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In this work the vitamin C was determined in industrialized nectar juices through ultraviolet 
(UV) spectroscopy and multiproduct multivariate calibration, based on partial least squares (PLS) 
regression. Since samples with different flavors, sugar content (light or not) were together in the 
model construction, it can be considered as a multiproduct and, due to the heterogeneity of the 
samples, it was necessary to optimize the calibration and validation sets by outliers elimination. 
The model was developed and validated by the evaluation of the figures of merit such as: accuracy, 
sensitivity, analytical sensitivity, adjust, linearity, relative prediction deviation, limits of detection 
and quantification, indicating that the multiproduct model developed from UV spectroscopy and 
PLS regression can be used in the industrial routine analysis as an alternative to titration or other 
time and reagent consuming methods. Here, it was evidenced that the UV-PLS multiproduct 
model provides advantages as being free of sample preparation steps, is suitable to be updated in 
order to measure other parameters, does not generates residues and is feasible to be implemented 
for on-line monitoring. Furthermore, the application of multivariate calibration in multiproduct 
models is extremely attractive from the industrial point of view.
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Introduction

Vitamin C or L-ascorbic acid is an essential nutrient 
for human health,1 widely known for its potent antioxidant 
properties. It can be used in high-doses and has being 
pointed out as presenting benefits in the treatment of 
Alzheimer’s disease.2 Among the multiple roles played 
by this vitamin, its primary functions are to act as a 
cofactor for reactions requiring reduced iron or copper 
metalloenzyme and as a protective antioxidant which better 
reacts in aqueous phases, both intra- and extracellularly. 
Scientific evidences show that ascorbic acid plays an 
important rule on the corneal epithelium, the stroma 
and the endothelium, acting over the maintenance of its 
functions and ultra-structures.3 Furthermore, epidemiologic 
studies have associated greater plasma vitamin C levels 
with reduced risk of chronic diseases, including cancer 
and cardiovascular disease, as well as higher physical 
performance in the elderly.4

The wide variety of ready-to-drink beverages has driven 
market to give special attention to it,5 and so, fruit nectar, 
which is by definition a non-fermented ready-to-drink 
beverage, obtained from the edible part of the fresh fruit 

diluted in water, in which may or not be added of sugars 
and acids. The preference for beverages classified as nectars 
has trend to grow due to its convenience and low price and, 
besides the wide range of flavors commercially available, 
has the possibility for being used in the production of low-
calorie beverages (classified as light ones) in a feasible way 
to the industries. These low-calorie beverages are referred 
to the ones in which the sugars content, normally added 
in conventional beverages, are entirely replaced by natural 
or artificial sweeteners.6 In both cases, conventional or 
low-calorie fruit nectars, vitamin C is used as a conserving 
reagent.

Nowadays, several methods based on high performance 
liquid chromatography (HPLC) have already being 
proposed in order to determine vitamin C content in 
beverages,7,8 and foods.9,10 Nonetheless, methods such as 
capillary zone electrophoresis,11 and voltammetry have 
being used to determine vitamin C in different samples, 
as pharmaceutical preparations and fresh fruit juice.12 
Recently, ultra performance liquid chromatography 
(UPLC) and HPLC were proposed to determine vitamin 
C in beverages and vitamin tablets.13

Ultraviolet (UV) spectroscopy can be used together with 
multivariate calibration to determine various compounds, 
since the spectral region used could bring information 
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about the chemical structures of the compounds due to 
chromophore absorptions.14 By ensuring this, the spectral 
region can be analyzed with the aid of chemometric 
methods of multivariate calibration to quantify different 
constituents in samples such as beverages.14,15 Nonetheless, 
the Association of Official Analytical Chemists,16 proposes 
that, when vitamin C is found in low concentration, as in 
fruit juices, the Tillman’s method is recommended. This 
method is based on the reduction of the 2,6-dichlorophenol 
indophenol by the vitamin C and was used in this 
research as reference method, which results were used 
for multiproduct multivariate calibration (i.e., only one 
multivariate calibration model to predict the same property 
of interest in different products) to UV spectroscopy in 
order to determine vitamin C content in industrialized 
nectar juices.

From these observations, the aim of the present study was 
to evaluate a multiproduct multivariate calibration model 
derived from UV spectroscopy to determine vitamin C in 
beverages from different fruit nectar. In this purpose, the 
model is a multiproduct because samples with different 
flavors and differing on sugar content (conventional and 
light) were together in the model construction. 

The local calibration models of one-product have some 
disadvantages as a large number of computations required 
for each prediction in routine analysis, besides the fact 
that each specific calibration equation can only be used 
for a small population of samples and each sample must 
be clearly identified to be able to select the best prediction 
equation.14,17 In addition, maintenance of the one-product 
multivariate calibration models can be as laborious as the 
multi-product ones. Thus, to save time on updates, it is 
worthwhile to investigate if multi-product models can be 
developed.14,18 

Multiproduct multivariate calibration can be used to 
construct a multivariate calibration model from different 
products. In our case, juices of different flavors were 
used to provide a particular parameter, the vitamin C 
content. The early studies came from nineties decade,19,20 
and the goals were evaluations of the performance of 
new algorithms. Posteriorly, in 2000 and 2006,17,18 the 
multiproduct calibration was recovery but using non-linear 
calibration methods, which are not easily implemented in 
practical applications, such as routine analysis in industry. 
Recently, preliminary studies combining UV spectroscopy 
and linear method based on partial least squares (PLS) to 
construct multiproduct multivariate calibration model was 
proposed.14 In those study, vitamin C and carbohydrates 
were determined in industrialized juices, but only yellow 
samples were employed to build the model. In another study 
the total acidity was evaluated in nectar juice, suggesting 

the possibility to build multiproduct calibration models by 
the PLS regression method.6

Experimental

Samples and reagents

A total of 123 samples of fruit nectar were purchased 
in different Brazilian marketplaces. The flavors employed 
were: grape (9 samples), white grape (3 samples), 
light grape (6 samples), peach (9 samples), light peach 
(6 samples), pear (3 samples), strawberry (3 samples), 
passion fruit (9 samples), light passion fruit (3 samples), 
mango (9 samples), light mango (6 samples), apple 
(12 samples), lemon (3 samples), orange (12 samples), 
light orange (3 samples), guava (6 samples), light guava 
(6 samples), cashew (3 samples), light cashew (6 samples) 
and pineapple (6 samples). Table S1, in Supplementary 
Information, shows the sample compositions.

The following reagents were used for the Tillman’s 
method: ascorbic acid (Impex, Wood Dale, USA), 
2,6-dichlorophenol indophenol sodium salt (Sigma-
Aldrich, St. Louis, USA), indigo carmine (Sigma-Aldrich, 
St. Louis, USA), metaphosphoric acid, glacial acetic acid 
and hydrochloric acid (Vetec, Rio de Janeiro, Brazil), 
sodium bicarbonate, sodium hydroxide and potassium 
biphthalate (Alphatec, Macaé, Brazil), phenolphthalein 1% 
(Sigma-Aldrich, St. Louis, USA).

Tillman’s method 

Initially, 3 solutions were prepared as follows: 
solution 1: acid solution, prepared by solubilizing 15 g 
of metaphosphoric acid in 40 mL of glacial acetic acid 
and then adding 450 mL of distilled water, being stirred 
and filtered; solution 2: vitamin C solution, prepared by 
solubilizing 100 mg of vitamin C, previously dried, in 
100 mL of the solution 1 in a volumetric flask (100 mL) 
and then, diluted 10 times in the same acid solution; 
solution 3: Tillman’s solution, prepared by solubilizing 
42 mg of sodium bicarbonate in 50 mL of distilled water, 
adding 50 mg of 2,6-dichlorophenol indophenol sodium 
salt was under stirring until total dissolution of the dye. 
Then, this solution was filtered and diluted in 200 mL of 
distilled water in a volumetric flask.

In the standardization of Tillman’s solution, 4 mL 
of the solution 2 was used together with 6 mL of the 
solution 1 in an Erlenmeyer flask, where 50 mL of distilled 
water was added. This solution was titrated with Tillman’s 
solution (solution 3). A blank test was performed, 
replacing vitamin C solution (solution 2) by acid solution 
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(solution 1) in order to calculate the Tillman’s factor (F) 
according to equation 1:

 (1)

The titration of the fruit nectar was done by using 40 mL 
of filtered sample mixed with 40 mL of the solution 1. From 
this mixture it was taken 10 mL, which was then titrated 
with the Tillman’s solution. The vitamin C content was 
calculated through the equation 2:

 (2)

where, V is the Tillman’s solution volume (mL) used in 
the titration, F is the Tillman’s factor and A is the sample 
volume (mL).

Tests were carried out to detect interferent ions as Fe2+, 
Sn2+ and Cu2+. To this, two drops of methylene blue 0.05% 
were added in 10 mL of a solution 1:1 (v/v), containing 
fruit nectar and solution 1.

Apparatus, software and multiproduct multivariate calibration

The spectra were obtained with an Ocean Optics 
spectrophotometer model USB-650 UV-VIS (Dunedin, 
USA) and using a 1 mm quartz cuvette. All spectra were 
obtained in the range from 200 to 400 nm (1 nm step) 
without any sample preparation. The spectra were obtained 
once the sample containers were opened, and then there 
was no storage. The data were treated in MATLAB 
version R2007b (The Math-Works, Natick, USA). The 
PLS calculations were carried out with the PLS-Toolbox 
version 5.2. The outliers detection and figures of merit 
calculations were carried out with a homemade program 
developed in the laboratory.

The PLS method has been discussed in detail in 
relevant references.21-23 In this case, the data matrix X was 
constituted by the UV spectra of nectar fruit samples and 
the vector y contained the reference values for vitamin C 
content, obtained from the Tillman’s method. The model 
was developed with mean center pre-processing.

Sometimes, samples behaving different from the bulk 
of the data (outliers) can occur by different reasons, such 
as laboratory error, samples from another population, 
instrument error and others.22 In this research the outliers 
were detect based on leverage,24 unmodeled residuals 
in spectra,22,24 and unmodeled residuals in dependent 
variables.22 The leverage and unmodeled residuals in spectra 
and dependent variable were evaluated at the calibration 

set, while the outliers were evaluated by the leverage and 
unmodeled residuals in spectra at the validation set, as 
suggested by American Society for Testing and Materials 
(ASTM E1655-05).24

It is not uncommon, when outliers are eliminated in a 
first model and the model is rebuilt, to find new outliers in 
this second model.25 In this research, it was also verified and 
the outliers test was relaxed: (i) the first model was built on 
an initial calibration set; (ii) outliers were detected based 
on leverage, unmodeled residuals in spectra and dependent 
variables were removed; (iii) a second model was built, 
with the same variables latent number; (iv) outliers detected 
based on leverage, unmodeled residuals in spectra and 
dependent variables were removed from the second model; 
(v) a third model was built, with the same variables latent 
number; (vi) outliers in the validation set were evaluated. 

The validation of the proposed multiproduct multivariate 
model was certified through the determination of 
figures of merit, such as, accuracy, linearity, sensitivity, 
analytical sensitivity, adjustment, limits of detection and 
quantification. The determination was done based on 
previous publications,25,26 and the equations were presented 
in the Table 1. 

The residual prediction deviation (RPD) was utilized 
to estimate the predictive ability of the model.27 This 
parameter is more suitable for absolute comparisons and 
can be estimated for calibration (RPDcal) and validation 
(RPDval) as shown in Table 1.

Results and Discussion

The calibration and validation data sets were composed 
by 94 and 29 samples, respectively, selected by the 
Kennard-Stone algorithm.28 According to this algorithm, 
the first sample selected is the one with largest distance 
from the center of the data, and the next sample is the 
most far from the first sample, and so on, until completing 
the selected number of samples for the calibration set. 
In this way, Kennard-Stone algorithm was used within 
each group of samples to ensure that all flavors, light and 
conventional juices were well represented in calibration 
and validation sets. The Figure 1 shows the spectra 
of all samples in the spectral range used in the model 
development.

The calibration and validation sets were optimized 
by outliers elimination. In the calibration set, the outliers 
were eliminated based on data with extreme leverage in 
calibration, unmodelled residuals in spectral data and 
unmodelled residuals in property of interest, which in this 
case was the vitamin C. The outliers in validation set were 
eliminated based on extreme leverage and unmodelled 
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residuals in spectral data. This procedure resulted in 79 
and 25 samples for calibration and validation, respectively.

Root mean square error of cross validation (RMSECV) 
was utilized to select the optimum model dimension. 
In this case, the minimum RMSECV for the calibration 
samples, obtained by contiguous block cross validation of 

nine samples, result the choice of four latent variables for 
mean-centered model development. The figures of merit 
for the model are shown in Table 2.

Table 1. Equations 3 to 11 for figures of merit

Figure of merit Equation

Accuracy

nv
2

i i
a i=1

ˆ(y – y )
RMSEP =

nv

∑
 

(3)

bRMSEC =
nc – nVL + 1

nc
2

i i
i=1

ˆ(y – y )∑
 

(4)

Relative prediction deviation

c cal
cal

DP
RPD =

RMSECV  
(5)

d val
val

DP
RPD =

RMSEP  
(6)

Sensitivity
1

sensitivity = eb|| ||  
(7)

Analytical sensitivity 

δxf || ||
sensitivity

analytical sensitivity =
 

(8)

Analytical sensitivity-1 
–1 1

analytical sensitivity =
analytical sensitivity 

(9)

Limit of detection
1

limit of detection = 3.3δ δx || || = 3.3 xb
sensitivity  

(10)

Limit of quantification
1

limit of quantification = 10 δ δx || || = x10b
sensitivity  

(11)

aRMSEP = root mean square error of prediction, where nv is number of samples in the validation set; yi is reference value of the sample i; ŷ is the predicted 
value of the sample i; bRMSEC = root mean square error of calibration, where nc is the number of samples in the calibration set, yi is reference value of 
the sample i; ŷ is the predicted value of the sample i; nVL is number of latent variables. In the equation for RMSEC, the “+ 1” is added when the data 
are mean center; cRDPcal = residual prediction deviation for calibration, where DPcal is the standard deviation of reference values in the calibration set; 
RMSECV is root mean square error of cross validation; dRDPval = residual prediction deviation for validation, where DPval is the standard deviation of 
reference values in the validation set; eb = regression coefficients vector; fδx = estimate for the instrumental noise. 

Figure 1. UV spectra of the industrialized nectar juices; (a) calibration 
data set; and (b) validation data set.

Table 2. Analytical figures of merit for the multiproduct PLS model

Figure of merit UV model

Accuracya

RMSECc 4.2504

RMSEPd 3.0945

RMSECVe 4.4049

Relative prediction deviationb
RPDcal

f 2.8589

RPDval
g 2.4220

Sensitivitya 0.1110

Analytical sensitivity-1 a 0.3315

Fit correlation coefficient 0.8890

Limit of detectiona 1.0941

Limit of quantificationa 3.3153

aResults in mg per 100 mL-1; bdimensionless units; cRMSEC = root mean 
square error of calibration; dRMSEP: root mean square error of prediction; 
eRMSECV = root mean square error of cross validation; fRDPcal = residual 
prediction deviation for calibration; gRDPval = residual prediction deviation 
for validation.
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Accuracy represented by root mean square error of 
calibration (RMSEC), root mean square error of prediction 
(RMSEP) and RMSECV showed that model dimension 
was properly chosen and the model was not over fitted. 
These parameters incorporate random and bias errors. 
Then, accuracy can also be represented by the fit of the 
reference values against the predicted ones and the slope, 
the intercept, correlation coefficient.26 Figure 2 shows the 
fit of the multiproduct model, presented by plotting the 
reference values against the estimated values for vitamin C. 
The slope and intercept for this linear fit are also presented 
in the Figure 2, while the correlation coefficient is presented 
in Table 2. The correlation coefficient value, 0.8890, was 
considered satisfactory since previous research reported 
coefficient value around 0.7 when the reference method is 
the titration method.6,25,29

Residual prediction deviation (RPD) is the ratio of 
natural variation in the samples to the size of probable 
errors occurring during the prediction, and it is more useful 
for comparing models on different data sets or in absolute 
terms. It was calculated for the calibration and validation 
sets and presented values of 2.86 and 2.42 for calibration 
and prediction, respectively, which was above 2.4, the lower 
limit desired for calibration equations.30

The sensitivity, presented in Table 1, showed appropriate 
results taking into account the analytical range of the 
model (0.74-39.25 mg per 100 mL). However, because 
of the preprocessing used in PLS model development, 
the analytical sensitivity is more suitable for evaluate 
the sensitivity of an multivariate calibration method. 
Considering a perfect fit of the model and that the spectral 
noise represent the large source of error, the inverse of the 
analytical sensitivity (or analytical sensitivity-1) allows for 
the establishment of a minimum concentration difference 

which is discernible by the analytical method in the range 
of concentrations where it was applied.27 Based on this, 
it is possible to distinguish samples with concentration 
difference of vitamin C of 0.33 mg per 100 mL.

Residuals plot from calibration and validation samples 
are shown in Figure 3, and were used to evaluate linearity 
of the multiproduct model. The absolute and relative errors 
(most of samples around 20%) are randomly distributed. 
These results suggest that this data set fit on a linear 
model.22,27 To confirm the model linearity, Figure 4 show 
the histogram for the student residuals whose distribution 
resemble a Gaussian behavior. The Jarque-Bera test confirm 
that the student residuals are normally distributed at 95% 
of confidence level.24,31

Limits of detection and quantification for the 
multiproduct model show results coherent with the 
measured quantities and the RMSEP obtained. The results 
obtained for the figures of merit showed that the proposed 

Figure 2. Reference values against the values estimated by the PLS 
multiproduct model. Calibration samples (●); validation samples (∗).

Figure 4. Histogram of the student residuals.

Figure 3. Residuals plot for the multiproduct multivariate PLS model; (a) 
in terms of the absolute errors; (b) in terms of relative errors. Calibration 
samples (●); validation samples (∗).
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method based on UV spectroscopy and multiproduct 
multivariate calibration is promising. Furthermore, the 
UV-PLS is a low cost, fast and sample preparation free 
methodology. 

Conclusions

A method to determine vitamin C by UV spectroscopy 
and multiproduct multivariate calibration based on PLS 
is suitable to be constructed. The multiproduct model 
was optimized by outlier detection and it was validated 
by calculation of the figures of merit, showing promising 
results. The model showed an appropriate sensitivity 
capacity and values for accuracy, limits of detection and 
quantification, besides other figures of merit presented 
results which indicates that the multiproduct model 
developed by UV spectroscopy can be used in the industrial 
routine analysis as an alternative to titration or even others 
methods. By comparing with the traditional ones, the 
UV-PLS multiproduct model present advantages as no 
sample preparation, capacity for being updated to others 
parameters, is waste free and present possibilities for on-
line monitoring. 

Supplementary Information

Supplementary data are available free of charge at  
http://jbcs.sbq.org.br as PDF file.
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