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In the recent times, the race to cope with the increasing multidrug resistance of pathogenic 
bacteria has lost much of its momentum and health professionals are grasping for solutions to 
deal with the unprecedented resistance levels. As a result, there is an urgent need for a concerted 
effort towards the development of new antimicrobial drugs to stay ahead in the fight against 
the ever adapting bacteria. In the present report, antibacterial classification functions (models) 
based on the topological molecular computational design-computer aided ‘‘rational’’ drug design 
(TOMOCOMD-CARDD) atom-based non-stochastic and stochastic bilinear indices are presented. 
These models were built using the linear discriminant analysis (LDA) method over a balanced 
chemical compounds dataset of 2230 molecular structures, with a diverse range of structural 
and molecular mechanism modes. The results of this study indicated that the non-stochastic and 
stochastic bilinear indices provided excellent classification of the chemical compounds (with 
accuracies of 86.31% and 84.92%, respectively, in the training set). These models were further 
externally validated yielding correct classification percentages of 86.55% and 87.91% for the non-
stochastic and stochastic bilinear models, respectively. Additionally, the obtained models were 
compared with those reported in the literature and demonstrated comparable results, although the 
latter were built over much smaller datasets and with much higher degrees of freedom. Finally, 
simulated ligand-based virtual screening of 116 compounds, recently identified as potential 
antibacterials, was performed yielding 86.21% and 83.62% of correct classification, respectively, 
and thus demonstrating the utility of the obtained TOMOCOMD-CARDD models in the search 
of novel compounds with desirable antibacterial activity. 

Keywords: TOMOCOMD-CARDD software, atom-based bilinear index, linear discriminant 
analysis, antibacterial activity, QSAR, virtual screening
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Introduction

The race to cope with the increasing multidrug 
resistance of pathogenic bacteria has in the recent times lost 
much of its momentum, particularly due to a fundamental 
shift in the interest of the pharmaceutical companies. In 
the period 2010-2012, only one antibiotic was approved 
by the US food and drug administration, highlighting the 
tremendous fall in the development of novel antibiotics.1 
The argument put forward by pharmaceutical companies is 
that antibiotics are a non-viable investment given they are 
short course therapies compared to other chronic illnesses.2 
Therefore in the wake of the ever leaner antibiotic pipeline, 
antibiotic resistance has risen to unprecedented levels 
catching up with remedies long considered as “last resorts” 
such as vancomycin and carbapenem.3 Indeed troublesome 
enterococci and staphylococci such as methicillin-resistant 
Staphylococcus aureus (MRSA) and vancomycin-resistant 
enterococci (VRE) have found health professionals 
grasping for solutions without much in store to count on.4-10

Consequently, it is needless to say that there is an 
urgent need for concerted efforts in the development of 
new antimicrobial drugs (with more selectivity and less 
toxicity) to stay ahead in the battle against the ever adapting 
disease causing bacteria. During the past two decades, 
drug discovery research has been reoriented towards the 
development of theoretical and/or computational methods 
enabling the rational selection or design of novel agents 
with the desired properties, offering huge advantages 
in terms of the time and cost incurred in the search of 
novel lead compounds.11 Recently, high throughput and 
ultrahigh throughput screening (HTS and uHTS) have 
been introduced to spearhead the identification of new lead 
compounds.12 However, while these methods are rapid they 
are still relatively cost friendly, for many pharmacological 
activities, HTS endpoints may not be available.13 In 
addition, because of the low number of high-quality leads 
derived from HTS tests (1  per  100  000  compounds),14 
several techniques for “recognizing drug-like molecules” 
have been introduced. Thus, virtual (computational) 
screening has emerged as an interesting alternative to 
HTS.15 In this way, computational techniques are used to 
select a reduced number of potentially active compounds, 
from large available chemical or virtual combinatorial 
libraries. The main aim of this approach is to discriminate 
potential candidate molecules from inactive ones. Indeed, 
various in silico approaches have been employed in the 
construction of quantitative structure-activity relationship 
(QSAR) models for the prediction of antibacterial 
activity,13,16-22 with greater emphasis on ligand-based 
classification methods. 

The QSAR models can be categorized as local, 
global and universal models. Local models typically 
characterize a particular class of chemical compounds, 
usually congeneric in nature,23,24 global models are based 
on a single chemical mechanism of action25 and universal 
models are those based on structurally diverse datasets 
and corresponding to different mechanisms of action.26-28 
Although there many classification models developed in 
antimicrobial research so far that may be considered as 
universal QSARs, these were generally built on much 
smaller datasets explaining their narrow applicability 
domains (ADs), which in turn limits their usability in 
yielding new molecular entities (NMEs) of therapeutic 
interest.13,16-21 Therefore, it is imperative to construct 
diverse chemical datasets (in structural and activity 
mechanisms terms) for QSAR modeling and to explore 
alternative molecular structural characterizing strategies/
parameters capable of codifying orthogonal information 
to the existing ones, as a means of expanding the AD of 
the obtained models. In this context, a novel scheme to 
perform rational in silico molecular design (or selection/
identification of lead drug-like chemicals) and quantitative 
structure activity/property relationship (QSAR/QSPR) 
studies, known as TOMOCOMD-CARDD (acronym of 
topological molecular computational design-computer 
aided ‘‘rational’’ drug design)29 has recently introduced. 
This approach has been applied to the virtual screening 
of novel anthelmintic, antimalarial, antitrypanosomal, 
antiinflamatory and tyrosinase inhibiting compounds, 
which were then synthesized and evaluated in vitro and/
or in vivo studies with successful results.30-34 

The primary objective of the present report is 
to construct classification functions, based on the 
TOMOCOMD-CARDD atom-based non-stochastic and 
stochastic bilinear indices and a diverse chemical dataset 
of 2230 compounds, with the ultimate goal of screening for 
NMEs with possible broad spectrum antibacterial activity. 
The linear discriminant analysis (LDA) technique will be 
employed as the classification method. The key advantage 
of LDA is its inherent simplicity, both in terms of the lower 
computational cost involved with this method [compared to 
other non-linear methods such as artificial neural networks 
(ANN), support vector machine (SVM), random forest 
(RF), etc.] and the ease in the analysis of linear biological 
relationships. Comparisons with other approaches reported 
in the literature will be performed with the aim of assessing 
the performance of the built classification models. Finally, 
simulated virtual screening is carried out over 116 new 
compounds, recently reported in the literature as possessing 
antibacterial activity, to evaluate the true predictive ability 
of the TOMOCOMD–CARDD models.
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Methodology

Construction of chemical dataset

It is known that greater structural variability of the 
training series dataset enhances the general performance 
of learning methods as it favors a broader AD for the 
classification models, critical in the successful screening 
the huge chemical compound databanks present today for 
NMEs with possibly novel modes of action. In this sense, 
we constructed a data set comprised of 2230 chemicals, 
with 1051 compounds reported in the literature as 
antibacterials35-37 and the rest (1179 compounds) with other 
pharmacological uses.36,37 The former were considered as 
active, while the latter as inactive, consistent with binary 
classification models. The dataset of active compounds was 
built considering representatives from most of the different 
structural patterns and action modes of antibacterial activity 
(see also Table S1 in Supplementary Information). For 
instance, it includes antimicrobial agents that interfere 
with the synthesis or action of folate (sulphonamides and 
dihydrofolate-reductase inhibitors such as trimethoprim), 
b‑lactam antibiotics (cephalosporins, cephamycins, 
penicillins, monobactams and carbapenems), antimicrobial 
agents affecting bacterial protein synthesis (tetracyclines, 
phenicols, aminoglycosides, macrolides, lincosamides), 
chemicals affecting DNA gyrase (quinolones), miscellaneous 
antibacterial agents (vancomycin, polymixim antibiotics, 
nitrovinylfurans, bacitracin) and many others.38,39 Other 
compounds for which a specific mode of action has not 
been found or defined were also included.36,37 Therefore 
great variability in structural and molecular mechanism 
terms was achieved.

Posteriorly, in order to divide the built chemical 
compound dataset into training and test sets, respectively, 
two k-means cluster analyses (k-MCAs) were performed 
for active and inactive series of chemicals, separately.40,41 
The main idea consists of carrying out a partition of the 
active and inactive series of chemicals in several statistically 
representative classes of chemicals. This procedure ensures 
that all chemical classes (as determined by the clusters 
derived from k-MCA) will be represented in both series 
of compounds.40 Posteriorly, for each cluster, the selection 
of the training and test sets was performed following a 
random sampling procedure. As a result, the training set was 
composed of 799 antibacterials and 918 non-antibacterials 
out of a set of 1717 chemicals. The remaining group, 
composed of 252 antibacterials (active) and 261 compounds 
with different biological properties (considered as inactive 
in this context), was used as the test set for the validation 
of the models.

Finally, an external validation set comprised of 
116  novel antimicrobial agents recently reported in the 
literature42,43 was set aside to assess, in a simulate virtual 
screening experiment, the earnest predictive ability of the 
obtained classification models. 

Molecular descriptor computation 

The proper selection of molecular structural 
characterizing parameters for use in statistical modeling 
plays an important role in the quality of the models 
constructed thereof. While there is no general consensus 
on which family/class of theoretical molecular descriptors 
(MDs) should be preferred, orthogonality (in regard to 
the chemical information codified), simplicity (in terms 
of algorithms followed in their computation) and high 
discriminating power for structurally different chemicals 
constitute desirable characteristics to be taken into 
account.44 In this sense, the so-called topological (and 
topo‑chemical) indices (TIs) have gained increasing 
utility in QSPR/QSAR modeling as they generally 
approximate to these attributes.44,45 The TIs are numbers 
that describe the structural information of molecules 
through graph‑theoretical invariants and can be considered 
as structure-explicit descriptors.46 

In previous reports, Marrero et al.11,40 introduced a 
new family of TIs known as TOMOCOMD-CARDD 
bilinear indices. These MDs are based on the calculation 
of bilinear maps in ℜn , in canonical basis sets.47,48 The 
computation of the non-stochastic and stochastic bilinear 
indices is performed using the kth “non-stochastic and 
stochastic graph-theoretical electronic-density matrices” 
denoted by Mk and Sk, respectively.47,48 These matrix 
operators are graph-theoretical electronic-structural 
models, similar to the ‘‘extended Hückel MO (molecular 
orbital) model’’. The M1 matrix considers all valence-
bond electrons (s- and p-networks) in one step, and 
their power k (k = 0, 1, 2, 3, ...) can be considered as 
an interacting-electronic chemical-network in kth step. 
The present approach is based on a simple model for the 
intramolecular (stochastic) movement of all outer-shell 
electrons. Therefore, our approach describes changes 
in the electronic distribution throughout the molecular 
backbone with time.47,48 These indices may be computed 
to characterize the totality of the entire molecular structure 
and/or determined fragments or characteristics of the 
molecule (local atom and atom-type indices). This is an 
essential attribute bearing in mind that the antibacterial 
activity may sometimes not necessarily depend on the 
entire molecular structure but on determined regions which 
interact with the inhibitory sites in the microorganism. 



Castillo-Garit et al. 1221Vol. 26, No. 6, 2015

To automatize the computation of these indices, a 
free and interactive computational program denominated 
TOMOCOMD-CARDD was implemented. This software 
was in the Java programming language and is designed 
to operate in a parallel environment and thus maximizing 
the architecture of modern computers.49 The following 
descriptors were calculated for this study: (i) kth non-
stochastic total bilinear indices, considering hydrogen 
suppressed and filled molecular pseudographs (G) denoted 
by bk(

–x, –y) and bk
H(–x, –y), respectively; (ii) kth non-stochastic 

local bilinear indices (for heteroatoms based on atom-
types: S, N, O), for H filled and suppressed molecular 
pseudographs (G) denoted by bkL

H(–xE , –y E) and bkL(–xE , –y E), 
respectively. These local descriptors are putative H-bonding 
acceptors, charge and the dipole moment; (iii) kth non-
stochastic local (for atom groups based on H-atoms bonded 
to heteroatoms: S, N, O) bilinear indices, considering H 
atoms in the molecular pseudograph (G) [bkL

H(–xE -H, –y E‑H)]. 
These local descriptors are putative H-bonding donors.

The kth stochastic total [sbk(
–x, –y) and sbk

H(–x, –y)] and local 
[sbkL(–xE , –y E), sbkL

H(–xE , –y E), and sbkL
H(–xE -H, –y E‑H)] bilinear 

indices were also computed. Additionally, the following 
properties were employed as weighting schemes for atoms 
in the molecular structures: atomic mass (M), atomic 
polarizability (P), atomic Mulliken electronegativity (K) 
and van der Waals volume (V).

Chemometric tools

The statistical software Statistica was used to perform 
the k-MCA.50 The number of members in every cluster and 
the standard deviation of the variables in the cluster were 
taken into account (as low as possible) in order to have 
acceptable statistical quality of data partition in clusters. We 
also made an inspection of the standard deviation between 
and within the clusters, as well as the respective Fisher ratios 
and p-levels of significance, the latter was considered to be 
lower than 0.05.41,51 Posteriorly, LDA‑based classification 
models were built using the Statistica software.50 The 
forward stepwise algorithm was used as the strategy for 
variable selection. The performance of the LDA models 
was assessed using the statistical parameters square 
Mahalanobis distance (D2), Wilks’ λ parameter (U-statistic), 
Fisher ratio (F), p-level [p(F)] and the percentage of correct 
classification in the training and test sets, respectively. The 
statistical robustness and predictive power of the obtained 
models were assessed using the test set of compounds. The 
binary classification variable CA with values 1 and -1 for 
active and inactive compounds, respectively. It follows 
that a compound is classified as active, if ΔP% > 0 with  
ΔP%  =  [P(active) - P(inactive)] × 100, and as inactive 

otherwise [P(active) and P(inactive) are the probabilities 
with which the equations classify a compound as active 
and inactive, respectively]. Finally, the calculation of 
percentages of global good classification (accuracy), 
sensibility, specificity (also known as ‘hit rate’), false 
positive rate (also known as ‘false alarm rate’), Matthews 
correlation coefficient (MCC) and the receiver operating 
characteristic (ROC) curve analysis for the training 
(1717  compounds) and test (513 compounds) sets, 
respectively, permitted us to carry out the assessment of 
the models’ robustness, predictive power and the statistical 
significance with respect a random classifier.52,53 Posteriorly, 
external validation set (VS) of 116 novel antimicrobial 
agents, taken from recently published reports42,43 were 
used to more vigorously assess the predictive ability of 
the obtained classification models in a simulated virtual 
screening experiment.

Results and Discussions

Development, comparison and validation of the obtained 
models

Development of the discriminant functions
For the training set, the best discriminant functions 

obtained by using atom-based non-stochastic and stochastic 
bilinear indices, are given below:

CA = -3.08 + 6.93 × 10-3 MKb1L
H(–xE -H, –y E‑H) +  

1.75 × 10-3MKb2L
H(–xE , –y E) - 6.00 × 10-3MPb1L

H(–xE , –y E)	 (1)
N = 1717; l = 0.56; D2 = 3.09; F = 440.61; p < 0.0001; 
MCC = 0.72; QLS = 86.31%; QPS = 86.55%

CA = -2.96 + 14.92 × 10-3 VKb7L
H(–xE -H, –y E‑H) +  

28.14 × 10-3VKb1L
H(–xE , –y E) -15.07 × 10-3VKb1L(–xE , –y E)	 (2)

N = 1717; l = 0.57; D2 = 2.95; F = 419.85; p < 0.0001; 
MCC = 0.70; QLS = 84.92%; QPS = 87.91% 

where N is the number of compounds, λ is Wilks’ lambda, 
D2 is the square Mahalanobis distance, F is the Fisher ratio, 
p-value is the significance level, MCC is the Matthews’ 
correlation coefficient for the training set, QLS and QPS are 
the accuracy of the model for the training and prediction 
sets, respectively.

Equation 1, built from non-stochastic indices, has an 
accuracy of 86.31% for the training set. This model showed 
a good MCC of 0.72; MCC quantifies the strength of the 
linear relation between the MDs and the classifications, 
and it may often provide a much more balanced evaluation 
of the prediction than, for instance, the percentages 
(accuracy).54 Nevertheless, the most important criterion, 
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for the acceptance or not of a discriminant model, is based 
on the statistics for the test set. The non-stochastic model 
showed an accuracy of 86.55% (MCC = 0.73) for the 
compounds in the test set.

A rather similar behavior was obtained with the 
stochastic bilinear indices (equation 2). In this case, the 
model achieved an accuracy of 84.92% with a MCC of 
0.70 for the training set, and for the test set an accuracy of 
87.91% and MCC of 0.76; these values are similar-to-better 
than to those obtained with non-stochastic bilinear indices. 
The results of classification obtained with both models are 
shown in Table 1.

Figures 1 and 2 illustrate the ROC curves for the non-
stochastic and stochastic bilinear index-based LDA models, 
respectively, for the training and test sets in each case. As 
can be observed, the values for the area under the curve 
(AUC) in the case of the former are of 0.931 and 0.938, 
while in the latter are 0.928 and 0.942 for the training and 
test sets, respectively. These scores ratify the inference 
that the obtained models are significantly different from a 
random classifier [AUC (random classifier) = 0.5]. 

All together, the statistical quality of the built models 
was satisfactory, validating the applicability of these 
models in virtual screening of chemical compounds. The 
complete set of compounds in the training and test sets, as 
well as their classification using both models, is given in 
Supplementary Information (for details see Tables S2-S4). 

Comparison with other approaches for antibacterial activity 
prediction

The statistical parameters of the classification models 
obtained with the atom-based non-stochastic and stochastic 
bilinear indices were compared with those of other 
methods reported in the literature.13,16-21 Nevertheless, 
straightforward comparisons are not possible, bearing 
in mind the differences in the chemometric methods and 
experimental data employed in the respective studies. 
Therefore this comparative study was based on the 
characteristics and statistics of the different studies such as: 

the fitting and validation methods for the different models 
and the corresponding statistics, the number and diversity 
of chemical compounds in the datasets and the percentages 
of correct classifications. The Table 2 shows a comparison 
of the results obtained using the bilinear indices with those 
reported in the literature.

As can be observed, in this study we used a much 
larger (2230 compounds) and more diverse (comprised of 
a broader range of antibacterial families) dataset, probably 

Table 1. Global results of the classification of compounds in the training and test sets

Matthews corr. 
coefficient

Accuracy  
‘QTotal’ / %

Sensitivity  
‘hit rate’ / %

Specificity / %
False positive rate 

‘false alarm  
rate’ / %

Non-stochastic MDs [eq. (1)]

Training set 0.72 86.31 84.92 86.06 11.87

Test set 0.73 86.55 87.91 87.35 11.88

Stochastic MDs [eq. (2)]

Training set 0.70 84.92 84.73 83.17 14.92

Test set 0.76 87.91 86.90 88.31 11.11
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Figure 1. ROC curves for discriminant function based on the non-
stochastic indices (equation 1) for the (a) training set (b) test set.
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the largest and most diverse dataset used in antibacterial 
activity modeling, from the best of our knowledge. 
Therefore this dataset may be considered as a benchmark 
for posterior modeling tasks of the antibacterial activity 
(a complete list of the 2230 chemicals employed in the 
present report is available as Supplementary Information; 
see S2-S4). Other than a previous study performed by 
some of the authors of the present report,11 the rest of 
the studies reported in the literature were carried out on 
datasets 3-20 times less than the dataset employed in 
the present study and with 3-8 families of antibacterial 
drugs.13,16-21 The importance of the dataset structural 
pattern in QSAR modeling cannot be overemphasized. It 
is anticipated that models built with datasets with diverse 
families of antibiotics and mechanisms of action should 
increase their utility in the search of broad spectrum 
antibacterials, as a desirable characteristic of novel 
chemotherapeutic compounds. Therefore, although there 
are some models with superior statistics (for the training 
and test set) compared to those in the present report, the 

former are generally based on a narrower chemical space 
(in terms of the number and diversity of the compounds), 
which decreases their utility in present day virtual 
screening tasks.

Additionally, with the exception of the models 
reported by Domenech and de Julián-Ortiz,17 the bilinear 
index-based models (equations 1 and 2) are much smaller 
size (3-variable models) compared to those reported in 
the literature (ranging from 6-62 variables). It is thus 
logical that the models in the present report possess 
superior Fisher ratio (F) values than the rest of the models 
(Table 2). This implies that the former are unlikely prone 
to overfitting and thus possess a greater generalizability. 
Also some studies reported in the literature used much more 
robust non-linear modeling methods [i.e., artificial neural 
networks (ANN) and binary logistic regression (BLR)] 
were used and these are known to generally yield better 
results (Table 2). Even then the statistics of the present 
models do not significantly differ from the ones obtained 
with these approaches. 

It may therefore be concluded that the models obtained 
in the present report compare relatively well with those 
reported in the literature, bearing in mind the inherent 
dissimilarities in the different studies.

Computational screening of new compounds with 
antibacterial activity reported in the anti-infective field

Several reports in the literature have pointed out that it is 
much more desirable that the obtained and validated QSAR 
models be further tested on chemical compounds that did 
not form part of the studied dataset, as this adds greater rigor 
to the external validation procedure.57,58 However, due to the 
scarcity of experimental results on the biological activity 
for chemical compounds, the model building workflow is 
more often limited to the splitting of datasets into training 
and test sets, for fitting and external validation purposes, 
respectively, but rarely are models tested on an additional 
set of compounds not forming part of original datasets, in 
what may be denominated as “simulated” virtual screening. 
Therefore in this study, a search for compounds recently 
identified as possessing antibacterial activity was performed 
yielding 116 compounds42,43 and these were evaluated 
using TOMOCOMD-CARDD models. The non-stochastic 
(eq.  1) and stochastic (eq. 2) bilinear models showed 
predictive accuracies of 86.21% and 83.62%, respectively 
(for details see, Supplementary Information for Tables S5 
and S6). Considering that many of the 116 compounds in 
this validation set were recently identified as antimicrobial 
agents, this -in silico- evaluation may be viewed as an 
equivalent to the discovery of new lead compounds using 
the developed models. Therefore the utility, in particular 
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Figure 2. ROC curves for discriminant function based on the stochastic 
indices (equation 2) for the (a) training set (b) test set.
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the predictive power and generalizability, of the obtained 
QSAR classification models is demonstrated, which 
opens way for posterior virtual screening tasks of novel 
compounds with antibacterial activity.

Conclusions

The TOMOCOMD-CARDD based models obtained 
in the present study were statistically significant and 
compared satisfactorily with most of the ligand-based 
antimicrobial classification models reported up to date. 
Additionally, the simulated virtual screening experiment 
performed on the 116 compounds, recently reported as 
possessing antibacterial activity, revealed the predictive 
power and the ultimate usability of the models obtained 
using the TOMOCOMD-CARDD approach as a quicker 
and reliable alternative applicable in the virtual screening 
of novel antibacterial lead compounds.

On the other hand, the comprehensive chemical 
compounds dataset presented in the present report 
constitutes an important benchmark for posterior QSAR 
studies the modeling and/or virtual screening of novel 
compounds with antibacterial activity.

Supplementary Information

Supplementary information is available free of charge 
at http://jbcs.sbq.org.br as PDF file.
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Table 2. Comparison between TOMOCOMD-CARDD discriminant functions and others chemoinformatic approaches

Models’ features to be 
compareda

Ligand-based classification models of antibacterial activity

eq. 1 eq. 2 A 1 2 3 4 5 6 7 8 9 10

N total 2230 2230 2030 111 111 664 596 661 661 352 433 433 657

N antibacterials 1051 1051 1006 60 60 249 307 249 249 219 217 217 249

Techniqueb LDA LDA LDA LDA ANN ANN LDA LDA BLR LDA LDA ANN ANN

Wilks’l (U-statistics) 0.56 0.57 0.47 0.28 – – 0.57 N. R. – 0.45 – – –

F 440 419 191.03 20.9 – – 116.6 N. R. – 48.2 – – –

D2 3.09 2.95 4.54 N. R. – – N. R N. R. – 4.9 – – –

p-Level 0.00 0.00 0.00 0.00 – – N. R N. R. – 0.00 – – N. R.

Variables in the model 3 3 8 7 16 62 3 6 6 7 6 62 34

Training set

N total 1717 1717 1525 64 64 465 463 661 661 289 305 305 592

N antibacterials 799 799 754 34 34 174 242 249 249 174 153 153 197

Accuracy / % 86.31 84.92 92.66 94.0 89.0 N.R. – 92.6 94.7 91.0 ca. 85.7 ca. 98.7 93.3

Families of drugsc broader range broader range broader range 3 3 8 – 8 8 8 8 8 8

Validation method

Validation methodd i(iii)e i(iii)e i(iii)f i i i i ii ii i i i ii

N total 513 513 505 47 47 199 133 – – 63 128 128 –

N antibacterials 252 252 252 26 26 75 65 – – 45 64 64 –

Predictability / % 84.92 87.91 92.28 92 97.9 ca. 95 84 93.6 94.3 89.0 ca. 87.5 ca. 91.4 –

Families of drugsc broader range broader range broader range 3 3 8 – – – 5 6 6 –

aEquations 1 and 2 are reported in this work, model A is reported by some of the present authors by using another dataset and different (quadratic) 
TOMOCOMD-CARDD MDs;11 models 1 and 2 were reported by Domenech and de Julián-Ortiz;17 model 3 was reported by Tomás-Vert et al.;18 model 
4 was reported by Mishra et al.,16 models 5 and 6 are after Cronin et al.;13 model 7 was reported by Molina et al.;19 models 8 and 9 were reported by 
Murcia‑Soler et  al.;20 model 10 was reported by Cherkasov,21 models 11 and 12 were reported by Aptula et al.;55 and model 13 was introduced by 
González‑Díaz et al.;56 bLDA refers to linear discriminant analysis, ANN to artificial neural network, and BLR to binary logistic regression; conly largely 
represented families were considered, e.g., methods 1 and 2 used 3 in training quinolones, sulphonamides, and cephalosporins but add only diaminopyridine 
(1 compound), cephamicins (2), oxacephems (1) and sulfones (1) to predicting series; dvalidation methods are: (i) test set, (ii) leave-many-out cross-validation 
(sub-sample) and (iii) external individual prediction set: eby using 116 compounds or f87 chemicals. N.R.: not reported.
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