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Neste artigo, é proposta uma nova técnica para transferência de calibração, que combina o 
Algoritmo das Projeções Sucessivas (APS) para seleção de variáveis robustas com a técnica de 
sub-amostragem e agregação de modelos conhecida como subagging. A técnica proposta tem por 
objetivo construir modelos de Regressão Linear Múltipla (RLM) que sejam robustos com respeito 
a diferenças na resposta instrumental de dois espectrômetros (primário e secundário). Para isso, 
um pequeno conjunto de amostras de transferência, com espectros adquiridos no instrumento 
secundário, é empregado para guiar o procedimento de seleção de variáveis. A eficiência da 
técnica proposta é demonstrada em um estudo de caso envolvendo a determinação por FT-IR da 
massa específica e duas temperaturas de destilação (T10%, T90%) em amostras de gasolina e a 
determinação por NIR de umidade em amostras de milho. Em termos do erro quadrático médio de 
predição no espectrômetro secundário, os modelos RLM gerados pela abordagem APS-subagging 
forneceram resultados melhores que os obtidos por Mínimos Quadrados Parciais empregando 
Padronização Direta por Partes. Em particular, o uso de subagging resultou em uma redução mais 
sistemática do erro de predição com a inclusão progressiva de amostras de transferência. 

This paper proposes a new technique for calibration transfer, which combines the Successive 
Projections Algorithm (SPA) for robust variable selection with the subsampling and model 
aggregation technique known as subagging. The proposed technique is aimed at building Multiple 
Linear Regression (MLR) models that are robust with respect to differences in the instrumental 
response of two spectrometers (primary and secondary). For this purpose, a small set of transfer 
samples with spectra acquired at the secondary instrument is employed to guide the variable 
selection procedure. The efficiency of the proposed technique is demonstrated in a case study 
concerning the FT-IR determination of specific mass and two distillation temperatures (T10%, 
T90%) for gasoline samples and the NIR determination of moisture in corn samples. In terms of 
the root-mean-square error of prediction at the secondary spectrometer, the MLR models obtained 
according to the SPA-subagging approach provided better results in comparison with Partial Least 
Squares employing Piecewise Direct Standardization. In particular, the use of subagging resulted 
in a more systematic reduction in the prediction error with the progressive inclusion of transfer 
samples.

Keywords: multivariate calibration, calibration transfer, variable selection, successive 
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Introduction 

In a wide sense, the term Calibration Transfer 
concerns a body of methods aimed at compensating 
for changes in experimental conditions that would 
compromise the prediction accuracy and reliability of a 
multivariate model. Such changes may refer to physical/

chemical characteristics of the sample (such as viscosity, 
granularity, surface texture, and presence of interferent 
species), environmental conditions (temperature and 
humidity, for instance), as well as the response function 
of the instrument itself. Issues associated to the instrument 
response typically arise because of general aging 
effects, deterioration of specific parts or maintenance 
interventions. Moreover, calibration transfer may have 
to be performed if the instrument employed for data 
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acquisition is not the same as the one used for building 
the calibration model.1

The methods for calibration transfer can be divided in 
two basic approaches, namely: (i) Standardization of the 
model coefficients, instrumental responses, or predicted 
values. Examples of this approach include the univariate 
standardization method of Shenk and Westerhaus,2 Slope/
Bias Correction (SBC),3 Direct Standardization (DS) 
and Piecewise Direct Standardization (PDS),4 among 
many others. (ii) Enhancement of model robustness. 
This approach encompasses the development of global 
models by inclusion of all the relevant sources of variation 
in the calibration data set,5 as well as the use of pre-
processing techniques to reduce the data variability that 
is not correlated to the y-property of interest. Examples of 
such techniques include baseline correction procedures,6 
Multiplicative Signal Correction (MSC),7 Finite Impulse 
Response (FIR) filters,8 Orthogonal Signal Correction 
(OSC),9 wavelet decompositions,10 Transfer by Orthogonal 
Projections (TOP)11 and variable selection algorithms.12,13

In addition, the methods can be divided into those 
based on data acquired under the two experimental 
conditions of interest (transfer data set) and those based 
solely on a single calibration data set. The use of transfer 
data provides valuable information concerning differences 
in the instrumental response caused by the changes in 
experimental conditions. However, the acquisition of such 
data can be cumbersome if, for instance, one desires to 
transfer the calibration between two instruments located 
in different laboratories.

Within the framework of variable selection for 
enhancement of model robustness, a recently proposed 
strategy involves the use of the Successive Projections 
Algorithm (SPA).13 This algorithm was originally proposed 
for the minimization of collinearity problems in Multiple 
Linear Regression (MLR).14 Honorato et al.13 adapted SPA 
to select variables that convey information concerning 
the property of interest and are robust with respect to 
the differences between two instruments. The proposed 
strategy was applied to two calibration transfer problems 
involving the determination of T90% in gasoline by FT-IR 
spectrometry and moisture in corn by Near Infrared (NIR) 
spectrometry. The results were favourably compared to those 
obtained by a Partial-Least-Squares (PLS) model employing 
PDS, which is typically used as a benchmark in calibration 
transfer studies.1 Both SPA and PDS use a transfer data 
set. However, unlike PDS, SPA does not require the same 
samples to be measured at both instruments. This can be 
a significant advantage if the instruments are located far 
apart or if the calibration transfer is aimed at compensating 
changes in the response of a single instrument over time.

This paper proposes an improvement on the selection 
of robust variables by SPA based on a technique known as 
Subagging.15 Subagging, which stands for Sub-sampling 
and Aggregating, generates an ensemble model from the 
combination of different models obtained by resampling 
the available data set. In a single-instrument calibration 
scenario, the use of subagging has been shown to provide 
considerable improvements on the prediction performance 
of MLR-SPA models.16 In view of such findings, the present 
paper investigates whether similar improvements can be 
obtained in the calibration transfer context.

Two data sets are employed to validate the proposed 
SPA-Subagging method. The first data set consists 
of gasoline samples with FT-IR spectra from two 
spectrometers, as well as reference values of specific mass 
and two distillation temperatures (T10% and T90%). These 
parameters are routinely used to monitor fuel quality, as 
well as to check conformity with standards issued by 
regulatory agencies. The second data set consists of corn 
samples with NIR spectra from two spectrometers and 
reference values of moisture. In both examples, the results 
are compared with those obtained by PLS models with the 
use of PDS.

Background and theory

Robust variable selection by SPA
In what follows, the instrumental response data 

available for calibration are assumed to be disposed in a 
matrix X

cal
 of dimensions (N

cal
 × K) such that the kth variable 

x
k
 is associated to the kth column vector x

k
 ∈ ℜNcal. The basic 

SPA formulation comprises two phases. The first phase 
consists of projection operations involving the columns 
of the X

cal
 matrix. These projections are used to define K 

chains of M variables each, where M = min{N
cal

 - 1, K} is 
the maximum number of variables that can be included in 
an MLR model with intercept term. Each chain starts with 
one of the variables under consideration and is successively 
augmented with additional variables chosen in order to 
display the least collinearity with the previous ones, as 
described in earlier papers.14,17 The notation {SEL(1, k), 
SEL(2, k), …, SEL(M, k)} is used to denote the index set 
of variables belonging to the chain initialized with x

k
 (that 

is, SEL(1, k) = k).
The second phase consists of evaluating candidate subsets 

of variables extracted from the chains generated in the first 
phase. The subset of m variables starting from x

k
 is defined 

by the index set {SEL(1, k), SEL(2, k), …, SEL(m, k)}.  
Since m ranges from one to M and k ranges from one 
to K, a total of M × K subsets are tested. In the standard 
version of SPA, each subset of variables is used to build 
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an MLR model, which is then applied to a separate set of 
N

val
 validation samples not included in the regression. The 

best subset is selected according to the minimum of the 
root-mean-square error of validation (RMSEV) defined as

 (1)

where y
val,n

 and ^y
val,n

 are the reference and predicted values 
of the parameter under consideration for the nth validation 
sample.

In the context of calibration transfer,13 a modification 
was proposed in order to select variables with greater 
robustness with respect to the differences between two 
given instruments (termed primary and secondary). For this 
purpose, a transfer data set of N

transf
 samples with spectra 

acquired at the secondary instrument was assumed to be 
available. The RMSEV metric employed in Phase 2 of SPA 
was then replaced with the following performance index:

E = 0.5 (RMSEV + RMSET) (2)

In this equation, RMSET is the root-mean-square error 
of prediction for the transfer data set, defined as

 (3)

where y
transf,n

 and ^y
transf,n

 are the reference and predicted 
values of the parameter under consideration for the nth 
transfer sample. It is worth noting that E evaluates not only 
the predictive ability of the model (assessed by RMSEV) 
but also its robustness (assessed by RMSET).

Subagging
The term Bagging (Bootstraping18 and Aggregating) 

refers to a class of techniques in which an ensemble model 
is obtained by combining different models generated by 
randomly resampling the available data set.19-23 In the 
most usual approach, the resampling process is applied to 
the original set of N objects in order to generate different 
calibration sets with the same number N of objects (including 
possible repetitions of the same object). Each of these sets 
is used to obtain a model by following usual multivariate 
calibration methods. Finally, the resulting models are 
combined according to some suitable ensembling procedure. 
In the case of MLR models, such a combination amounts to 
averaging the regression coefficients.20

As demonstrated by Breiman22 this procedure can lead 
to significant improvements in prediction ability, mainly 
related to reductions in the variance of the predictions. 

In particular, variable selection procedures for MLR 
may benefit from a smoothing effect in the regression 
coefficients induced by bagging.23 In fact, since different 
variables can be selected in the course of the resampling 
iterations, each variable may have a non-zero weight in the 
final ensemble model, instead of just being included in or 
excluded from the regression. It is interesting to notice that 
the number of variables selected for each individual MLR 
model must be smaller or equal to the number of calibration 
objects in order to avoid ill-conditioning problems. 
However, as a result of the model averaging process, the 
ensemble model may have more variables than the number 
of objects available for calibration.

More recently,  a method termed subagging 
(Subsampling and Aggregating) was proposed as an 
alternative to bagging.15 In this method, each individual 
model is constructed on the basis of a reduced number of 
N

cal
 < N objects randomly extracted, without replacement, 

from the available pool of N objects. The resulting models 
are then combined as discussed above. Such a procedure 
has computational advantages with respect to bagging 
because the calibration of each individual model is faster 
if fewer objects (N

cal
 instead of N) are employed in the 

regression. For example, in an MLR problem involving 20 
variables, reducing the number of calibration objects from 
N = 80 to N

cal
 = 50 decreases the computational time by 

approximately 25%. Such a result was obtained by using 
a Core 2 Duo processor running Matlab 6.5. 

A subagging strategy was proposed elsewhere16 to 
improve the accuracy of multivariate calibration models in 
spectrometric analysis. More specifically, subagging was 
applied to PLS models, as well as to MLR models obtained 
by using variable selection algorithms, namely SPA and a 
genetic algorithm (GA). In the proposed strategy, different 
models were obtained by randomly dividing the available 
pool of modelling samples into calibration and validation 
sets. The validation set was used to guide the selection of 
variables in SPA and GA. A case study involving the NIR 
determination of four diesel quality parameters (specific 
mass, sulphur content, and two distillation temperatures 
(T10% and T90%) was presented to demonstrate the 
effectiveness of the subagging approach. In the particular 
case of SPA, improvements of up to 33% were obtained 
in the prediction accuracy of the resulting MLR model.

Proposed method for calibration transfer
Henceforth, the term modelling set will refer to the 

set of N spectra acquired at the primary instrument and 
the corresponding y-values that are available for model-
building purposes. At each iteration of the subagging 
procedure, the modelling set will be split into two disjoint 
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sets of N
cal

 calibration objects and N
val

 validation objects 
such that N

cal
 + N

val
 = N. Moreover, it is assumed that 

N
transf

 samples, with spectra acquired at the secondary 
instrument, are available for calibration transfer. The 
spectral measurements of such samples do not necessarily 
need to be repeated at the primary instrument.

Figure 1 depicts the steps involved in the proposed 
subagging procedure. Given two sets of calibration and 
validation data, obtained by splitting the overall set of 
modelling data, and a transfer data set, the SPA formulation 
for robust variable selection is applied to generate an MLR 
model. After this procedure has been repeated a number of 
times, the resulting models are averaged in order to generate 
an ensemble model. It is worth noting that the transfer data 
set remains the same in all iterations.

In a recent paper,16 the incremental improvements in 
prediction accuracy for MLR-SPA were found to be minor 
after 30 subagging iterations. Therefore, this number will 
be adopted in the present work.

Experimental

Data sets

The same data sets employed in our previous studies13 
were adopted in the present work.

The first data set comprises 103 gasoline samples 
collected from gas stations in the Brazilian states of 
Pernambuco and Alagoas. Our previous work13 was 
concerned with the determination of the distillation 
temperature at which 90% of the sample has evaporated 
(T90%). In the present work, the specific mass (SM) and 
the T10% distillation temperature were also considered.

The primary and secondary instruments were both 
FT-IR Perkin Elmer Spectrum GX spectrometers. The 
absorbance spectra were acquired with a spectral resolution 
of 4 cm-1 in the range 2500-15400 nm. Additional details 
concerning the spectral acquisition process are given in 
reference 13.

The second data set comprises NIR reflectance spectra 
and moisture content from 80 corn samples (publicly 
available at www.eigenvector.com/Data/Corn/). The spectra 
were acquired in the range 1100-1498 nm at instruments m5 
and mp5 of this data set, which were adopted as the primary 
and secondary instruments for the present investigation.

To circumvent the problem of systematic baseline 
variations, first-derivative spectra were employed by 
using a Savitzky-Golay filter with a 2nd-order polynomial 
and a 21-point window.6 The original and derivative 
spectra for the diesel and corn samples are included in the 
Supplementary Information. 

The data sets were divided into calibration, validation 
and prediction sets on the basis of a preliminary PLS 
analysis13 employing full cross-validation. The gasoline 
data set was divided into 63 calibration, 20 validation and 20 
prediction samples, whereas the corn data set was divided 
into 40 calibration, 20 validation and 20 prediction samples.

The validation set was employed in the choice of an 
appropriate number of latent variables in PLS and to guide 
the selection of variables in SPA. For the subagging study, 
the calibration and validation sets were merged into a single 
modelling set, which was subjected to the subsampling 
procedure described in the proposed method for calibration 
transfer. In all cases, the prediction set was employed to 
compare the performance of the PLS and MLR models in 
terms of the root-mean-square error of prediction (RMSEP). 

Figure 1. Proposed subagging procedure using p subsampling iterations.
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The transfer samples were selected from the calibration 
set according to the classical Kennard-Stone algorithm.1,24 

This algorithm is aimed at covering the sample space in 
a uniform manner by maximizing the Euclidean distances 
between the spectra of the selected samples. The effect of 
varying the number N

trans
 of transfer samples from 2 to 15 

was investigated.

Modelling procedures

All calculations were carried out by using lab-made 
programs implemented in the Matlab 6.5 software. The 
number of latent variables in the PLS model was determined 
on the basis of the error in the validation set by using the 
F-test criterion of Haaland and Thomas with a = 0.25 as 
suggested elsewhere.25,26 The PDS window was varied from 
3 to 15 and the best and worst results for each number of 
transfer samples were noted.

In the subagging procedure, the resampling values 
were N

cal
 = 50, N

val
 = 33 for the gasoline set and N

cal
 = 36, 

N
val

 = 24 for the corn set. Such numbers follow a proportion 
suggested elsewhere.16 The MLR models obtained by 
using subagging in conjunction with SPA will be termed 
MLR-SPA

Subag
.

In the discussion of the results, the notation RMSEP
A

B 
will be used to represent the RMSEP value obtained at 
instrument B by using the model calibrated for instrument 
A. If some transfer procedure is employed, the notation 
RMSEP

A-T
B will be adopted. The primary and secondary 

instruments will be represented by letters P and S, 
respectively.

Results and Discussion

Table 1 presents the RMSEP values obtained without 
the use of calibration transfer techniques at the primary 
and secondary instruments. As can be seen, with the 

exception of the T10% case for MLR-SPA, the prediction 
performance of all models is substantially deteriorated 
when applied to data acquired at the secondary instrument, 
which justifies the use of calibration transfer.

Figure 2 presents the curves of RMSEP
P-T

S as a function 
of the number of transfer samples (N

trans
) for the three 

calibration transfer techniques under consideration. For 
PLS-PDS, the boundaries of the shaded area correspond 
to the best and worst results obtained by varying the 
window size. By contrasting the RMSEP values in this 
figure with those presented in Table 1, it can be seen that 
the use of calibration transfer techniques did improve the 
prediction results obtained at the secondary instrument. As 
compared to the best results of PLS-PDS, MLR-SPA

Subag
 is 

considerably better for SM and T90%, slightly better for 
moisture and similar for T10%. In the moisture case, it is 
worth noting that PLS-PDS only achieves the performance 
of MLR-SPA

Subag
 if a sufficiently large number of transfer 

samples is employed (N
trans

 ≥ 12). Another positive aspect 
of MLR-SPA

Subag
 is a more systematic tendency of reduction 

in RMSEP
P-T

S with the number of transfer samples, in 
comparison with the behaviour observed for MLR-SPA 
and PDS-PLS.

 The advantage of SPA
Subag

 over SPA can be better 
understood by analyzing Figure 3, which depicts the 
variables selected for T10% with the use of transfer 
samples. As can be seen in Figure 3a, the inclusion of each 
additional transfer sample may cause a considerable change 
in the variables selected by SPA. In some cases, such a 
change may have detrimental effects, which are reflected 
in a large local increase in the curve of RMSEP

P-T
S versus 

N
trans

. Therefore, the choice of N
trans

 may be a critical task 
for the performance of SPA in the context of calibration 
transfer. On the other hand, in SPA

Subag
 this problem is 

attenuated by the averaging effect of subagging, which 
can be explained by considering the histograms in Figure 
3b. The relative frequency of selection for each variable 

Table 1. RMSEP
P

P and RMSEP
P

S values obtained with the models developed for the primary instrument. In this case, no calibration transfer procedures 
were employed 

SM / (kg m-3) T10% / (ºC) T90% / (ºC) Moisture / (%, m/m)

Range 744.5-763.3 52.2-56.2 154.6-177.0 9.430-10.882

PLS (P) 1.4 0.6 2.3 0.013

PLS (S) 5.0 1.6 9.4 1.525

MLR-SPA (P) 1.5 0.7 2.5 0.013

MLR-SPA (S) 3.2 0.7 5.3 1.494

MLR-SPA
Subag

 (P) 1.0 0.6 1.5 0.062

MLR-SPA
Subag

 (S) 1.7 1.1 3.2 1.469

Letters P (primary) and S (secondary) are used to indicate the instrument for which the RMSEP value was calculated. The range of reference values 
observed in the prediction set for each property is also presented.
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(number of times that the variable was selected divided 
by a total of 30 subagging iterations) may be regarded as 
the weight assigned to this variable in the final ensemble 
model. As N

trans
 is increased in SPA

Subag
, the weight for each 

variable can be modified in a gradual manner, in comparison 
with the binary (include/exclude) outcome of a standard 
variable selection procedure. 

Conclusions

This paper proposed a new technique for calibration 
transfer, which combines the use of robust variable selection 
by SPA with the subsampling and model aggregation 
technique known as subagging. The proposed approach is 
aimed at building MLR models that are robust with respect 
to the differences between two instruments.

The results obtained with both FT-IR and NIR data 
sets demonstrate that subagging does provide systematic 

improvements on the SPA-based strategy for variable 
selection in calibration transfer. In particular, the use of 
subagging resulted in a more systematic reduction in 
the prediction error of the secondary instrument with the 
successive inclusion of transfer samples. Such a systematic 
behaviour, associated to the smoothing effect of the model 
averaging procedure in subagging, is important to facilitate 
the choice of an adequate number of transfer samples.

In comparison with the classical  PDS-PLS 
standardization approach, the proposed SPA-Subagging 
strategy provided better transfer results in all cases 
considered in the study. In addition, it should be emphasized 
that the SPA-Subagging does not require the same samples 
to be measured at the primary and secondary instruments. 
Although such a possibility was not exploited in the present 
work, it could be an important advantage in situations 
where the storage and/or physical transportation of transfer 
samples proves to be impractical.

Figure 2. RMSEP
P-T

S values as a function of the number N
trans

 of transfer samples for (a) SM, (b) T10%, (c) T90%, and (d) moisture.
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Figure 3. Variables selected for the determination of T10% by (a) SPA and (b) SPA
Subag

 for different numbers of transfer samples. In the SPA
Subag

 case, the 
histograms indicate the number of times that each variable was selected in the course of the subagging iterations.
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Figure S1. FT-IR spectra of the gasoline samples acquired at the (a) 
primary and (b) secondary instruments.

Figure S2. NIR spectra of the corn samples acquired at the (a) primary 
and (b) secondary instruments.

Figure S3. Derivative spectra of the gasoline samples. (a) Primary, (b) 
secondary and (c) differences between the two instruments.

Figure S4. Derivative spectra of the corn samples. (a) Primary, (b) 
secondary and (c) differences between the two instruments.


