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Crystallinity is an important property of lignocellulosic biomass due to its significant effect on 
acid/enzymatic hydrolysis. Normally, physicochemical analysis, such as powder X-ray diffraction 
and nuclear magnetic resonance, is used to reveal the crystallinity content. However, these 
analytical methods are expensive and laborious. In this context, methods that rapidly predict the 
crystallinity are important, even if used only for screening calibration. Thus, we intend to show 
the potential of near-infrared spectroscopy (NIRS) and chemometrics to replace reference methods 
in crystallinity determination. The results show that NIRS can be used to determine crystallinity 
in banana residues by the use of partial least squares regression, providing good coefficients of 
determination (R2

cal,pred > 0.82), low relative errors (< 14%) and good range error ratio (≥ 7.7). The 
interpretation of the regression coefficients, multivariate figures of merit and external validation 
results indicate a strong relationship between the NIR spectrum and crystallinity in banana samples. 

Keywords: lignocellulosic biomass, crystallinity, X-ray diffraction, near infrared spectroscopy, 
chemometrics

Introduction

Cellulose is a natural polymer consisting of a linear 
chain of β (1→4) linked glucose molecules. Each 
repeating unit contains hydroxyl groups able to form 
hydrogen bonds between cellulose chains governing the 
physical properties of cellulose.1,2 The intrachain hydrogen 
bonding between hydroxyl groups and oxygens stabilizes 
the linkage and results in the linear configuration of the 
cellulose chain.2 During cellulose formation, van der Waals 
and intermolecular hydrogen bonds between hydroxyl 
groups and oxygens of adjacent molecules promote the 
aggregation of cellulose chains to form microfibrils. These 
microfibrils contain two different regions. The crystalline 
region consists of highly ordered cellulose molecules, while 
the molecules in the amorphous region are less highly 
ordered.2,3 The major part of cellulose (approximately 2/3 
of the total cellulose) is in the crystalline form.4 Seven 
different crystalline forms of cellulose have been identified 
by X-ray diffraction (XRD), with distinct physical and 
chemical characteristics.5

The extensive hydrogen bonding and compact 
structure of crystalline cellulose hinder the hydrolysis 

process, while the amorphous region tends to be easily 
hydrolyzable by acids/enzymes.6 Normally, one partial 
hydrolysis occurs, which removes the amorphous regions 
from cellulose, increasing the proportion of the crystalline 
region that is resistant to further hydrolysis.7 Therefore, 
concentrated acids and/or a high amount of enzymes are 
used in acid and enzymatic hydrolysis, respectively, to 
reduce the crystallinity of cellulose as much as possible 
and fully convert it to the amorphous state.8 Because the 
crystallinity of a lignocellulosic material is considered one 
of the main factors influencing the effectiveness of acid/
enzymatic hydrolysis,9-11 it is important to know the level of 
crystallinity before initiating subsequent steps to optimize 
the quantities of reagents required, reducing the costs and 
time of analysis. 

XRD and solid-state 13C nuclear magnetic resonance 
(NMR) are currently used to determine the crystallinity 
of a lignocellulosic biomass.12,13 However, it is not always 
suitable for crystallinity estimation, especially for screening 
purposes. Moreover, the disadvantages related to XRD and 
NMR techniques, such as being complex, time consuming 
and expensive, limit their use. In this context, near-infrared 
spectroscopy (NIR) is a fast technique, non-destructive and 
of simple application, suitable to replace the traditional 
methods.14 This technique based on vibration spectroscopy 
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makes it possible to reveal physical properties, such as 
the crystallinity content,15-18 which is possible due to 
the fact that the cellulose crystallinity, which involves 
intermolecular hydrogen bond and crystalline networks, is 
clearly evident in the infrared spectra. As the C-O and O-H 
stretching and C-H deformation are vibrational modes 
predominating in the NIR region, it is expected that this 
region will be influenced by the crystallinity.15

To evaluate a physical property using NIR spectra, 
multivariate methods such as partial least squares (PLS) 
can be used to build a regression model that makes the 
quantification possible. The process requires a calibration 
data set, for which the reference values for the property 
of interest and the measured NIR spectra are known for 
all samples. After the multivariate calibration model is 
constructed and validated, it can be directly applied to 
the NIR spectra to predict the property of interest of new 
samples.15-18

Kelley et al.19 used NIR and PLS regression models for 
the determination of crystallinity content in loblolly pine 
wood and the results obtained were of poor quality, with 
R2

cal and R2
pred of 0.52 and 0.15, respectively for a model 

with 2 latent variables (LV). Qu et al.17 investigated the 
ability of NIR to predict the crystallinity of wood. For 
a PLS model with 8 LV, it was possible to achieve R2

cal 
and R2

pred of 0.93 and 0.72, respectively. Jiang et al.16 also 
evaluated the wood crystallinity. These authors obtained 
excellent results (R2

cal and R2
pred values of 0.95 and 0.86, 

respectively) showing that the NIR data was well correlated 
with crystallinity determined by the X-ray diffraction. They 

obtained satisfactory results for the range error ratio (RER), 
relative standard deviation (RSD). However, the quality 
of the models from the works mentioned above were not 
assured by statistical parameters such as the figures of merit.

In this work, NIR spectra and multivariate methods 
have been applied to rapidly determine the crystallinity 
of cellulose in banana residues with satisfactory results. 
The quality of the models obtained is ensured by the 
determination of the figures of merit, RER and RSD values, 
external validation set, and interpretation of the regression 
coefficients.

Experimental

Samples

Sixty-nine samples of banana were obtained and 
submitted to the further analysis. They are distributed 
among stalk, stem, rhizome, rachis and leaves. The 
identification, fraction, origin, species and year of harvest 
of these samples are indicated in Table 1.

Approximately 500 g of each biomass was cut into 
small pieces, mixed, and dried at 105 °C in an oven until 
constant weight. The samples were then ground in a Romer 
micro mill (Romer Labs, São Paulo, Brazil) equipped with 
a number 10 mesh size and then sieved with a number 
40 mesh size.

After sieving, the samples were submitted to an 
extraction process (ethanol 95%, 100 °C, 1500 psi) in 
a Dionex ASE 200 system (Thermo Fisher Scientific, 

Table 1. Identification of the banana samples

Variety/Fraction Stem Stalk Leaves Rhizome Rachis Total Region Year

Maçã 5 5 2 2 - - Northeast 2010

Nanica 2 4 1 - - - Southeast 2011

Ouro 2 3 - - - - Southeast 2010

Prata 2 4 - 2 - - Northeast 2011

Caturra 2 1 2 - - - South 2010

Bucaneiro - 1 - - - - Northeast 2012

Calipso 2 - - - - - Northeast 2011

Prata anã 2 1 - - - - Northeast 2011

Grande Neine - - - - - - Northeast 2011

Terra 2 1 - - - - Northeast 2010

Pacovam 1 1 - - - - Northeast 2011

Preciosa 2 1 - - - - Northeast 2011

Maravilha 2 1 - - - - Northeast 2012

-a 4 4 - - 3 - Southeast 2011

Total 28 29 5 4 3 69

aNot identified.
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Waltham, MA, USA) to assess whether the extractives have 
substantial influence on the cellulose crystallinity.

XRD analysis

The reference values of crystallinity were determined 
by XRD. The diffractograms were recorded using an 
X-ray diffractometer (XRD 7000 Shimadzu) with Cu Kα 
radiation, a voltage of 30 kV and a current of 20 mA. The 
scanning range was from 2θ = 5° to 50° at a scan speed 
of 0.071° s-1. 

There are several methods in the literature based on 
using the diffractogram to calculate the crystalline content,20 
and two of them were applied in this work. In the first one, 
which will be designated method A, the crystallinity index 
(CI) of a given sample was calculated by subtracting the 
minimum intensity of the peak 101 (amorphous band (Iam)) 
from the maximum intensity that represents the crystalline 
portions (Ic) of the peak 002 and then taking the ratio 
between the difference and the total intensity,12 according 
to equation 1. Figure 1a shows an example of the crystalline 
and amorphous peaks used in this equation. 

 (1)

The second approach, called method B, is a 
deconvolution method. Individual peaks were fitted by 
Gaussian functions, as shown in Figure 1b. For this purpose, 
the peak fitting program (PeakFit; www.systat.com) was 
used, and interactions continued until the convergence of 
‡χ2, which corresponds to an R2 value greater than 0.94 
for all deconvolutions. The sum of the area under the 
crystalline adjusted peaks (Ic), designated as 101, 1

–
01 and 

002 in Figure 1b, and of the amorphous broad band (Iam) 
were used to calculate the CI13,21 according to equation 2. 

 (2)

NIR analysis

The NIR diffuse reflectance spectra were acquired using 
a FOSS XDS spectrometer (FOSS, Hillerød, Denmark) 
equipped with a Rapid Content Analyzer (RCA) module. 
Spectra from 1100 to 2500 nm were collected at a grating 
resolution specified as 0.5 nm. Three spectra were recorded 
for each sample, and the average spectrum was used for 
data analysis.

Data analysis

Diffractograms were explored by principal component 
analysis (PCA) on mean-centered raw data to reveal the 
hidden structure within the XRD data set. In this method, a 
small set of orthogonal principal components that maximizes 
the variance in the data set is defined. The dimensionality of 
the data set is reduced, providing a visual representation of 
the relationships between banana samples and variables.22 

The collected NIR spectra of the banana fractions 
were used to construct a regression model that relates 
the matrix (X) containing spectral data and the vector (y) 
representing the crystallinity content. PLS was used to 
obtain the calibration models. In this method,22 factors 
(latent variables) that relate X and y are obtained by 
maximizing the covariance between the X scores (t) and 

y, such that Xw = t and .

For quantification, the NIR spectra were pretreated by 
a Savitzky-Golay second derivative23 computed using a 
window of 31 points and a second order polynomial.

‡ 

 

where vo is the experimental value, and ve is the expected value.
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Figure 1. Diffractogram of a banana sample (stem) illustrating the two 
most common methods for calculating the crystallinity index, CI: (a) by 
the intensity method and (b) by the area method.
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The original data set was randomly split into a 
calibration set (75% of the samples) and a prediction set 
(25% of samples). The number of LV in the calibration 
model was determined based on the occurrence of the 
minimal residual variance,24 or visually when the minimum 
did not exist, to avoid overfitting by cross validation.25 An 
automatic uncertainty test (the Martens’ uncertainty test) 
was applied to select the significant variables in the multi-
component model.26

Prediction evaluations were carried out employing 
certain parameters, such as the coefficient of determination 
in calibration (R2

cal), in cross validation (R2
cv) and external 

validation (R2
pred); root mean square error of calibration 

(RMSEC); root mean square error of cross validation 
(RMSECV); root mean square error of prediction 
(RMSEP), range error ratio (RER),27 RSD,14 number of 
LV and of outliers excluded.

The modeling is incomplete without interpretation of 
the regression coefficients. From the chemical point of 
view, a suitable interpretation of the regression coefficients 
in terms of a cause-effect relationship is highly desirable.28 
Additionally, to ensure the performance of the models, 
figures of merit were evaluated.14 

Multivariate data analyses (PCA and PLS) were 
performed using the Unscrambler 10.2 (Camo Software, 
Oslo, Norway), and the calculation of the figures of merit 
was conducted using the PLS-toolbox 6.7 (Eigenvector 
Research, Wenatchee, WA, USA) for Matlab 7.2 software 
(Math Works, South Natick, MA, USA).

Results and Discussion

NIR spectra from the banana residues are shown in 
Figure 2a, with the greatest variation occurring in the 
regions of 1400-1600 and 1900-2400 nm. The main 
bands are located at 1428-1430, 1920, 2100, 2270 and 
2329 nm. The band at 1428-1430 nm is assigned to 
amorphous regions in cellulose (first overtone of O-H 
stretching), while the band at 1920 nm is attributed to 
the O-H stretch/O-H bend of polysaccharides, which 
overlaps with the water band.29 The broad band at 2100 nm 
can be assigned to OH stretching + CH deformation 
in cellulose. Both bands at 2270 and 2329 nm are 
from polysaccharides.18,29,30 The first one is related to 
CH2 stretching + CH2 deformation from crystalline 
fractions of cellulose, and the second is related to the 
CH stretching + CH deformation combination from semi/
crystalline regions.

Figure 2b shows the NIR spectra after being pretreated 
with the second derivative (window size of 31 points and 
second degree polynomial) to remove the baseline offset 

and to elucidate the peaks corresponding to the crystalline 
and amorphous structures. 

The mean and standard deviation plots of the CI 
obtained by the two methods discussed in the previous 
section for each fraction in the 69 banana samples are 
shown in Figure 3. 
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Figure 2. NIR spectra for all banana samples. (a) Raw spectra and (b) 
second derivative spectra by Savitz-Golay (31 points, second order 
polynomial).

Figure 3. Mean and standard deviation of crystallinity content determined 
for all botanical fractions by two different methods: (a) intensity and (b) 
peak deconvolution.
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The highest ranges in CI were observed for banana stem, 
calculated by both method A (37.81-56.60) and method B 
(6.65-23.56), followed by rhizome calculated by method A 
(27.40-40.99). The lowest ranges were observed for leaves 
(10.09-12.42) and rhizome, both obtained by method B 
(6.68-10.10). The stalk ranged from 41.14 to 52.70 and 
from 7.61 to 14.27 for methods A and B, respectively, while 
the rachis presented a range of 61.88-66.74 and 22.62-26.79 
for methods A and B, respectively. Finally, the CI values for 
leaves calculated by method A varied from 29.39 to 34.16. 

Crystallinity in banana residues was reported for the 
first time by Guimarães et al.,31 but only for the pseudostem 
fraction. The values of CI in this work obtained by 
method A (intensity of peaks) are higher (ca. 10%) than 
the values reported.31 This small difference could be due 
to distinct species, cultivars, soils and years of sampling.

The values of CI calculated by method A are always 
higher than the values obtained using method B (Figure 3), 
most likely due the underestimation of the amorphous 
peak intensity because the valley is used to estimate the 
amorphous contribution (see Figure 1a) in the method that 
uses the intensities.13,32 

Principal component analysis

The analysis of the PCA scores based on the mean-
centered diffractograms (Figure 4a) shows one significant 
overlap with some tendency towards separation between 
banana fractions. The 3 rachis samples are clearly separated 
from the other fractions in PC1.

The first two PC explained 82% and 6% of the total 
variance, respectively. Some trend or discrimination could 
be elucidated between the groups leaves/rhizome from stalk/
stem due their similarity in the CI content. Three samples 
from rachis showed greater dissimilarity, most likely due 
to the high crystallinity content, providing a different 
spectral profile. The PC1 and PC2 are characterized, 
respectively, by positive and negative loadings (Figure 4b) 
at 22° < 2θ < 23° and 15° < 2θ < 17°, which are typical of 
crystalline structures.18 

PC1 differentiates the banana fractions (stem and rachis) 
with positive scores associated with crystalline parts. Based 
on the PC2 loadings, the negative bands attributed to 

crystalline parts differentiate the banana fractions (stem, 
stalk and rachis) with crystalline characteristics from 
the leaves and rhizome, which have more amorphous 
characteristics.

Parameters for model evaluation and validation of PLS 
models

PLS regression models were performed on the 
meancentered NIR spectra after 2D (31 points and 2nd 
degree polynomial) pretreatment and feature selection 
using Martens’uncertainty test. Table 2 summarizes 
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Figure 4. (a) PC1 vs. PC2 scores plot of mean-centered banana 
diffractograms. (b) Loadings plot from PCA analysis based on mean-
centered diffractograms.

Table 2. Parameters and statistics for model validation of the PLS models

y Set
Matrix 
sizec LV Out.

R2 RMSE / %
RSD / % RERd

Cal. CV Pred. Cal. CV Pred.

CI Aa 67 × 500 6 2 0.89 0.78 0.82 2.62 3.70 3.13 6.50 11.0

Bb 66 × 2785 6 3 0.86 0.75 0.85 1.29 1.89 1.97 13.9 7.70
aCI determined by intensity; bCI determined by area deconvolution; coriginal matrix size (69 × 2800); ddimensionless statistics; Out.: outliers; Cal.: calibration; 
CV: cross-validation; Pred.: predicted.
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the results from the regression models to predict the 
crystallinity percentage by the two different methods 
(A and B). 

Six LV were employed in both models. This high 
number of LV could be explained by the fact that different 
crystalline forms5 absorb in different regions of the 
spectrum (as seen in the regression coefficients), so that a 
single factor is not capable of explaining all the variability, 
which justifies using more factors to model this physical 
property.

A linear fit was obtained between the reference and 
predicted crystallinity with R2

cal,val of 0.89 and 0.82, 
respectively, for method A, and R2

cal,val of 0.86 and 0.85 for 
method B (see Figure 5). 

The values of RMSE for calibration, cross-validation 
and prediction were larger for method A because the 
crystallinity reference values were much higher for this 
method, and so the relative error is a better parameter to 
compare the results from the two methods. The relative 
errors were significantly different, being 6.5% for method 
A and twice as high (13.9%) for the crystallinity determined 
by area (method B). Both RER values were above 4, 

indicating that, according to the American Association 
of Cereal Chemists (AACC),33 both models are qualified 
for screening calibration, and method A is appropriate for 
quality control, with an RER value equal to 11.

The results found for method A are in accordance with 
results from the literature17 for a model with approximately 
the same number of LV (7) and similar R2

cal (0.87) and R2
val 

(0.83). Kelley, Elder, and Groom,19 when evaluating the 
crystallinity of wood, obtained poor correlation between 
crystallinity and NIR spectra (R2

cal,val < 0.50). Jiang et al.16 
also evaluated the crystallinity of wood samples and 
obtained excellent results using the full spectrum (Vis-NIR) 
with R2

cal,val of 0.95 and 0.86 for a 5 LV model. Their 
percentage error (6%) was the same reported in Table 2, but 
better RER values were obtained in this work (11 versus 6). 
It should be noted that including the visible spectral region 
did not improve our crystallinity model.

Regarding method B, the literature also reports 
satisfactory results. The crystallinity of tacrolimus solid 
dispersions evaluated by NIR,18 when the area contributions 
from the crystalline and amorphous phases of the 
diffractograms were considered, produced good results 
(R2

cal,val of 0.99 and 0.93, respectively). 
The intensity method (method A) gives an empirical 

measurement that allows rapid comparison of crystallinity 
samples. This method is useful for comparing the relative 
differences among samples and should not be used as a 
method for estimating the real crystallinity. The major 
problem with this method is that usually the minimum 
position between the 002 and the 101 peaks (Figure 1a) 
is not aligned with the maximum of the broad amorphous 
cellulose band which is likely higher, and so the Iam 
value for the intensity method could be significantly 
underestimated, resulting in an overestimation of the CI,13 
which justifies the higher crystallinity values calculated by 
method A when compared to method B.

Although the intensity method (method A) does 
not provide the best estimate of cellulose crystallinity, 
this method presented the best regression model and is 
also the reference method most commonly used in the 
literature for crystallinity determination in biomass by NIR 
spectroscopy.16,34 

The main source of error in method B is most likely 
the super-estimation of the amorphous contribution given 
by the broad band in Figure 1b. A quick way to solve the 
problem would be to subtract the amorphous contribution 
from the diffractogram using an amorphous pattern.13,18,35 
Besides, none of these Gaussian functions could model 
the scattering pattern perfectly throughout the entire angle 
range.36 So this method tends to give higher amorphous 
values and lower CI.

Figure 5. (a) Plot of reference vs. predicted values from calibration and 
external validation sets for cellulose crystallinity determined by method A. 
(b) Plot of reference vs. predicted values from calibration and external 
validation sets for cellulose crystallinity determined by method B.
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Xu et al.19 suggested that, when studying crystallinity 
in biomasses, attention should be paid to cellulose rather 
than whole biomass, and the Rietveld’s method36,37 for CI 
calculation should be preferred over the intensity methods.

To complete the modeling, regression coefficients from 
PLS models on pretreated data for method A (Figure 6a) 
and method B (Figure 6b) were interpreted together with 
the derivative spectra (Figure 6c). 

They exhibit typical bands of crystalline cellulose at 
1480, 1589, 1830, 1906, 1962 and 2070 nm (all associated 
with the O-H stretch, 1st overtone). A negative relationship 
was found in the regions of 1340, 1428/1430, and 1704 
and at 2064 nm (O-H combination), with bands typical of 
amorphous cellulose.18,30,38 Typical polysaccharide bands 
(1669 and 2270 nm) were also found for the two regression 
coefficients. For both models, negative coefficients 
correspond to a direct relationship because these regression 
coefficients were obtained from the second derivative spectra. 
The main prominent bands of crystalline cellulose reported in 
the literature are at 1480, 1589 and 2070 nm.30,38,39 All of them 
presented higher regression coefficients in the PLS model, 
which indicates that method A is better able to capture the 
relevant information for determining the crystallinity than 
method B. The same is observed for the amorphous bands, 
with larger regression coefficients for model A than model B 
(1340, 1428/1430, 1704 and at 2064 nm).

All the figures of merit for multivariate calibration, such 
as sensitivity (SEN), analytical sensitivity (γ), selectivity 
(SEL), signal-to-noise ratio, limit of detection (LOD) and 
limit of quantification (LOQ) were calculated,14 and the 
results obtained are acceptable (Table 3).

The RMSEP and RMSEC values were less than 4%, and 
the deviation values between the reference and predicted 
values were less than 10%. A low quantity of outliers were 
removed (< 3%). The SEL of these methods indicates that 
4% and 7% of the information modeled in methods A and 
B, respectively, is due to the analyte. 

The SEN values are directly affected by the pretreatment 
used. The derivative spectrum has small intensities 
requiring large regression coefficients for the conversion 
to analyte concentration, leading to small sensitivity 
values.40 Therefore, the low sensitivity values (10–5 and 
10–4) obtained in this work are not surprising, due to the 
derivative pretreatment. 
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Figure 6. Regression coefficients from PLS models for the cellulose 
crystallinity (a) determined by method A; (b) determined by method B 
and (c) spectra pretreated by the second derivative.

Table 3. Results from figures of merit for the PLS models. (%–1) for SEN and γ; (%) for γ–1, LOD and LOQ

y Sample set SEL SEN / %–1 γ / %–1 γ-1 / % LOD / % LOQ / %

CI Aa 0.039 2.752 × 10-5 884.512 0.001 0.0034 0.0113

Bb 0.068 2.349 × 10-4 2.556 × 103 3.911 × 10-4 0.0012 0.0039

aCI determined by intensity; bCI determined by area deconvolution.
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The γ or the inverse of the analytical sensitivity (γ-1) 
expresses the minimum concentration difference, which 
is discernible by a method considering the random 
experimental noise,14 and presented values smaller than 
0.0011%.

The LODs obtained (0.0034 and 0.0012% of 
crystallinity) are very low compared to the minimum 
experimental value (20%). The LOQs of 0.0113 and 
0.0039% were also lower than the minimum value observed 
(20%), thus confirming the applicability of both models.

The linearity can be confirmed by the plots in Figure 5, 
which show that the points are reasonably well distributed 
around the diagonal line, ensuring that both methods A and 
B follow linear trends.

Conclusions

The results demonstrated that NIR spectra together 
with multivariate analysis can be used to determine the 
crystallinity content in banana residues, independent of 
the method used to measure the crystallinity. For both 
models, satisfactory results were obtained, providing 
R2

cal,pred ≥ 0.82 and reasonable results for RMSEC, RMSEP, 
RER, RSD and multivariate figures of merit. Additionally, 
the regression coefficients were interpretable from the 
chemical perspective.

Method B, as presented here, could provide a more 
accurate measure of the crystallinity of lignocellulosic 
biomass and thus better predictions if the contributions from 
the amorphous pattern are considered. The most popular 
method for estimating CI, method A, produces significantly 
higher values than the other method. However, it is simple 
to use and is thus recommended as a time-saving empirical 
measure of relative crystallinity.12

It was proved that NIR associated to multivariate 
analysis can be used for screening calibration and quality 
control to estimate crystallinity content in biomass. 
Thus, the key conclusion of this study is that NIR is an 
nondestructive, rapidly and very important method to 
reduce time and costs of crystallinity content prediction.
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