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Este artigo estuda o efeito da razão de subamostragem na abordagem subagging para regressão 
linear múltipla com seleção de variáveis pelo algoritmo das projeções sucessivas. Para isso, 
apresentam-se investigações envolvendo dados simulados e também determinação de umidade e 
proteína em trigo e temperaturas de destilação (T10 e T90), massa específica e enxofre em diesel 
por espectrometria no infravermelho próximo. Em termos de capacidade de predição e sensibilidade 
a ruído, os melhores resultados foram obtidos para razões de subamostragem em torno de 40%.

This paper concerns the effect of the subsampling ratio on the subagging approach for multiple 
linear regression with variable selection by the successive projections algorithm. Investigations 
involving simulated data, as well as near-infrared spectrometric determination of moisture and 
protein in wheat and distillation temperatures (T10 and T90), specific mass and sulphur in diesel, 
are presented. In terms of prediction ability and sensitivity to noise, the best results were obtained 
for subsampling ratios around 40%.

Keywords: multivariate calibration, successive projections algorithm, subagging, near-infrared 
spectrometry, wheat, diesel

Introduction

The successive projections algorithm (SPA)1 was 
developed to select subsets of variables with small multi-
collinearity for use in multiple linear regression (MLR) 
models. MLR-SPA has been employed, for example, 
in spectrometric determination of solubility of solids in 
beers,2 glucose in human blood,3 quality parameters of 
vegetable oils,4 phenolic compounds in sea water,5 sulphur 
in diesel,6 and various other applications. A graphic 
user interface for MLR-SPA is publicly available at  
http://www.ele.ita.br/~kawakami/spa.

In addition to new analytical applications of MLR-
SPA, several works have also been conducted on the 
implementation aspects of the algorithm itself. Gains in 
parsimony were achieved, for example, by identifying 
variables that can be removed from the model without 
compromising its prediction ability.7 Improvements 
were also obtained by exploiting the correlation with the 

dependent variable in the projections phase of MLR-SPA.8 

More recently, a modification was proposed to deal with 
the presence of unknown interferents in the samples to be 
analyzed.9 Improvements concerning computational issues 
have also been reported.10,11

In this context, it has been shown12 that MLR‑SPA 
results can be improved by using a statistical technique 
called subagging (subsample aggregating). Such a 
technique consists of combining different models 
obtained as the result of a process of subsampling.13 In the 
MLR‑SPA‑subagging case, the subsampling procedure can 
be regarded as a random splitting of the modelling data 
into calibration and validation sets. In a subsequent work, 
this approach was adapted for use in a calibration transfer 
framework.14 For this purpose, transfer samples were 
inserted in the validation set formed at each subsampling 
iteration.

An important factor, which was not addressed in 
the previous MLR-SPA-subagging works,12,14 concerns 
the choice of the subsampling ratio employed in the 
calibration/validation splitting of the modelling samples. 
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In both investigations,12,14 this ratio was arbitrarily set to 
approximately 60% (number of calibration samples/number 
of calibration plus validation samples). The present paper 
investigates the effect of the subsampling ratio on the 
resulting MLR-SPA-subagging model. For this purpose, 
case studies involving simulated data, as well as near-
infrared (NIR) spectrometric determination of moisture 
and protein in wheat and T10, T90, specific mass and 
sulphur in diesel are presented. The results are evaluated 
in terms of the prediction ability and sensitivity to spectral 
measurement noise.

Background and theory

MLR-SPA
In the original implementation of MLR-SPA,1 it is 

assumed that the Nmod samples available for modelling 
purposes have been divided into a calibration and a 
validation sets, with Ncal and Nval samples, respectively 
(where Nmod = Ncal + Nval). The instrumental response 
data of the calibration set are then arranged in a matrix 
Xcal (Ncal  × K) where Ncal and K denote the number of 
samples and variables, respectively. A series of projection 
operations involving the columns of matrix Xcal is then 
employed to form K chains with M variables each, where 
M = min(Ncal - 1, K). The first element of the kth chain 
corresponds to variable xk. Each subsequent element in the 
chain is selected in order to display the least collinearity 
with the previous ones. Subsets of variables extracted 
from the chains are then evaluated on the basis of the 
prediction ability of the resulting MLR models in the 
validation set. The best subset of variables is then chosen 
according to a suitable performance criterion, such as the 
root-mean-square error of validation. Finally, a statistical 
hypothesis test is employed to remove variables from this 
subset without compromising the prediction ability of the 
MLR model.7

MLR-SPA-subagging
The MLR-SPA outcome depends on the choice of 

calibration and validation sets from the available samples. 
In the MLR-SPA-subagging approach,12 this aspect is 
exploited to generate a pool of different MLR models 
which are then aggregated into an ensemble model. Each 
individual model is obtained by randomly splitting the 
modelling samples into calibration and validation sets and 
then applying MLR-SPA. At the end, model aggregation 
is carried out by co-averaging the individual model 
predictions as

	 (1)

where ŷav and ŷ(n) denotes the predictions of the ensemble 
model and the nth individual model, respectively. In 
what follows, the number of subsampling iterations (i.e., 
the number of aggregated models) will be denoted by 
P, as in equation 1. Typically, it has been found12 that 
the MLR-SPA-subagging procedure tends to converge 
after the aggregation of approximately P = 30 individual  
models.

It is worth noting that the co-averaging procedure 
expressed in equation 1 can also be reformulated in terms 
of the regression coefficients of the MLR models, i.e.,

	 (2)

	 (3)

where 

	 (4)

If a certain variable xk was not selected by MLR‑SPA 
for inclusion in a particular individual model, the 
corresponding regression coefficient bk is set to zero in 
that model. For example, assume that K = 3 variables are 
available for selection and that P = 2 individual models 
are obtained in the MLR-SPA-subagging procedure. 
Furthermore, suppose that variables x1 and x3 are selected 
in the first MLR-SPA model and variables x2 and x3 are 
selected in the second MLR-SPA model. In this case, these 
models could be expressed as

	 (5)

	 (6)

Equations 5 and 6 can be rewritten as

	 (7)

	 (8)

where a null regression coefficient was assigned to variables 
x2 and x1 in the first and second models, respectively. The 
coaveraging procedure can then be employed as in equation 
4 with b2

(1) = 0 and b1
(2) = 0.

Within this context, an important design parameter is 
the subsampling ratio q defined as

	 (9)
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For illustration, Figure 1 depicts the MLR-SPA-
subagging procedure for two different subsampling ratios, 
namely q = 50% (Figure 1a) and q = 70% (Figure 1b).

As mentioned above, in previous works concerning the 
use of MLR-SPA-subagging,12,14 the subsampling ratio q 
was arbitrarily set to approximately 60%. However, it may 
be argued that better ensemble models could be obtained by 

using a different choice for q, which motivates the present 
investigation.

Experimental

Simulated data set

Simulated spectra were generated as in a previous work 
involving MLR-SPA.7 For this purpose, a linear relation was 
assumed between the matrix X of instrumental responses 
and the matrix Y of analyte concentrations:

X = YW + N	 (10)

where N is a noise term. Three analytes (termed A, B, 
and C) and K = 300 spectral variables were considered. 
Matrix W (3 × 300) contains the proportionality coefficients 
between the analyte concentrations and the instrumental 
responses. The W-values adopted in this simulated study 
are presented in Figure 2a.

A total of 200 spectra were generated by using a matrix 
Y (200 × 3) with concentration values randomly distributed 
in the range 1-10 (arbitrary units). Gaussian noise with zero 
mean and standard deviation of 0.1 was added to all spectra 
as in equation 10. The resulting spectra are presented in 
Figure 2b.

The overall set of Ntot = 200 spectra was divided into 
a modelling set with Nmod = 100 samples and a prediction 
set with Npred = 100 samples (Ntot = Nmod + Npred) by 
applying the Kennard-Stone (KS) algorithm19 to the matrix 
X (200 × 300) of instrumental responses. The modelling 
set was employed in the MLR-SPA-subagging procedure, 
as described in the previous section. The prediction set was 
only employed to evaluate and compare the performance 
of the resulting models.

Figure 1. MLR-SPA-subagging procedure for (a) q = 50% and (b) q = 
70%.

Figure 2. (a) Pure spectra for analytes A, B, C and (b) mixture spectra.
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Wheat data set 

This public data set consists of NIR diffuse reflectance 
spectra of Ntot = 100 wheat samples, along with reference 
values of moisture and protein content.15,16 The spectra were 
acquired in the range 1100‑2500 nm with a 2 nm resolution, 
resulting in 701 spectral variables.

Figure 3 shows the NIR spectra of the 100 wheat 
samples. As can be seen in Figure 3a, the spectra 
display baseline shifts, which were eliminated by using 
a first-derivative Savitzky-Golay filter with a 2nd-degree 
polynomial and a 21-point window.17 The resulting 
derivative spectra are shown in Figure 3b. Finally, the 
number of variables was reduced by discarding those for 
which the maximum signal intensity over all derivative 
spectra did not exceed 2% of the maximum signal intensity 
in the overall data set.18 The resulting spectra comprised 
K = 652 variables.

The overall set of Ntot = 100 wheat samples was divided 
into a modelling set with Nmod = 70 samples and a prediction 
set with Npred = 30 samples (Ntot = Nmod + Npred) by applying 
the KS algorithm to the matrix X (100 × 652) of derivative 
spectra. 

Diesel data set

This data set, which comprises 170 diesel samples 
collected from gas stations in the city of Recife (Pernambuco 
State, Brazil), was employed in a previous MLR-SPA-
subagging study.12 The reference values for sulphur content, 
specific mass, and distillation temperatures (T10 and T90) 
were obtained according to the ASTM (American Society for 
Testing and Materials) D4294-90, 4615, and D86 methods, 
respectively. NIR spectra in the range 885-1600 nm were 
acquired using a FT-NIR/MIR spectrometer Perkin Elmer 

GX with an optical path length of 1.0 cm and a spectral 
resolution of 2 cm-1. Systematic variations in the baseline 
were circumvented by using derivative spectra calculated 
with a Savitzky-Golay filter (2nd-order polynomial, 11-point 
window). As a result, the number of spectral variables was 
K = 1431. The original and derivative NIR spectra of the 
170 diesel samples are presented in Figures 4a and 4b, 
respectively.

The overall set of Ntot = 170 diesel samples was divided 
into a modelling set with Nmod = 85 samples and a prediction 
set with Npred = 85 samples (Ntot = Nmod + Npred) by applying 
the KS algorithm to the matrix X (170 × 1431) of derivative 
spectra. 

Evaluation of the MLR-SPA-subagging models 

The MLR-SPA-subagging models were obtained for nine 
different subsampling ratios, namely q = 10%, 20%, ..., 90%. 
It is worth noting that such percentages are expressed in terms 
of the Nmod modelling samples, as indicated in equation 9. In 
each case, the ensemble models were evaluated in terms of 
predictive ability and sensitivity to instrumental noise. The 
predictive ability was assessed by calculating the root-mean-
square error in the prediction set (RMSEP) as

	 (11)

where yi and ŷi are the reference and the predicted values 
of the property under consideration for the ith prediction 
sample.

Sensitivity to instrumental noise was taken into account 
as suggested elsewhere20-22 by calculating the 2-norm of the 
regression vector (||bav||), which is defined as:

Figure 3. (a) Original and (b) derivative spectra of the wheat samples.

Figure 4. (a) Original and (b) derivative spectra of the diesel samples.
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	 (12)

where bk
av denotes the regression coefficient associated to 

variable xk in the ensemble model. In fact, by following the 
demonstration provided by Pinto et al.,20 it can be shown 
that  sŷav = snoise ||b

av||, where snoise is the standard deviation 
of the instrumental noise (assumed to be homoscedastic 
and uncorrelated across the model variables) and sŷav 
is the standard deviation of the error in the ensemble 
model predictions resulting from the propagation of the 
instrumental noise. Ideally, improvements in the ensemble 
model should provide reductions in both RMSEP and ||bav||.

It is worth noting that MLR-SPA-subagging has 
a stochastic nature due to the random subsampling 
operations. Therefore, given a certain subsampling ratio q 
and number of iterations P, the RMSEP and ||bav|| values may 
vary for different realizations of the MLR-SPA-subagging 
procedure. For this reason, in order to assess the dispersion 

of the results, a Monte Carlo simulation23 was carried out by 
calculating the average and standard deviation of the results 
over several realizations. In the present work, nMC = 25 
realizations were employed in the Monte Carlo simulation.

Software

All calculations were carried out using the Matlab 
2009b software. The subsampling operations in the MLR-
SPA-subagging procedure were performed by using random 
permutations with the “rand” Matlab routine.

Results and Discussion

Simulated data set

Figure 5 presents the results obtained for analytes A and 
B with a fixed subsampling ratio (q = 70%) and a number 
of iterations P ranging from 1 to 50. The results for analyte 

Figure 5. MLR-SPA-subagging results as a function of the number of iterations: RMSEP for (a) analyte A and (b) analyte B, ||bav|| for (c) analyte A and 
(d) analyte B. The solid and dashed lines represent the average result and the ±1s boundaries obtained from nMC = 25 Monte Carlo realizations.
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C were similar to those obtained for analyte A and are 
thus omitted for brevity. As can be seen, there is a marked 
improvement in RMSEP and ||bav|| for both analytes as the 
number of iterations P is increased. However, the gains 
become marginal after P = 30, which is in agreement with 
the findings reported elsewhere.12 

The average results obtained for different subsampling 
ratios are shown in Figure 6. In this case, the number of 
iterations was set to P = 30, because the improvements for 
more iterations were marginal as discussed above. The 
error bars for RMSEP and ||bav|| correspond to standard 
errors, which were calculated as the standard deviation s 
divided by the square root of the number of Monte Carlo 
realizations nMC (i.e., ).

In the ||bav|| × RMSEP plots presented in Figure 6, the best 
results are those situated closest to the origin (small values for 
both ||bav|| and RMSEP). In this sense, Figure 6a indicates that 
appropriate subsampling ratios for determination of analyte 
A range from 20% to 40%. Within this range, the changes in 
||bav|| are minor and the difference between the smallest and 
largest RMSEP values are not significant according to an 
F-test at 95% confidence level. Other values for q (10% and 
50-90%) lead to an increase in both ||bav|| and RMSEP. The 
same comments regarding the choice of q can be applied to 
analyte B (Figure 6b). It is worth noting that the RMSEP and 
||bav|| results are generally worse for analyte B as compared 
to analyte A. Such a finding can be ascribed to the fact that 
the spectrum of analyte B is strongly overlapped by the two 
other analytes (A and C, as seen in Figure 2a).

Wheat data set

Figure 7 presents the protein and moisture results 
obtained for a fixed subsampling ratio (q = 70%) and a 

number of iterations P ranging from 1 to 50, as in Figure 
5. As in the simulated case study, a marked improvement 
in RMSEP and ||bav|| for both protein and moisture can 
be observed as the number of iterations is increased up 
to P = 30. In this case, it is worth noting that the results 
are statistically unstable for P < 10, as indicated by the 
large standard deviation values at the beginning of the  
curves. 

The average results obtained for different subsampling 
ratios with P = 30 are shown in Figure 8. As can be seen 
in Figure 8a, appropriate subsampling ratios for moisture 
determination range from 30 to 70%. Within this range, 
the changes in ||bav|| are minor and the difference between 
the smallest and largest RMSEP values are not significant 
according to an F-test at 95% confidence level. Smaller 
values for q (10 and 20%) lead to a noticeable increase in 
RMSEP, whereas larger values for q (80 and 90%) result in 
substantially larger ||bav|| values. In the protein case (Figure 
8b), the best RMSEP results were obtained for q ranging 
from 40 to 90%. By taking the ||bav|| criterion into account, 
the best choice becomes q = 40%.

It is worth noting that the RMSEP values obtained 
for q = 10 and 20% were significantly larger than those 
obtained with the other subsampling ratios. In the protein 
case, for instance, the RMSEP for q = 10% was twice 
the value obtained for q ranging from 40 to 90%. Such 
a result for q = 10 and 20% may be ascribed to the small 
number of samples Ncal employed in the calibration of each 
individual MLR-SPA model, which limits the maximum 
number M of spectral variables that can be selected, as 
M = min(Ncal - 1, K). This handicap was particularly adverse 
in the case of protein, because the bulk protein content in 
wheat involves a complex mixture of several components. 
Therefore, MLR-SPA models with few variables may not 

Figure 6. ||bav|| versus RMSEP for (a) analyte A and (b) analyte B using different subsampling ratios. Standard errors are indicated by horizontal and 
vertical bars.



Galvão Filho et al. 2231Vol. 22, No. 11, 2011

Figure 7. MLR-SPA-subagging results as a function of the number of iterations: RMSEP for (a) moisture and (b) protein, ||bav|| for (c) moisture and (d) 
protein. The solid and dashed lines represent the average result and the ±1s boundaries obtained from nMC = 25 Monte Carlo realizations.

Figure 8. ||bav|| versus RMSEP for (a) moisture and (b) protein using different subsampling ratios. Standard errors are indicated by horizontal and vertical bars.



Effect of the Subsampling Ratio in the Application of Subagging for Multivariate Calibration J. Braz. Chem. Soc.2232

Figure 9. ||bav|| versus RMSEP for (a) T10, (b) T90, (c) specific mass, (d) sulphur. Standard errors are indicated by horizontal and vertical bars.

be able to capture the various vibrational phenomenae 
involved in the NIR analysis of protein content.

On the other hand, the largest subsampling ratios 
(80 and 90%) yielded models with considerably high 
||bav|| values. In this case, since more calibration samples 
were employed, MLR-SPA was able to include a larger 
number of spectral variables in each individual model, 
which resulted in an increase in ||bav||. Therefore, although 
suitable RMSEP values were obtained, the resulting MLR-
SPA-subagging models are more sensitive to noise in the 
spectral measurements. This feature would compromise 
prediction accuracy if the models were applied to new 
measurements with lower signal-to-noise ratio, as 
illustrated elsewhere.20 

In view of the above discussions, by taking into account 
the results of ||bav|| and RMSEP for both properties, the 
most suitable subsampling ratios would be in the range  
40‑60%.

Diesel data set

As in the two case studies above, a marked improvement 
in RMSEP and ||bav|| was observed for all diesel properties 
as the number of iterations was increased up to P = 30. 
Therefore, the corresponding graphs are omitted for brevity. 
The average results obtained for different subsampling 
ratios with P = 30 are shown in Figure 9. Again, the worst 
results in terms of either RMSEP or ||bav|| were always 
obtained for the extreme values of q (10 and 90%). On the 
overall, the best results for these two metrics were obtained 
for q ranging from 30 to 50%.

Conclusions

This paper was concerned with the effect of the 
subsampling ratio on MLR-SPA-subagging models. For 
this purpose, investigations involving simulated data, 
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as well as near-infrared spectrometric determination of 
moisture and protein in wheat and distillation temperatures 
(T10 and T90), specific mass and sulphur in diesel were 
carried out. The results were evaluated in a multi-criterion 
framework by considering prediction ability (RMSEP) 
and sensitivity to spectral measurement noise (||bav||). In 
view of these metrics, it was found that 30 subsampling 
iterations were sufficient to obtain convergence of the 
MLR-SPA-subagging procedure, which is in agreement 
with the findings of a previous study.12 The best results 
were obtained for subsampling ratios in the range 20-
40% (simulated data), 40-60% (wheat) and 30-50% 
(diesel). Therefore q = 40% is found to be an appropriate 
compromise choice. In terms of the number Ncal of 
calibration samples, these q percentages correspond to 20-
40 samples (simulated data), 28-42 samples (wheat) and 
26-43 samples (diesel). The smaller number of calibration 
samples required for the simulated dataset can be ascribed 
to the fewer sources of variability as compared to the 
wheat and diesel datasets, which involve actual physical/
chemical phenomenae. It is worth noting that the range 
of Ncal values indicated above for these real-life datasets 
is in agreement with the guidelines of the ASTM E 1655 
05 standard,24 which recommends the use of at least 24 
calibration samples.
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