Application of a Purge-and-Trap System for Fixed-NH₄⁺ Determination by Matrix Interference Free Ion Chromatography in Oil Reservoir Rocks

Fernanda V. M. Pontes,^a Manuel C. Carneiro,^a Delmo S. Vaitsman,^b Maria Inês C. Monteiro,^{*,a} Lílian I. D. da Silva^a and Arnaldo A. Neto^a

^aCoordenação de Análises Minerais, Centro de Tecnologia Mineral (CETEM), Av. Pedro Calmon, 900, Cidade Universitária, 21941-908 Rio de Janeiro-RJ, Brazil

^bDepartamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro-RJ, Brazil

É proposto um método para determinação de NH_4^+ -fixo utilizando um sistema de arraste imerso em um banho ultrassônico para extração de NH_3 e cromatografia de íons para determinação de NH_4^+ . O método é mais rápido, simples e sensível (LOD = 4,4 µg g⁻¹ NH_4^+) que o método clássico Kjeldahl.

A method for fixed-NH₄⁺ determination using a system immersed into an ultrasonic bath for NH₃ extraction and ion chromatography for NH₄⁺ determination is proposed. The method is faster, simpler and more sensible (LOD = $4.4 \ \mu g \ g^{-1} \ NH_4^+$) than the classical Kjeldahl method.

Keywords: fixed-ammonium, sandstone, ion chromatography, ultrasound-assisted purgeand-trap system.

Introduction

The determination of fixed-NH₄⁺ in sedimentary rocks has been applied in geochemical studies for exploration purposes, especially in the oil industry.¹⁻⁸ The studies are based on a conceptual model of NH₄⁺ fixation in oil source rocks during the burial diagenesis. This model explains why larger relative quantities of NH₄⁺ are fixed in transformed authigenic clays (*e.g.* illite, illite-smectite or illite-smectitevermiculite), in sandstones and is generally consistent with depth-diagenesis schemes for clay minerals and generation of hydrocarbons from the thermal maturation of organic matter. Relative changes in fixed-NH₄⁺ concentrations serve as indicators of hydrocarbons formation or may indicate their pathways during the migration from source beds to reservoirs.^{2.4}

The wet analytical methods for fixed-NH₄⁺ determination have been carried out in three steps: (*i*) previous removal of inorganic exchangeable-N with an extractant (*e.g.*, 2 mol L⁻¹ KCl), followed by the organic-N removal with an oxidant reagent (*e.g.*, KOBr or NaOCl) ^{2,4,9} or removal of exchangeable-N and organic nitrogen species with

*e-mail: mmonteiro@cetem.gov.br

1 mol L⁻¹ KOH; (*ii*) release fixed-NH₄⁺ by destruction of the silicates with a HF and HCl mixture^{1,10} and (*iii*) Kjeldahl steam distillation.^{2,4,9,10} The ammonium concentration in the solution obtained after the distillation has been determined by titrimetric;^{2,4,10} or colorimetric methods.¹¹ A limit of detection (LOD) of 56 mg kg⁻¹ for fixed-NH₄⁺ determination in sedimentary rocks was reported.²

A simplified purge-and-trap system for NH₃ extraction was recently used for total nitrogen determination.¹² This system presented many advantages, among them, the matrix interference elimination, mainly Na⁺, which was necessary for NH₄⁺ determination by ion chromatography. In the present work, this system was proposed for fixed-NH₄⁺ determination. All results were compared with those obtained with the classical Kjeldahl method. Sandstones from Brazilian oil reservoirs with different fixed-ammonium were analyzed.

Experimental

Apparatus and operating conditions

An US-bath model USC-1400 from Unique (Indaiatuba, SP, Brazil) with a power of 120 W, frequency

of 40 kHz and volume of 3 L to convert the released-NH₄⁺ into NH, vapor was used. A water-bath model 304-149 from Quimis Aparelhos Científicos (Diadema, SP, Brazil) was used to remove exchangeable-NH₄⁺ and organic-N from the samples by the proposed and comparative methods. A CELM centrifuge model LS-3 (Barueri, SP, Brazil) with 3200 rpm of speed was used. A Metrohm chromatography system (Herisau, Switzerland) with a dialysis membrane model 788, a vacuum degasser model 837 and a conductivity detector model 819 were used for NH⁺ determination. Integrated areas were used to quantify ion signals. Ammonium separation was carried out in a METROSEP C2 250/4.0 column (Herisau, Switzerland) with 7.0 µm particle diameter. The flow-rate of the eluent (4.0 mmol L⁻¹ tartaric acid/0.75 mmol L⁻¹ 2,6-pyridinecarboxylic acid) was kept at 1.0 mL min⁻¹; the column temperature was 35 °C and the running time was 15 min. The sample loop volume was 20 µL. The mineralogical characterization of all samples was carried out by X-ray diffraction (XRD, powder method) using a Bruker diffractometer model AXS D5005 equipped with Goeble mirror. Working conditions were: CoK monochromatic radiation, 40 mA and 35 kV. Samples were run at a speed of 0.02 degree s⁻¹. Qualitative mineralogical determination was estimated with Diffrac^{Plus} software.

Reagents, standards and samples

All chemicals used were of analytical grade. The water was purified with a reverse osmosis system model Elix 5 and deionized Milli-Q from Millipore Indústria e Comércio Ltda. (Barueri, SP, Brazil). The following solutions were used: 1 mol L⁻¹ KOH, 7.5 mol L⁻¹ HF, 1 mol L⁻¹ HCl, 0.1 mol L⁻¹ HCl and 1000 mg L⁻¹ NH₄⁺ (NH₄Cl) stock standard solution. The intermediate standard solutions were daily prepared. Sandstones from Brazilian oil reservoirs with different fixed-NH₄⁺ concentrations were analyzed.

Removal of exchangeable-N and organic-N

An aliquot of 25 mL of 1.0 mol L⁻¹ KOH was added to a 50 mL polypropylene centrifuge tube containing 0.2 g of sample, pre-treated as Pontes *et al.*¹² described. The mixture was then heated at 80 °C for 8 h in a water-bath. After the mixture reached room temperature, the phases were separated by centrifugation. The supernatant was discarded, and the residue was washed three times with 5 mL of 1 mol L⁻¹ KOH and finally with water. This procedure was adopted for the comparative and proposed methods.

Release of fixed- NH_4^+

An aliquot of 10 mL of a mixture containing 7.5 mol L⁻¹ HF and 1.0 mol L⁻¹ HCl was added to the polypropylene centrifuge tube containing the residue. The mixture was heated in a water-bath at 80 °C for 12-16 h, until it was almost dry. This procedure was adopted for both comparative and proposed methods.

Released-NH^{$_{_{A}}$ ⁺ *determination by the comparative method*}

After the mixture has reached the room temperature, it was transferred to a polypropylene distillation tube of the Kjeldahl system. Then, NH_3 was distilled, collected as NH_4^+ and determined by the indophenol colorimetric method.¹²

Ammonia extraction by the US-assisted purge-and-trap system (proposed method)

The flow diagram for the NH₃ extraction by USassistance was similar to that showed by Pontes *et al.*¹² with the following modifications: all tubes were made of Teflon and the manifold were of polypropylene; the dimensions of the reaction tube and the NH₃ collection tube were 2.7 cm i.d. and 12 cm length; the dimensions of the U tube were 0.3 cm i.d. and 13 cm length; the manifold (0.6 cm i.d.) had six tips to connect six sets and one more tip to connect the vacuum pump. The polypropylene tube containing the released-NH₄⁺ in solution was connected to the U tube, and then the procedure was the same as Pontes *et al.*¹² described.

Results and Discussion

Analytical results

The working concentration of NH_4^+ was in the range of 100 to 800 µg L⁻¹; the linear regression of the analytical curve gave a slope of 0.1863 mV s L µg⁻¹ and the correlation coefficient of the calibration curve was higher than 0.99. The blank measurement was $13 \pm 2 \mu g L^{-1} NH_4^+$ (n = 10). The LOD was 4.4 µg g⁻¹NH₄⁺. It was calculated from the equation LOD = $3S_{BL}/b$, where S_{BL} was the standard deviation of ten blank concentration measurements and *b* was the slope of the calibration curve. The relative standard deviations (RSD) were lower than 11% (n = 3). Good agreement was found between the results of fixed-NH₄⁺ obtained by the proposed method and those obtained by the classical Kjeldahl method (Table 1). The sample diffractograms (not shown) indicated the

Table 1. Concentrations ($\mu g g^{-1}$) of the fixed-NH₄⁺ in sandstone samples obtained by the classical and proposed methods (n = 3)

Sandstone sample	Method	
	Classical	Proposed
1	378 ± 14	365 ± 9
2	86 ± 6	75 ± 7
3	127 ± 14	108 ± 11
4	519 ± 43	492 ± 55
5	447 ± 12	431 ± 39

presence of illite, which probably was responsible by the NH_4^+ fixation.

Conclusion

The simplified method for ammonia extraction is faster and simpler than the classical Kjeldahl steam distillation method. The limit of detection (LOD) was 4.4 μ g g⁻¹NH₄⁺. The relative standard deviations (RSD) were lower than 11% (n = 3).

References

- 1. Stevenson, F. J.; Geochim. Cosmochim. Acta 1962, 26, 797.
- Williams, L. B.; Ferrell. Jr. R. E.; Chinn, E.W., Sassen, R.; *Appl. Geochem.* 1989, 4, 605.
- Bradley, A. D.; Vickers, B. P.; Peachey D.; *Appl. Geochem.* 1990, 5, 471.
- Williams, L. B.; Wilcoxon, B. R.; Ferrell, R.E. Sassen, R.; *Appl. Geochem.* 1992, 7, 123.
- 5. Lindgreen, H.; Clay Miner. 1994, 29, 527.
- Drits, V. A.; Lindgreen, H.; Salyn, A. L.; *Am. Mineral.* 1997, 82, 79.
- 7. Boyd, S. R.; Chem. Geol. 1997, 137, 57.
- Holloway, J.M.; Dahlgren, R. A.; Casey, W. H.; *Chem. Geol.* 2001, *174*, 403.
- Bremner, J. M. In *Methods of Soil Analysis*, *Part 2, Agronomy 9*; Black, C. A. ed., 1965, pp. 1149-1178.
- 10. Dhariwal, A. P. S.; Stevenson, F. J.; Soil Sci. 1958, 86, 343.
- 11. Stevenson, F. J.; Science 1959, 130, 221.
- Pontes, F. V. M.; Carneiro, M. C.; Vaitsman, D. S.; Da Rocha, G. P.; Da Silva, L. I. D.; Neto, A. A.; Monteiro, M. I. C.; *Anal. Chim. Acta* **2009**, *632*, 284.

Received: March 6, 2009 Web Release Date: March 4, 2010