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A determinação do teor de cocaína em amostras de drogas consiste em uma importante 
tarefa em órgãos como a Polícia Federal Brasileira (BFP). Nesse sentido, este trabalho propõe 
apresentar um método baseado em espectros de infravermelho obtidos por refletância total 
atenuada (ATR) e regressão por mínimos quadrados parciais (PLSR) para quantificar cloridrato 
de cocaína em amostras de drogas. O método foi desenvolvido e validado com 275 amostras 
reais de drogas apreendidas pela BFP em todo o Brasil. A determinação foi realizada no intervalo 
de 35 a 99% (m/m) de cocaína nas amostras. Os resultados indicaram que o método é capaz de 
analisar diretamente amostras de drogas contendo cocaína na forma de cloridrato sem necessidade 
de qualquer preparo de amostra com erros médios de aproximadamente 3,00%, precisão de 
1,50% (m/m) e concentração mínima detectável de 13% (m/m).

The determination of cocaine in drug samples is an important task for law enforcement agencies 
such as the Brazilian Federal Police (BFP). In this sense, this paper proposes a method based on 
infrared spectra obtained by attenuated total reflectance (ATR) and partial least squares regression 
(PLSR) to quantify cocaine hydrochloride in drug samples. The method was developed and 
validated with 275 actual samples of drugs seized by the BFP. The determination was performed 
between 35 to 99% (m/m) of cocaine in the drug samples. Results indicate that the method is 
able to directly analyze drug samples containing cocaine in its hydrochloride form without any 
sample preparation with average prediction errors of 3.00% (m/m), 1.50% (m/m) precision and 
13% (m/m) of minimum detectable concentration.
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Introduction

According to the United Nations Office on Drugs and 
Crime (UNODC), cocaine is the second most problematic 
drug worldwide in terms of negative health consequences, 
and probably the most problematic one in terms of drug 
trafficking-related violence.1 Furthermore, a World Drug 
Report published in 2013 asserts that while the use of 
cocaine in several countries in South America decreased 
or remained stable, in Brazil it has increased substantially, 
which justifies the intensification of studies that can assist 
law enforcement agencies in the control of illicit drug 
trafficking.2

In order to increase drug volumes and illegal trafficking 
profits, various substances are added to cocaine. Among 

them there are diluting agents such as sugars and starches, 
as well as adulterants, which are pharmacologically active 
compounds capable of increasing the drug’s adverse and 
side effects.1 The determination of cocaine concentration 
and of its diluents and adulterants has a significant role in 
forensic sciences, since it provides important information 
on how the drug has been cut, as well as on how illegal 
distribution networks operate in a certain area.

Since the 1970s, the analytical methods used for 
the determination of cocaine in drug samples have 
evolved substantially.3 Currently, gas chromatography 
is the main technique applied for this analysis, since it 
provides accurate and precise results.4,5 Furthermore, gas 
chromatography is the recommended technique in the 
UNODC’s manuals.6-8 However, despite the excellent 
results, gas chromatography usually requires a relatively 
complex sample preparation procedure and results in high 
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cost and time for analysis. In addition, sample diversity 
demands the method to be frequently adjusted or updated. 
These factors make the analysis of a large number of drug 
samples by gas chromatography time consuming and 
difficult to implement.

Multivariate analysis methods based on Fourier 
transform infrared (FTIR) spectroscopy have shown great 
potential for both qualitative and quantitative analyses. The 
combination of vibrational spectroscopy and chemometrics 
has been considered an efficient alternative method to 
directly extract information from many different data.9 
One of the first methods applying FTIR for cocaine 
determination was proposed by Ravreby.10 In that case, 
cocaine hydrochloride and heroin concentrations were 
determined by univariate regression choosing a carbonyl 
absorption peak in the infrared (IR) spectra obtained with 
KBr pellets. The author also studied the effect of various 
additives and diluents such as starch, sugars, mannitol, 
caffeine, and procaine. However, considering the high 
complexity of seized drugs and the variation of the IR 
spectra obtained with KBr pellets, this method presents 
limitations for routine application in forensic analysis.10 
Ryder et al. showed that multivariate analysis methods 
combined with Raman spectroscopy can be used as a 
rapid analytical method for the analysis of narcotics 
in two component mixtures. In this study, partial least 
squares regression (PLSR) showed that Raman data allow 
the estimation of cocaine concentration in solid mixtures 
with glucose, which should be sufficient for screening of 
samples.11 Rodrigues et al. performed an exploratory study 
that characterized the chemical composition of 91 cocaine 
samples seized in the state of Minas Gerais between 2008 
and 2010, based on attenuated total reflectance (ATR) FTIR 
spectra and chemometric analysis. In their study, principal 
component analysis (PCA) and partial least squares for 
discriminant analysis (PLS-DA) were developed to classify 
the samples according to their dilution (below and above 
15% m/m) and chemical form (cocaine hydrochloride or 
base). Discrimination according to dilution and chemical 
form resulted respectively in 83% and 97% correct 
results.9 In a preliminary study, Maharaj compared the 
quantification of cocaine using gas chromatography 
and flame ionization detection (GC-FID) with FTIR.12 
Although only few samples were used for analysis, and 
the lack of results for figures of merit of the method, the 
author affirmed that the results obtained by GC-FID and 
ATR-FTIR are equivalent and consequently, ATR-FTIR 
was considered adequate for the quantitative analysis 
of cocaine.12 Recently, Pérez-Alfonso et al. proposed a 
method for determination of cocaine in illicit samples 
by diffuse reflectance measurements in the near infrared 

spectroscopy (NIR) region. The results obtained by the 
authors showed that the cocaine content can be determined 
in a wide concentration range. However, the validation was 
performed with a relatively low number of samples if one 
takes into account the high heterogeneity of illicit samples 
occurring in real forensic cases.13

The results described in the literature suggest that 
infrared spectroscopy and multivariate analysis can be 
a viable analytical method for cocaine analysis in drug 
samples. However, there is still a lack of validated methods 
with a significant number of seized cocaine samples in 
order to prove the real potential of this technique in routine 
forensic analysis. Therefore, the aim of the present work is 
to describe the development and validation of an analytical 
method to quantify cocaine hydrochloride in seized drug 
samples using ATR-FTIR and multivariate calibration. In 
order to develop and validate the proposed method, the 
quantitative determination of cocaine was performed in a 
significant number of drug samples seized nationwide using 
two independent analytical techniques, namely GC‑FID 
and ATR-FTIR. 

Experimental

Samples and sample preparation 

The dataset was composed of 275 samples of cocaine 
hydrochloride originating from approximately 73 seizures 
made by the Brazilian Federal Police (BFP) in different 
parts of Brazil, between 2009 and 2013. All samples were 
sent to the Forensic Chemistry Laboratory of the National 
Institute of Criminalistics in Brasília. Before instrumental 
analysis, all samples were carefully homogenized by 
maceration. 

Infrared spectroscopy measurements

The infrared spectra were obtained on a Nicolet iS10 
FTIR spectrometer equipped with a triple reflection 
attenuated total reflectance SMART iTR accessory using 
a diamond crystal. The measurements were obtained in 
reflectance mode (R) with the accessory filled with a small 
amount of cocaine. The spectra were collected between 
4000 and 400 cm−1 over 16 scans with a resolution of 
4.0 cm−1. 

Gas chromatography with flame ionization detection 
(GC‑FID) analysis

GC-FID was used as the reference method. The cocaine 
content in the drug samples was determined by weighing 
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an amount of 12.25 mg ± 0.25 mg of each homogenized 
sample and mixing thoroughly with 10.0 mL of an internal 
standard solution (diethylamine, 0.002 mL L−1 and dipentyl 
phthalate, 512 mg L−1 prepared in chloroform). Then, 1 mL 
of this solution was transferred to glass vials, sealed, and 
subjected to chromatographic separation.

GC-FID analysis was performed on a gas chromatograph 
model 6890N (Agilent Technologies) equipped with a flame 
ionization detector and an autosampler 7683B Series 
(Agilent Technologies). The chromatographic conditions 
were as follows: injection volume of 0.2 mL; split ratio of 
50:1; chromatographic column DB1-MS methyl siloxane 
(25 m × 200 μm [i.d.] × 0.33 μm film thickness); injector 
temperature of 280 °C, and detector temperature of 320 °C. 
Helium was used as the carrier gas at a flow of 1.0 mL min−1. 
The oven temperature program was as follows: 150 °C for 
2 min, heat 40 °C min−1 to 350 °C, and hold at 350 °C for 
4.5 min, resulting in a 12 min chromatographic run.

Multivariate model development 

The multivariate calibration method was developed 
based on partial least squares regression (PLSR). In PLSR, 
the original spectral variables are decomposed into latent 
variables in order to establish the best correlation between 
the instrumental measurements (spectral data matrix X) and 
the values of the interest property (vector y containing the 
reference values of cocaine concentration).14-16 

All sample spectra were imported into MATLAB 
(version 7.12, R2011a) and the preprocessing and PLSR 
models were implemented using the PLS Toolbox 
(version  6.5) from Eigenvector Technologies. Two 
independent regression models were developed. The first 
one was established using the data on a reflectance scale, 
while the second one utilized converted absorbance (Abs) 
data by means of the relation Abs = log10(1/R).

To perform the calibration and validation of the models, 
the dataset was split respectively into 184 calibration and 
91 validation samples selected by the Kennard-Stone 
algorithm.17

In order to obtain the best prediction results, several pre-
processing techniques were evaluated, specifically standard 
normal variate (SNV), orthogonal signal correction (OSC), 
first derivative, mean center, and their combinations. The 
selection of the best preprocessing method was made based 
on the root mean square error of calibration (RMSEC) and 
the mean error of cross validation (RMSECV) obtained by 
92 continuous blocks.14,15

After choosing the pre-processing method, the models 
were optimized by the elimination of outliers. Methods 
for outlier identification have been described in detail in 

several publications.15,16 In this work, outlier identification 
was performed as described in ASTM E1655-0518 and in 
the references published by Valderrama et al., based on 
data with extreme leverage, unmodeled residuals in spectral 
data and unmodeled residuals in the dependent variable, 
taking into account 99% confidence intervals.19 Initially, 
a first calibration model was built and the outliers were 
removed from the calibration samples; then the model was 
recalculated and the outlier identification and exclusion 
process was repeated. After two outlier exclusions, the third 
model was considered to be optimized. The validation set 
was evaluated with the optimized calibration model and the 
outliers were excluded by applying the same criteria used 
for the calibration model.

Analytical figures of merit 

Trueness is the parameter that informs the degree of 
agreement between the reference and the estimated values by 
the proposed method.20 In average terms, it can be expressed 
as the root mean square error of prediction (RMSEP), which 
is an approximation of the average prediction error for the 
validation samples obtained from equation 1.21

 	 (1)

where IV is the number of validation samples, while yi 
and ŷi are respectively the reference value and estimated 
value for the cocaine concentration for sample i. Another 
parameter used to measure the degree of agreement between 
the reference value and estimated value is the relative error 
of prediction (REP), which is determined by equation 2.21

 	 (2)

The sensitivity (SEN) of the method determines 
the fraction of the analytical signal due to the increase 
in the concentration of a particular analyte in the unit 
concentration. The SEN was determined based on the 
regression coefficients of the PLSR model, according 
equation 3.21-23

 	 (3)

where b is the vector of regression coefficients with A 
latent variables.
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The precision of the method measures the dispersion 
of estimated results for the interest property obtained from 
independent experiments which are repeated for a same 
sample under the defined conditions.24,25 Precision was 
determined according to equation 4. For this purpose, four 
different samples with concentrations regularly distributed 
along the linear range of the method, with 10 replicates each 
performed in the same day, were analyzed.

 	 (4)

where I is the number of samples, m is the number of 
replicates, ŷi,j is the estimate concentration for sample i 
and replicate j, and ^ȳi is the average concentration of the 
replicates for sample i.

The minimum detectable concentration (MDC) is 
defined as the lowest concentration that can be reliably 
measured. The MDC can be determined by applying ISO 
11843-2 recomendations.26,27 Ortiz et al. suggests that the 
proposed ISO 11843-2 calculation can be directly extended 
to multivariate cases.28 Thus, the MDC values were 
calculated as suggested by Ortiz et al. using equation 5.28

 	 (5)

where s is the standard deviation of the residues for the 
linear regression between reference values and estimated 
values by the proposed method, b is the slope of the 
regression line, IC is the number of calibration samples, 
m is the number of replicates, ȳ is the median concentration 
in the calibration samples, δα,β,υ is the non-centrality 
parameter of the t distribution, α and β are the probabilities 
of occurrence for false negative and false positive errors, 
respectively, and v(MDC) = IC − 2 degrees of freedom. In 
this work, the two probabilities α and β were considered to 
be equal to 0.05 (95% confidence level). It should be noted 
that the MDC estimated by equation 5 might be considered 
as an average to all possible MDC for future test samples, 
since the detectablility of the PLSR model depends on the 
level of other background constituents.29

The confidence intervals can be defined as a range, with 
a given degree of confidence (i.e., a certain probability) that 
the real value for the concentration of the analyte of interest 
is included. This can be determined by applying a residual 
distribution model (usually the normal distribution) and the 
estimated standard error of prediction (s(ŷ – y)), which are 
determined by equations 6 and 7, respectively.23,30

 	 (6)

 	 (7)

where α is the significance level equal to 0.05 (95% 
confidence level); tν,1-α/2 is the corresponding critical level 
for the Student’s t distribution with ν pseudo degrees of 
freedom, determined as proposed by Van der Voet;31 MSEC 
is the mean square error estimated in the calibration samples 
with ν pseudo degrees of freedom; and hi is the leverage of 
the sample, estimated by equation 8.30

 	 (8)

where ti and T are respectively the scores for sample i and 
for all the calibration samples, respectively.

Results and Discussion 

Figure 1 shows the ATR-FTIR spectra obtained for (a) 
cocaine hydrochloride standard and (b) all the calibration 
samples, expressed in reflectance units. According to 
Rodrigues et al., the spectral region that lies around 
2540  cm−1 is characteristic of cocaine hydrochloride, 
attributed to the N−H stretching due to the hydrochloride 
salt formation.9 However, a high number of infrared signals 
is observed in the infrared spectra of the cocaine standard, 
most of them also present in the calibration samples. 
Several infrared bands may be nominated: 729, 1026 and 
1071 cm−1 (corresponding to the out-of-plane bending and 
the mono substituted benzene stretching); 1105, 1265 and 
1230 cm−1 (acetate C−O stretching); the bands between 
1490-1460 cm−1 (C−H bending vibrations) and the bands 
at 1712 and 1728 cm−1 (stretching vibration of the two 
carbonyl groups). Furthermore, it is observed in Figure 1b 
a significant spectral variation in the data, which can be 
attributed to differences in cocaine content, the presence 
of diluting/adulterant agents, and instrumental variations. 

In Figure 2, the regression vector of the PLSR model 
developed with reflectance data is presented. It can be 
observed that the regression coefficients with the highest 
absolute values correspond to wavenumbers between 500 
and 800 cm−1 and between 1400 and 1800 cm−1. The last 
region can be attributed to the stretching vibration of the 
two carbonyl groups at 1728 and 1712 cm−1 and the C−H 
bending vibrations at 1490 and 1460 cm−1.

Table 1 shows the results for each PLSR model 
developed by excluding outliers and the variation of 
RMSEC and RMSEP values in these models. In both the 
reflectance and absorbance models, a significant decrease 
of the RMSEC values is observed after outlier exclusion. 
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In addition, although some samples have been identified as 
outliers based on the leverage criterion in the third model 
(after the second exclusion), they were not excluded from 
the dataset since the ASTM E1655-05 indicates that the data 
may be presenting the “snowball effect”. In these cases, the 
ASTM E1655-05 suggests that the leverage criterion can be 
relaxed provided that no calibration samples have a leverage 
greater than 0.5. In these datasets, the high leverage 
observed in the optimized models for the reflectance and 
absorbance data was 0.20 and 0.23, respectively.18 

Table 1 also shows that when the model was built based 
on reflectance and absorbance measurements, 15.8% and 
14.1% of the calibration samples and 7.7% and 6.6% 
of the validation samples were excluded, respectively. 
However, considering the high heterogeneity of the drug 

samples, the number of outliers excluded in the calibration 
and validation samples was considered to be acceptable 
in both optimized PLSR models. Samples identified as 
outliers were analyzed in detail to verify the reasons for 
their exclusion. More than 60% of the outliers were part of 
seizures carried out at least three years ago, which may be 
the cause of changes in some of the chemical characteristics 
of the sample. 

The results obtained for the figures of merit of the PLSR 
models are presented in Table 2. It can be observed that 
the average prediction errors (represented by RMSEC and 
RMSEP) were lower than 3.0% (m/m). For the samples 
presenting the lowest cocaine concentrations relative 
errors of approximately ± 20% were observed. However, 
considering all validation samples the average relative error 

Figure 1. ATR-FTIR spectra of (a) cocaine hydrochloride standard and 
(b) the 184 drug samples used for model development.

Figure 2. Regression coefficients for the PLSR model developed for 
reflectance data.

Table 1. Results for the number of outliers identified by each parameter and the variation of the RMSEC and RMSEP values observed

Modela Sample
No. of outliers detected in each test

RMSEC RMSEP
Leverage X residuals Y residuals Total

Reflectance M1 184 10 4 5 16 5.26 5.34

Reflectance M2 168 5 1 4 10 3.80 5.32

Reflectance M3 158 4b 0 3 3 3.28 5.23

Reflectance M4 Opt 155 0 0 0 0 2.89 5.21

ReflectanceVal 91 1 0 6 7 2.89 5.21

ReflectanceVal Opt 84 0 0 0 0 2.89 2.47

Absorbance M1 184 10 4 6 18 5.52 5.26

Absorbance M2 166 4 1 2 6 3.67 5.29

Absorbance M3 160 2b 0 2 2 3.10 5.21

Absorbance M4 Opt 158 0 0 0 0 2.70 5.16

AbsorbanceVal 91 0 0 6 6 2.70 5.16

AbsorbanceVal Opt 85 0 0 0 0 2.70 2.77

aM: model; Opt: optimized; Val: validation set; bsamples not excluded.
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was approximately 9% and 10% for the reflectance and 
absorbance models, respectively. 

The linearity of the method was evaluated by the 
distributions and histograms of the residuas of the PLSR 
models, which are presented in Figure 3. Visually it is 
possible to verify the random behavior of these distributions. 
However, to verify the assumption of independence and 
normallity of the residuals it was applied the Jarque-Bera 
test.32 According to this test, with 95% of confidence, the 
normallity of the discributions cannot be rejected. Since the 
residual plot indicates the validity of the linear model, the 

fitting of a straight line relating reference versus estimated 
values can be used to estimate a correlation coefficient, 
slope and intercept. These parameters may then be used to 
express the goodness of fit of the PLSR models. 

Figure 4 presents the dispersion graphics of the 
regressions between the reference and estimated values 
for both PLSR models. Good agreement was observed 
between the evaluated methods (GC-FID and FTIR), with 
correlation coefficients higher than 0.90 for both models. 
However, the results for the slope and the intercept of the 
regression line between the reference and estimated values 
for the cocaine concentration (presented in Table 2) shows 
that the PLSR model developed with the absorbance data 
present both constant and proportional systematic errors. 
This can be seen by the fact that the confidence intervals 
(with 95% confidence) do not contain the expected values 
of 1 and 0 for the slope and intercept, respectively. On the 
other hand, the model developed with the reflectance data 
showed no significant systematic errors. Therefore, both 
models showed comparable prediction errors, but taking into 
account the goodness of fit, only the PLSR model developed 
with reflectance values may be considered to have adequate 
trueness. This was an unexpected result since according the 
Beer-Lambert law, the data in the absorbance scale should 
provide a better relation with the analyte concentration. 
However, it should be noted that the Beer-Lambert law is 
strictly valid only for transmittance measurements.

The uncertainty of the PLSR models was estimated in 
accordance with Pierna et al..30 Considering this approach, 

Table 2. Analytical figures of merit for PLS models for the properties 
of interest

Figure of merit Reflectance Absorbance

Trueness / % (m/m) RMSEC 2.89 2.70

RMSEP 2.47 2.77

REPCal 3.94 3.66

REPVal 9.11 9.94

Precision / % (m/m) 1.46 1.52

Sensitivity / (% (m/m))–1 0.195 0.137

Goodness of fita slope 0.89 ± 0.11 0.82 ± 0.11

intercept 8.9 ± 9.1 14.6 ± 9.1

corr coef (R) 0.904 0.914

MDC / % (m/m) 12.8 11.6

a99% confidence interval.

Figure 3. Distributions of the absolute errors obtained with the PLSR model developed with the absorbance (a) and reflectance data (b) against the estimated 
cocaine content values. Calibration () and validation samples (). Histograms of the absolute errors obtained with the absorbance (c) and reflectance 
(d) PLSR models (calibration data (light grey bars) and validation data (dark grey bars)).
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it was found that, for both models, the average uncertainty 
was approximately 7%, with 95% confidence. A plot with 
confidence intervals for some validation samples is shown 
in Figure 5, which ilustrates the uncertainty of the results 
of the PLSR model developed with the reflectance data, 
and 95% confidence.

Precision at the repeatability level showed good results 
for both PLSR models, being approximately equal to 1.5% 
(m/m).

The MDC estimates represent an important figure of 
merit for the method. The estimated MDC values for the 
reflectance and absorbance models were 12.8% and 11.6%, 
respectively, which indicates that the FTIR method is 
suitable for determining the concentrations of most seizures 
made by BFP.

Conclusions

The results show that the validated method based on 
the combination of the ATR-FTIR spectroscopic technique 
and PLSR allows for the direct determination of the 
hydrochloride cocaine concentration of drug samples seized 
in several Brazilian states. 

The method presented low absolute and relative average 
errors (lower than 3% (m/m) and 10%, respectively). 
Based on the quality of the fit, the model developed with 
the reflectance data was selected as the best model for 
determining cocaine hydrochloride concentration in drug 
samples.

This method can be considered convenient and 
versatile since it has the ability to significantly reduce the 
time and cost of analysis with respect to chromatographic 
analysis. Additionally, it is more environmentally friendly 
as it does not generate any chemical residues. Although 
gas chromatography has been frequently used because it 
offers accurate results, infrared spectroscopy has shown 
similar precision, acceptable trueness and detection 
capability, and a wide linear range (35% to 99% (m/m)), 
which fulfills the requirements for its application in 
forensic laboratories.

The proposed method allows for fast and accurate 
creation of criminal expert reports, thus contributing to the 
judiciary system and benefitting society.
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