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Com o objetivo de relacionar os descritores geométricos e eletrônicos dos derivados análogos da 
rutaercarpina com a atividade biológica contra o câncer do sistema nervoso central (CNS), cálculos 
de química quântica molecular em nível B3LYP/6-31(d) e análise estatística foram realizados 
para os 21 derivados análogos da rutaecarpina. Dos 86 descritores moleculares calculados, 
5 foram selecionados na construção do modelo de análises de componentes principais (PCA). A 
componente PC1, a qual responde por 46,11% da variância total dos dados, foi capaz sozinha de 
discriminar completamente os compostos em duas classes: ativos e inativos. Todos os descritores 
moleculares selecionados pelo modelo PCA são parâmetros eletrônicos. A análise de agrupamento 
hierárquico (HCA) foi também aplicada aos descritores selecionados pelo modelo PCA. Baseado 
nos 5 descritores selecionados é possível sugerir novos derivados ativos da rutaercarpina para serem 
sintetizados. Além disso, um modelo de mínimos quadrados parciais para análise discriminante 
(PLS-DA) supervisionado foi construído e aplicado com sucesso na discriminação dos análogos 
à rutaercarpina, o qual foi validado usando um conjunto independente de compostos.

In order to relate the geometric and electronic descriptors of the rutaecarpine analogous to their 
biological activity against cancer of the central nervous system (CNS), molecular quantum chemical 
calculations at B3LYP/6-31(d) level and statistical analysis were carried out for 21 rutaecarpine 
analogous. Out of the 86 molecular descriptors calculated, 5 were selected to build the principal 
component analysis (PCA) model. The PC1 component that accounts for 46.11% of the total 
variance of the data was alone able to discriminate completely the compounds into two classes: 
active and inactive. All molecular descriptors selected by PCA model are electronic parameters. 
The hierarchical cluster analysis (HCA) was also applied on the selected descriptors. Based on the 
5 electronic descriptors selected, it is possible to suggest new compounds to be synthesized with 
activity against CNS cancer. In addition to that, a supervised partial least squares discriminant 
analysis (PLS-DA) model was built and successfully applied to discriminate rutaecarpine analogues, 
being validated through an independent test set and considered robust to overfitting.

Keywords: central nervous system cancer, quinazoline-beta-carboline-5-one, B3LYP, 
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Introduction

Brain tumors are rare, but their incidence and mortality 
rates have been increasing over the past decades in several 
countries, especially among older people.1-3 Although 
very little about brain tumors is known, it is believed 
that genetic factors, hormonal and environmental factors 
are related to the evolution of this disease.4,5 The central 
nervous system (CNS) comprises the brain and spinal 

cord. Patients who experience personality changes, apathy, 
early dementia, constant headache or even depression can 
have a brain tumor.6,7 Data from the American Cancer 
Society (ACS) show that about 27% of the childhood 
cancers are represented by the CNS tumors, especially in 
developed countries.8 On the other hand, in most African 
countries, this type of cancer represents less than 5%.7 
The ACS predicts that in 2012, 22,910 (12,630 men and 
10,280 women) CNS tumors will be diagnosed in the 
United States. These numbers would be probably much 
higher in case benign tumors were also included in the 
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equation. Estimates from ACS foresees that in 2012 at 
least 13,700 people (7,720 men and 5,980 women) will 
die of CNS tumors.8

Studies show that the interaction between the 
drug and its receptor site in biological system involves 
many intermolecular interactions such as electrostatic, 
hydrophobic, polar and steric factors.9 It is well know 
that the drug recognition by the bioreceptor of the 
biomacromolecule are dependent on the drug structure, 
including the spatial arrangement of their functional 
groups, which are complementary to the binding site 
located in the bioreceptor and also to the electronic 
parameters. Structure-activity relationship (SAR) indicates 
the molecular structure modifications that increase the 
drug effectiveness. In general, reports show that these 
modifications are made throughout small changes in the 
leading compound structure, followed by trials in laboratory 
to quantify the variations in the biological activity due to 
changes in the molecular structure.

With this purpose, in 2004, Baruah et al.10 isolated from 
a fruit of a Chinese medicinal plant Evodia rutaecarpa 
the alkaloid rutaecarpine (quinazoline-beta-carboline-
5-one), which has been shown to have important medicinal 
properties. From the leading compound rutaecarpine, it was 
synthesized 21 rutaecarpine analogous (Figure 1), which 
were tested in vitro and in vivo against eight types of human 
cancer, including the evaluation against CNS cancer using 
the growth inhibition (GI50) index, i.e., the concentration 
in mmol needed to reduce the growth of treated cancer 
cells (U251 cells line) to half of the untreated cancer cells. 
According to the rutaecarpine GI50 index, the compounds 
shown in Figure 1 can be divided into two classes: active 
compounds (1, 2, 5, 6, 7, 8, 9, 10 and 11) with GI50 less 
than or equal to 6 mmol, and inactive (3, 4, 12, 13, 14, 15, 
16, 17, 18, 19, 20 and 21) with GI50 greater than 6 mmol. 
Furthermore, the natural product has proved to be a great 

source of drugs and inspiration for drug discoveries.11,12 and 
the majority of FDA approved drugs are inspired or derived 
from natural products.

Many research groups working in this area have 
increasingly been using computational molecular modeling 
in order to shorten the development and optimization 
process of a new chemical compound.13 In this sense, 
the major aim of QSAR/SAR (quantitative structure-
activity relationship) is to establish a relationship between 
molecular descriptors and biological activity. The molecular 
descriptors employed in the QSAR/SAR analyses can be 
theoretical descriptors, derived from quantum chemistry 
calculations, empirical or derived from readily available 
experimental characteristics of the structures.14 Descriptors 
derived from quantum chemistry calculation are more 
appropriate to describe the electronic effect than those 
derived from empirical method.15

The aim of this work was to investigate the 
relationship between the calculated molecular descriptors 
(geometrics and electronics) for 21 rutaecarpine analogous 
synthesized and tested against CNS cancer using quantum 
chemical methods and principal component analysis 
(PCA) to make the statistical analysis. In addition, a partial 
least squares discriminant analysis (PLS-DA) model was 
developed for classifying molecules as active or inactive.

Methodology

The molecular conformation can affect many quantum 
chemical descriptors16 and, in addition, the spatial 
arrangement of the molecular functional groups must 
be complementary to the binding site of the receptor. As 
some rutaecarpine analogous have several conformations 
in the substituent groups, it was necessary to carry out a 
systematic conformational search on those molecules. This 
was carried out using HyperChem 7.15 program17 with the 
Austin Model 1 (AM1)18 semi-empirical method. For each 
analogous derivative, the conformation with lower energy, 
that most closely resembles the most stable conformation 
of the most active derivative, was further selected for 
the full geometric optimization using the Gaussian 03 
program19 with the exchange-correlation hybrid functional 
B3LYP20 and the 6-31G(d) basis set.

From the optimized structures, the following molecular 
descriptors were obtained using the Gaussian 03 software 
at the B3LYP/6-31G(d) level: the frontier molecular orbital 
energies EHOMO (the highest occupied molecular orbital 
energy) and ELUMO (the lowest unoccupied molecular 
orbital energy), bond angles (A), dihedral angles (D) and 
the electric dipole moment (m) calculated as µ = |µ|, where 
µ is given byFigure 1. Chemical structures of the rutaecarpine analogous.
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 (1)

and r(r) stands for electrical charge density, Mulliken 
electronegativity (χ) calculated as

  (2)

energy gap (D) obtained as

  (3)

where EHOMO and ELUMO are the same as above, and hardness 
(h) defined as

  (4)

The bond order indexes were calculated using the 
NBO21,22 program, which is part of the Gaussian 03 package. 
The partial atomic charges used in this work were the 
charges derived from molecular electrostatic potential 
using the CHELPG scheme by Breneman and Wiberg.23 
As the initial interaction between the ligand and the 
active site has an electrostatic nature, the partial atomic 
charges, derived from molecular electrostatic potential with 
CHELPG scheme, are more suitable for a SAR study and 
were used in this work. The partition coefficient (log P), 
molecular volume (V) and the average polarizability (a) 
were calculated using the HyperChem 7.15 program17 with 
the AM1 method.18

The extraction of relevant information from the 
chemical experiment involves the analysis of a large number 
of variables. Often, a small number of these variables 
contains the most significant chemical information, while 
the most of them add little or nothing to the interpretation 
of the results from the chemical point of view.24 Fisher 
weights25 is a statistical technique used to provide a measure 
of the discriminating power of a descriptor in order to 
classify compounds in active and inactive classes. Fisher 
weights for those categories, wi(A,I), are defined as the 
ratios of the square of the interclass means to the sum of 
the intraclass variances, i.e.,

  (5)

where –xi (A) is the mean value of the descriptor i for the 
class A (active compounds), –xi (I) is the mean value of the 
descriptor i for class I (inactive compounds), and si

2(A) and 
si

2(I) are the variances for the classes A and I, respectively. 
The best descriptors to discriminate the two classes are 
those with large values of Fisher weights. Therefore, the 

descriptors with higher values were selected for PCA 
analysis,26,27 an unsupervised classification method that 
reduces the dimensionality of a data set, explaining the 
variance-covariance structure. This is achieved through 
linear transformations of the original data set of variables 
into a smaller number of uncorrelated significant principal 
components (PCs). Geometrically, this transformation 
represents the rotation of the original coordinate system, and 
the direction of the maximum residual variance is given by 
the first PC axis. The second PC, orthogonal to the first 
one, has the second maximum variance and so on. Usually, 
only the first few PCs account for the greatest amount of 
the total data variance and can be utilized to represent the 
whole data set in a simpler manner.28

Using the selected descriptors by the Fisher weights and 
PCA analysis, the compound can be grouped based on its 
similarity using the hierarchical cluster analysis (HCA). 
The similarity Sij between compound i and j can be 
computed using the equation 6:

  (6)

where dij is the distance between the compounds i and 
j, and dmax is the maximum distance observed between 
all compounds. Thus, the two most distant points in the 
distance matrix have similarity zero and identical points 
have similarity 1.0. The hierarchical classification starts by 
assuming that each point is a group. After that, each point 
is linked to the next most similar to it. Then, the average 
point for each point pair is calculated and its link is made 
to the next most similar average point. This procedure 
is repeated until to form one single group. The result of 
this procedure is a diagram called dendrogram. There are 
several procedures to group the compounds hierarchically 
such as single linkage, complete linkage, centroid linkage, 
incremental linkage, etc.29 In this work, the Euclidian 
distance as described in equation 7,29 was used:

,  (7)

where dij is the distance between the compounds i and j, nd 
stands for the number of descriptors, and xik and xjk stand 
for descriptor xk for compound i and j, respectively.

HCA is also an exploratory technique generally used 
to validate the PCA analysis. HCA results are shown as a 
dendrogram, which allow us to visualize the clusters and 
relationship between the compounds. In a dendrogram 
produced by HCA analysis, the vertical lines represent the 
compounds and the horizontal lines represent the similarity 
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between them. The final result of a dendrogram analysis 
allows us to see how the samples are grouped together and 
also observe a similarity relationship between the groups. 
Small distances indicate that samples have some similarity. 
In principle, it is expected that the points representing the 
active compounds are grouped in a limited area in the 
score plot from PCA model, while the points representing 
the inactive compounds are plotted in different regions of 
the score plot.

PLS-DA30 is a multivariate inverse least squares 
discrimination method used to classify samples and has 
found importance in some recent applications in QSAR.31,32 
For each class, a model is set up according to correlation 
ĉ = T . q, where T is a matrix with the PLS scores obtained 
from the original data and q is a vector, the length equaling 
the number of significant latent variables (LVs), and ĉ  
is a class membership function; this is obtained by PLS 
regression from an original c vector, whose elements are 
called dummy variables, i.e., they have values of 1 if an 
object is a member of a class (active) and 0 otherwise 
(inactive), and an X matrix consisting of the original 
preprocessed data. The closer each predicted element is to 
1, the more likely an object is to be a member of a particular 
class. In this work, the commonly used threshold value of 
0.5 was adopted. All the normal procedures of training and 
test sets, and cross-validation, can be used with PLS-DA. 
The predictive ability of the model was also quantified in 
terms of the Q2 which is defined as

,

where yi and ŷi  are the observed and predicted values 
for sample i, respectively. –y is the observed mean value. 
The major difference between Q2 and the normal squared 
correlation coefficient (R2) is that the former may also 
assume negative values, indicating that the model has 
worse predictive ability than using the mean value as 
predicted value for each compound. Q2 should be > 0.5 
for the model to be considered to have reasonable practical 
predictive performance.33 In this work, the PLS-DA analysis 
was carried out with PLS_Toolbox 2.1 from Eigenvector 
Research, Inc.34

Results and Discussion

Fisher weights were estimated for 86 geometric and 
electronic descriptors calculated using quantum chemical 
methods for 21 rutaecarpine analogous derivatives. 12 out 
of 86 descriptors were selected by Fisher weights as being 
relevant to the discrimination of the active and inactive 

classes. The selected descriptors by Fisher weights are C20, 
C21, C23, C25, A2, D1, B2,4, B3,6, B6,9, B7,11, B10,15 and B13,14, 
where C, A, D, and B stand for partial charges, angle, 
dihedral angle, and bond orders, respectively, and the 
subscripts stand for atomic numbering as shown in Figure 1. 
The Fisher weight showed to be very useful in this study, 
allowing reduction of the dimensionality of the data set, 
which makes easier the subsequent PCA analysis. Before 
applying the PCA analysis on data set selected by Fisher 
weights, all selected data were autoscaled to unit variance, 
i.e., each variable is mean centered and then divided by its 
standard deviation. This data preprocessing is necessary to 
remove any inadvertent weighting that arises from arbitrary 
units. This procedure ensures that all descriptors have the 
same importance in the statistical analysis. This is important 
in structure-activity relationship studies since all variables 
have the same importance and should be compared on the 
same scale. Working on the 12 descriptors selected by 
Fisher weights and trying different combinations of them, 
several different PCA model were tested. A good PCA 
model should use the fewest descriptors as possible and 
provide a good discrimination between active and inactive 
compounds with the lowest numbers of PCs.

The best PCA model was obtained using five 
descriptors: partial charge on atom 4 (C4), partial charge 
on atom 23 (C23), bond orders between atoms 2 and 4 (B2,4), 
atoms 3 and 6 (B3,6), and atoms 10 and 15 (B10,15). As can 
be seen in Figure 2, PC1 and PC2 are able to discriminate 
all the 21 compounds into two classes: active and inactive. 
PC1 and PC2 account for 46.11 and 35.00% of the total 
variance, respectively, totalizing 81.11%. Figure 2 displays 
the score plots and Figure 3 displays the loading plots for 
this PCA model.

It is worth noting that score plots are related to the 
samples (compounds) and the loading plots are related to 
the molecular descriptors. Thus, these two plots should be 
analyzed together. As can be seen in Figure 2, PC1 alone is 
responsible for the perfect discrimination of the compounds 
into two groups. Table 1 shows the positive scores to active 
compounds with values greater than 0.3, while the inactive 
compounds have score values lower than 0. Therefore, in 
this work, the PC1 component can be considered similar to 
a discriminant function as in a PCA discriminant analysis 
(PCA-DA).35

The contribution of each descriptor for the PCA model 
is shown in Figure 3 and Table 2. These descriptors are 
linearly combined to produce the PC1 scores, as shown 
in equation 8:

PC1 = 0.192C4 – 0.341C23 + 0.569B2,4 + 0.527B3,6 – 
0.495B10,15 (8)
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The theoretical values obtained from the quantum 
chemical calculation for the five selected descriptors used 
to build the PCA model are also included in Table 1. It 
can be seen that all selected descriptors by PCA model are 
electronic descriptors. This observation suggests that the 
electronic properties are really relevant for the rutaecarpine 
analogous mechanism of action against CNS.

All selected descriptors in the PCA model have high 
loading values in the PC1 component as can be seen 
in Table 2. This means that all selected descriptors are 
important to explain the rutaecarpine derivative activity. As 
mentioned before, the charges derived from electrostatic 
potential stand for long range interaction. In this sense, it 
can be postulated that the atomic partial charges C4 and 
C23 are important to explain the interaction of rutaecarpine 
derivatives with the active site. As the scores of the active 

Figure 3. Loading plot of the molecular descriptors selected by PCA 
model.

Figure 2. Scores plot for the 21 rutaecarpine analogous using the 
MATLABTM software (The Math Works, Natick, USA). The active 
compounds are placed on the right of the dashed vertical line and the 
inactive compounds are on the left.

Table 1. Scores for PC1 and molecular descriptor values not autoscaled selected by PCA model. The listed descriptor values were obtained at B3LYP/6-31G(d) 
level of theory. See text for the meanings of the used symbols

Compounds PC1 score
Selected descriptors by PCA model

Activity
C4 C23 B2,4 B3,6 B10,15

1 2.593 –0.0475 0.0845 1.3693 1.2497 0.9878 active

2 0.480 –0.1464 0.1064 1.3336 1.2449 0.9850 active

3 –0.446 –0.0470 0.1200 1.3301 1.2352 0.9892 inactive

4 –0.341 –0.0815 0.1269 1.3339 1.2371 0.9902 inactive

5 1.184 0.0600 0.1118 1.3453 1.2443 0.9858 active

6 0.856 –0.0669 0.1048 1.3393 1.2448 0.9856 active

7 0.938 –0.0833 0.1067 1.3407 1.2455 0.9660 active

8 1.330 0.0562 0.1113 1.3467 1.2450 0.9662 active

9 2.342 –0.0946 0.0948 1.3697 1.2490 0.9646 active

10 0.388 –0.2198 0.1387 1.3383 1.2491 0.9655 active

11 2.597 –0.0712 0.0939 1.3680 1.2522 0.9750 active

12 –0.572 –0.2266 0.1287 1.3303 1.2398 0.9876 inactive

13 –0.314 –0.1978 0.1800 1.3442 1.2458 0.9895 inactive

14 –0.082 –0.1151 0.1198 1.3231 1.2440 0.9895 inactive

15 –0.865 –0.1565 0.1539 1.3226 1.2420 0.9899 inactive

16 –0.411 –0.0618 0.0912 1.3539 1.2341 1.4808 inactive

17 –2.666 –0.1172 0.1390 1.2985 1.2385 1.4680 inactive

18 –1.862 –0.0948 0.1143 1.3260 1.2328 1.4852 inactive

19 –2.310 –0.2062 0.139 1.3232 1.2358 1.4835 inactive

20 –1.001 0.0954 0.0997 1.3359 1.2319 1.4955 inactive

21 –1.837 –0.0944 0.1137 1.3260 1.2327 1.4739 inactive

Fisher weight – 0.17 0.78 0.67 0.83 0.56 –
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compounds are greater than 0.3 and the loadings of the 
C4 and C23 are positive and negative, respectively, for a 
new compound to be active it should have high partial 
charge on atom 4 and low partial charge on atom 23. This 
means that the electrostatic potential surface on atom 4 
should be as positive as possible and the electrostatic 
potential on atom 23 should be as negative as possible. As 
can be seen in equation 8, the loadings for the bond order 
between atoms 2 and 4 (B2,4) and the bond order between 
atoms 3 and 6 (B3,6) are positives, while for bond order 
between atoms 10 and 15 (B10,15) are negative. The loading 
values for these descriptors listed in Table 2 are all positive. 
This means that for a rutaecarpine analogous to be classified 
as active compound it should have high B2,4 and B3,6 values 
and, in turn, low B10,15 value. Bond orders are quantum 
descriptors related directly to the electron density between 
two atoms and have direct relation with bond length and 
the chemical reactivity. Increasing the bond order leads to 
shortening the bond length and increasing the reactivity of 
the respective bond. As a result of equation 8 and Table 1, it 
is possible to infer interactions between some atoms from 
receptor site with the bond between atoms 2 and 4 and the 
bond formed between atoms 3 and 6. On the other hand, 
the bond order between atoms 10 and 15 should be as small 
as possible, which suggests this bond should not interact 
with the receptor site.

In summary, the calculation results suggest that 
increasing the atomic partial charge C4 and the bond orders 
between atoms 2 and 4 and atoms 3 and 6 and, in addition, 
decreasing the charges C23 and the bond order between 
atoms 10 and 15, the probability of the rutaecarpine 
analogues to become active increases. These features are 
important in designing new rutaecarpine analogues with 
anticancer activity. The lack of information about the 
receptor site makes difficult to describe the interaction 
of the rutaecarpine analogous with the active receptor 
site. However, the calculation results allow us to raise 
some hypothesis about the interaction, pointing out for 
the prime importance of the benzene ring region and 

the region between atoms 10 and 15, suggesting that the 
pharmacophore group is located in this molecular region.

HCA allows us to visualize the clustering formation 
between the rutaecarpine analogues and the similarity 
between them. The Figure 4 shows the dendrogram from 
HCA analysis using the five selected descriptors by PCA 
model. All selected descriptors were autoscaled to unit 
variance. It can be observed in Figure 4 that, at the level 
of similarity 0.3, there are formations of 3 well defined 
clusters. The active compounds form one cluster on the right 
of the dendrogram. Just two compounds were classified 
in wrong clusters. The compound 14 is active, but was 
classified as inactive and the compound 10 is active but 
was classified as inactive by HCA analysis. The formation 
of these well defined clusters shows that the descriptors 
selected by PCA model were able to accurately assess 
the similarities that exist among the active and inactive 
compounds. The similarity among the active compound is 
about 0.6, showing that these compounds are very similar to 
each other considering the selected molecular descriptors.

Figure 4 can also be used to make prediction of activity 
for a new rutaecarpine analogous. For this purpose, it should 
be calculated the selected descriptors by PCA model (C4, 
C23, B2,4, B3,6 and B10,15), autoscaled them and calculated the 
similarity between the new compound and the compounds 
of the active group. Thus, if the similarity between the new 
compound proposed on the basis of the results are greater 

Table 2. PC1 and PC2 loadings for the molecular descriptors selected 
by PCA model that are able to discriminate the rutaecarpine analogous 
in active and inactive classes.

Molecular descriptors
Loadings

PC1 PC2

C4 0.192 0.617

C23 -0.341 -0.560

B2,4 0.569 0.137

B3,6 0.527 -0.391

B10,15 -0.495 0.367

Figure 4. Dendrogram obtained from HCA analysis. The active 
compounds are on the right cluster, except for the compound 10 that 
is active and is located on the middle cluster. Also the compound 14 is 
inactive and is located in the active cluster.
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than 0.6, it is possible to consider the new rutaecarpine 
analogous as an active one.

In the development of the PLS-DA model, the 21 
rutaecarpine analogues were divided into a training set 
(15 compounds), used to build the model, and a test set 
(6 compounds). The compounds used in the test set (1, 
4, 9, 17, 21, 6) were randomly selected and have good 
active/inactive ratio. Vector y was built with values 1 for 
active and 0 for inactive compounds. Predicted values 
greater than 0.5 were rounded to 1 and predicted values 
below 0.5 were rounded to 0. In the development of the 
PLS-DA model, the data were previously autoscaled. The 
best model was obtained with 3 LVs (minor error of cross 
validation), accounting for 84.6 and 80.0% of the total 
variance of X and Y blocks, respectively. The predictive 
ability of the model is presented through a confusion 
matrix (Table 3), a visualization tool typically used in 
supervised learning, in which each column represents the 
instances in a predicted class, while each row represents 
the occurrence in an actual class. As can be seen, all the 
compounds of the independent test set were correctly 
discriminated. The model was also used to classify the 
compounds of the training set with only a false positive. 
Compound incorrectly predicted was 14. Globally, 
PLS-DA model correctly classified 100 and 91.7% of the 
active and inactive compounds, respectively. Estimated 
regression coefficients without autoscaling the data for 
PLS-DA model are given by equation 9.

y = 0.778C4 – 9.473C23 – 4.241B2,4 + 64.551B3,6 – 
0.119B10,15 – 72.723     (Q2 = 0.80) (9)

Q2 = 0.80 shows that the equation 9 is relevant to 
discriminate the compounds into active and inactive classes.

Conclusions

The PCA model result shows that five molecular 
descriptors are able to completely discriminate the 
rutaecarpine analogous tested against CNS cancer into 
active and inactive classes. All selected descriptors are 
electronic, calculated at B3LYP/6-31G(d) level: the partial 

charge on atom 4 (C4), partial charge on atom 23 (C23), bond 
orders between atoms 2 and 4 (B2,4), atoms 3 and 6 (B3,6), 
atoms 10 and 15 (B10,15). PC1 alone is responsible for the 
compound discriminations and accounts for 46.11% of the 
total variance of the data. HCA applied on the autoscaled 
descriptor selected by the PCA model was also able to 
discriminate the compounds into active and inactive clusters 
at similarity 0.3. The HCA similarity among the active 
compounds is greater than 0.5. In addition, a supervised 
PLS-DA model was build and successfully used to classify 
rutaecarpine analogues as active or inactive, being validated 
through an independent test set and considered robust 
to overfitting. The selected electronic descriptors enable 
to hypothesize regarding the rutaecarpine analogous 
mechanism of action and, in addition, can guide us in 
designing new rutaecarpine analogous with activity against 
CNS cancer.
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