows, there is a clear 
overlapping of the three spectra. This prevents the 
simultaneous determination of the cypermethrin, permethrin 
and tetramethrin by direct UV absorbance measurements. 
This problem was overcome by the use of least-squares 
support vector machines.

Mixture design

The standard solutions used in the multivariate 
calibration methods are mixtures of analytes. The quality 
of the multivariate calibration methods is dependent on 
the standard mixture solutions and presence or absence of 
outliers. Some important parameters should be inserted in 
preparing these standard solutions. First, the concentration 
of each analyte must be in its linear dynamic range; second, 
the concentration of analytes in the calibration samples must 
be orthogonal in order to give the most information from 
the analytical system; third, the sum of the concentrations 
of the analytes in a given mixture must be so that its 
absorbance does not exceed the maximum absorbance 
reading of the instrument; finally, the concentration of the 
prediction mixtures should span the same space as that of 
calibration mixtures.

Individual calibration curves were constructed 
with several points as absorbance versus cypermethrin, 

Figure 1. Absorption spectra of 8.5 mg mL-1 methanolic solutions of the 
(a) cypermethrin, (b) permethrin and (c) tetramethrin used in this study. 



A Comparative Study between Least-Squares Support Vector Machines and Partial Least Squares J. Braz. Chem. Soc.540

permethrin and tetramethrin concentrations. For constructing 
the individual calibration lines, the absorbencies were 
measured at 212, 214 and 222 nm against a blank for 
cypermethrin, permethrin and tetramethrin, respectively. 
The linear regression equation for the calibration 
graph for cypermethrin for the concentration range of 
0.1-12.9 mg mL-1 was A = 0.0462 + 0.0852C

cypermethrin
  

(r2 = 0.9912, n = 16), for permethrin for the concentration 
range 0.1-24.9 mg mL-1 was A = 0.0840 + 0.0634C

permethrin
  

(r2 = 0.9956, n = 16) and for tetramethrin for the 
concentration range 0.1-13.8 mg mL-1 was A = 0.0115 + 
0.0499C

tetramethrin 
(r2 = 0.9925, n = 15). The limits of detection 

were 0.04, 0.07 and 0.05 mg mL-1 for cypermethrin, 
permethrin and tetramethrin, respectively, and these were 
calculated according to calibration line characteristics. 

According to procedure section, the calibration matrix 
was designed. In Table 1, the compositions of the ternary 
mixtures used in the calibration matrices are summarized. 
For prediction set, ten mixtures were prepared according 
to procedure section (see Table 2). Principal component 
analysis (PCA) was used to check the standard mixtures for 
the presence of outlier and also to ensure the homogeneity 
between the calibration and prediction samples. To do 
so, the absorbance data matrices of the calibration and 
prediction samples were subjected to PCA, separately, and 
the standard mixtures were plotted in the factor space. 

Partial least squares analysis

Firstly, the PLS regression was applied on the spectral 
data for simultaneous determination of the analytes. Leave-
one-out cross-validation procedure was used to select the 
optimum number of PLS-latent variables for each analyte 
and the number of factors that produced the least PRESS was 
selected as optimum value. A plot of PRESS for cypermetrin, 
permetrin and tetrametrin as a function of the number of 
factors is shown in Figure 2. Table 3 shows the optimum 

number of factors and PRESS values for cypermetrin, 
permetrin and tetrametrin. The number of PLS-latent 
variables used to model absorbance-concentration is higher 
than the number of analytes, which can be attributed to the 
interaction between the compounds in the mixtures.

To investigate the prediction ability of the resulted 
PLS model and to compare with least-squares support 
vector machines, the calibrated PLS model were used for 
quantization of the analytes in a separate prediction set 
mixtures that did not have contribution in the model building 
steps. The resulted predicted concentrations along with the 
statistical quantities are represented in Table 2 and 3. 

Least-squares support vector machines 

LS-SVM was performed with radial basis function 
(RBF) as a kernel function. In the model development 
using LS-SVM and RBF kernel, γ and σ2 parameters 
were a manageable task, similar to the process employed 
to select the number of factors for PLS models, but in 
this case for a two-dimensional problem. In Figure 3 is 

Figure 2. Plots of PRESS of cross-validation for (a) cypermethrin, (b) 
permethrin and (c) tetramethrin as a function of the number of factors.

Table 3. Statistical parameters for the PLS and LS-SVM calibration models

Method PLS LS-SVM

Compound Cypermethrin Permethrin Tetramethrin Cypermethrin Permethrin Tetramethrin

NFa 5 6 5

PRESS 0.1230 0.3214 0.4223

γ 100 100 100

σ2 10 10 10

RMSEP 0.1629 0.2828 0.1984 0.0766 0.0907 0.0467

R2 0.9401 0.9748 0.9267 0.9631 0.9861 0.9799

LOD(mg mL-1)b 0.065 0.057 0.071 0.042 0.038 0.046
aNumber of factors; bLOD (limit of detection) = 3.3 s(0) where s(0) is the S.D. in the predicted concentration of cypermethrin, permethrin and tetramethrin 
in a blank sample37.
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for the determination of these three substances and their 
reported figure of merits are reported in the Table 3. Table 
3 also shows the RMSEP and R2 for synthetic series of 
cypermethrin, permethrin and tetramethrin mixtures. 

The proposed procedure was successfully applied for 
the assay of cypermethrin, permethrin and tetramethrin 
simultaneously in real samples. For this purpose, diverse 
spiked samples and reference materials were analyzed. 
Samples were treated and analyzed as described under 
procedure section. Table 4 summarizes the results 
obtained for real matrix samples. Table 4 shows that 
satisfactory recovery values were obtained for the samples 
assayed. Therefore, the LS-SVM model is able to predict 
the concentrations of cypermethrin, permethrin and 
tetramethrin in the real matrix sample.

Conclusion

PLS and LS-SVM as two powerful and the most widely 
used multivariate calibration methods were employed 
for simultaneous spectrophotometric determination 
of cypermethrin, permethrin and tetramethrin. The 
cypermethrin, permetrin and tetramethrin mixture is 
an extremely difficult complex system due to the high 
spectra overlapping observed between the spectra for 

shown the optimized surface result for the LS-SVM and 
RBF kernel, using the spectra calibration sets for three 
pyrethroid insecticides. These parameters were optimized 
generating models with values of γ in the range of 1-500 
and σ2 in the range of 1-100 with adequate increments. 
These ranges were selected from previous studies where 
it was establish the magnitude of the parameters to be 
optimized. For each combination of γ and σ2 parameters, 
root mean square error of cross-validation (RMSECV) 
was calculated and the optimum parameters were selected 
produced the smaller RMSECV. The cross-validation 
procedure was used to determine an average RMSECV 
between the three RMSCEV of the components, using the 
following equation:

 (6)

In Table 3 the optimum γ and σ2 parameters for the 
LS-SVM and RBF kernel are shown, using the calibration 
set for ternary mixtures of cypermethrin, permethrin 
and tetramethrin. Table 3 also shows RMSEP and R2 for 
comparison.

Determination of cypermethrin, permethrin and tetram-
ethrin in synthetic and real samples

The proposed method was successfully applied for 
determination of cypermethrin, permethrin and tetramethrin 
in several synthetic samples (their compositions are given 
in Table 2). The results obtained from simultaneous 
determination of cypermethrin, permethrin and tetramethrin 
by PLS and LS-SVM methods are listed in Table 2 and 
3. Table 2 also shows the percentage error for synthetic 
series of cypermethrin, permethrin and tetramethrin 
mixtures. As can be seen, the percentage error was also 
quite acceptable. Good results were achieved in LS-SVM 
model with percentage error ranges from −1.92 to 3.33%, 
−3.33 to 2.55% and −1.25 to 2.35% for cypermethrin, 
permethrin and tetramethrin, respectively. Figures of merit 
are regularly employed for method comparison. The results 

Figure 3. Parameter optimization response surface for LS-SVM model. 

Table 4. PLS and LS-SVM results applied on the real matrix samples (µg mL-1)

Samples 

Cypermethrin Permethrin Tetramethrin

Determined Recovery (%) Determined Recovery (%) Determined Recovery (%)

PLS LS-SVM PLS LS-SVM PLS LS-SVM PLS LS-SVM PLS LS-SVM PLS LS-SVM

1 (a) 0.93 0.99 93.0 99.0 1.81 1.97 90.5 98.5 2.13 2.02 106.5 101.0

2 (b) 4.46 4.97 89.2 99.4 4.19 4.11 104.8 102.8 4.29 4.05 107.3 101.3

3 (c) 2.63 2.56 105.2 102.4 2.85 2.94 95.0 98.0 5.16 5.03 103.2 100.6

Added of cypermethrin, permethrin and tetramethrin: (a) 1.0, 2.0 and 2.0 mg mL-1, (b) 5.0, 4.0 and 4.0 mg mL-1 and 2.5, 3.0 and 5.0 mg mL-1, 
respectively.
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their components. For overcoming the drawback of 
spectrophotometric interferences, PLS and LS-SVM 
multivariate calibration approaches are applied. According 
to the obtained results (percentage of error, RMSEP, R2 
and figure of merit), LS-SVM is better than PLS. LS-SVM 
gives a low limit of detection. The results of this study 
clearly show the potential and versatility of this method, 
which could be applied to simultaneous determination of 
cypermethrin, permethrin and tetramethrin in synthetic and 
real matrix samples.
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