

Thermodynamic Feasibility of Pure Hydrogen Production and Storage in Iron and Germanium Based Double Chemical Looping Process

Grzegorz Słowiński^a and Adam Smoliński^{*,b}

^aComputer Engineering, Vistula University, 3 Stoklosy Str., 02-787 Warsaw, Poland

^bDepartment of Energy Saving and Air Protection, Central Mining Institute, Plac Gwarkow 1, 40-166 Katowice, Poland

Solid iron based low or medium temperature chemical loop is considered as a possible option of hydrogen storage and production. In the method, hydrogen is produced via iron oxidation with steam, and in the next phase iron oxide is reduced with hydrogen, synthesis gas or methane. In the reduction stage the reaction is terminated when the atmosphere still contains a large fraction of the reducing agent (often over 70 vol.%). In the paper the innovative idea of a double, iron and germanium based, chemical cycle was proposed. The thermodynamic calculations show that the reduction stage in the double iron-germanium cycle is more effective than the classical iron based loop.

Keywords: hydrogen storage, hydrogen production, steam-iron process, chemical loop, thermodynamics

Introduction

The wide implementation of the hydrogen economy requires the development of reliable and cost-effective techniques of hydrogen storage and production.^{1,2} Iron and iron oxides may be potentially applied in the process of hydrogen production and storage, respectively.³⁻⁶ The main steps of the process may be presented as follows:

$Fe + H_2O = FeO + H_2$	(1)
FeO + C = Fe + CO	(2)

In the first step of the process discussed, molten iron reacts with steam and hydrogen is produced (see equation 1). Then wustite (FeO) is reduced with carbon (see equation 2). The recovered iron is recycled to the first stage of the process.

Although the hydrogen production in steam-iron process has been known since the 19th century, it is considered to be uneconomical nowadays in comparison with hydrogen production in the process of natural gas reforming. At the Ohio State University the innovative method of natural gas conversion with the application of a technology employing the chemical looping was proposed. In this option the iron based oxygen carrier and a novel gas-solid counter-current moving bed reactor for hydrogen production was proposed.⁷ The idea of hydrogen production in steam-iron process has been previously proposed by Alchemix, as the Hydromax process, where the steam-iron stage is performed in a bath of 25% of iron and 75% of tin, which enables decrease in the operation temperature to about 1250 °C, resulting in a significantly improved process economics.⁸

Another technological option presented in the literature⁹ comprises in performing the steam-iron process in a solid phase at the temperatures below 1000 °C. This low-temperature steam-iron process (LTSI) may be potentially applied in hydrogen production and/or storage. In the first stage of the process iron reacts with steam to form hydrogen and magnetite (the temperatures applied are more thermodynamically favorable for magnetite formation than for wustite):

$$0.75Fe + H_2O = 0.25Fe_3O_4 + H_2$$
(3)

In the next stage magnetite may be reduced with methane (see equation 4) or hydrogen (reversed equation 3):

$$Fe_3O_4 + CH_4 = 3Fe + CO_2 + 2H_2O$$
 (4)

The process of magnetite reduction with hydrogen may be applicable in hydrogen storage. The same process

^{*}e-mail: asmolinski@gig.katowice.pl

utilizing other reducing agents, like e.g. methane or syngas, could be employed in hydrogen production. The main operational issue of the LTSI process reported in the literature⁹⁻¹³ is the deterioration of iron bed performance, resulting from sintering, carbon deposition and Fe₃C formation, when carbon-containing fuels are utilized in the magnetite reduction stage. Another problem is low reaction rate at lower temperatures. The effects of sintering and the influence of iron doping on bed performance is widely discussed in the literature.^{11,14-17} Doping agents, such as aluminum, molybdenum and cerium are reported to mitigate the sintering effect. Weak stabilizing effect was also observed for scandium, titanium, vanadium, chromium, yttrium and zirconium. Noble metals, like ruthenium, rhodium, palladium, silver and iridium expose a catalytic activity, and enhance the process kinetics. Platinum was also tested, but no reduction of the sintering effect was observed with its applications. Additions of manganese, cobalt, nickel, copper, zinc, gallium, niobium, tungsten, and rhenium have been reported to enhance the sintering. Also the thermodynamic constraints of the reduction stage have been reported among the main difficulties of the process discussed; magnetite reduction terminates when the atmosphere still contains considerable amounts of the reducing gas (H₂, syngas).¹⁸ This implies the need for a more advanced gas management system, which is disadvantageous in terms of the technological simplicity and process economics. The evaluation of the application of iron as a potential material for hydrogen storage or hydrogen production from carbonaceous materials reveals that the reduction stage of the iron cycle is quite problematic. The utilization of the reducing gases: H_2 , CO and CH_4 is weak. Furthermore, there is a possibility of disadvantageous phenomena, like carbon deposition, Fe₃C formation, etc.¹⁸ The poor thermodynamics of the reduction stage in the iron cycle was a stimulus for searching other materials with better potential performance, such as germanium.

In the paper the idea of a double chemical loop, comprising of Fe-Fe₃O₄ and Ge-GeO₂ loops, potentially enabling avoidance of the above mentioned constraints is presented. The thermodynamic calculations, proving a modest improvement in the Fe-Ge loop in comparison with the iron cycle are given, since they constitute the first step of the feasibility assessment of any chemical process.¹⁸ The kinetic limitations, inefficiency in the reduction stages, sintering and carbon deposition issues, gas management aspects, and considerations regarding the reactor design all remain significant concerns in terms of the practical implementation. The additional cost and complexity would also clearly be involved in the double chemical looping process. Taking into account all these limitations, the main objective of the study is therefore to supplement the currently available thermodynamic databases of chemical cycles for hydrogen production and storage, since the double Fe-Ge chemical looping process is considered to significantly improve hydrogen production in comparison with the classical iron cycle.

Experimental

The combination of Fe-Fe₃O₄ loop with Ge-GeO₂ loop may improve gas management in the reduction stage of the cycle. Germanium shows lower affinity to oxygen than iron, and thus may be reduced with the flue gas from magnetite reduction.

Germanium based loop

Germanium melting point temperature is 937 °C, while germanium dioxide melting point is 1115 °C, which implies that Ge-GeO₂ loop could be applied at temperatures of up to 800 °C.

Germanium oxidation with steam

Hydrogen is produced in the reaction of germanium oxidation with steam.

$$0.5Ge + H_2O = 0.5GeO_2 + H_2$$
(5)

Figure 1 shows the phase stability diagram for such a system. As it can be seen from Figure 1, temperatures below 600 $^{\circ}$ C may be used for generation of concentrated hydrogen stream. The maximum concentration of hydrogen achievable in Ge oxidation decreases from nearly 100 vol.% at low temperatures to 56 vol.% at 800 $^{\circ}$ C.

Germanium dioxide reduction with hydrogen

Germanium dioxide reduction with hydrogen proceeds by a reversed reaction given in equation 5. As it can be seen from Figure 1, the reduction should be performed at temperatures above 600 °C.

Germanium dioxide reduction with carbon monoxide

Germanium dioxide reduction with carbon monoxide may be described as follows:

$$0.5 \text{GeO}_2 + \text{CO} = 0.5 \text{Ge} + \text{CO}_2$$
 (6)

Figure 1. The phase stability diagram of Ge and GeO_2 phases in the $H_2\text{O-}H_2$ atmosphere.

The phase stability diagram for this system is given in Figure 2. It can be seen that the maximum concentration of carbon dioxide grows from 30 vol.% at 100 °C to nearly 58 vol.% at 800 °C. Thus, high temperatures (600-800 °C) are more favorable for GeO_2 reduction with carbon monoxide.

Figure 2. The phase stability diagram of Ge and GeO₂ in the CO₂-CO atmosphere.

Germanium dioxide reduction with methane

It is assumed that the reduction of germanium dioxide with methane proceeds as follows:

$$2\text{GeO}_2 + \text{CH}_4 = 2\text{Ge} + \text{CO}_2 + 2\text{H}_2\text{O}$$
(7)

The phase stability diagram of Ge and GeO₂ in CH₄, CO₂ and H₂O atmosphere is presented in Figure 3. In the temperature range of 400-800 °C, the equilibrium concentration of methane decreases strongly with the temperature increase; high temperature needs to be applied

Figure 3. The phase stability diagram of Ge and GeO_2 in the CH_4 atmosphere.

to achieve a satisfactory efficiency of methane consumption. The rise in pressure also increases the temperature of the phase stability border.

Results and Discussion

The compound used in a cycle as a gas carrier may be in a liquid state, like in case of high temperature Fe-FeO cycle or nitrite-nitrate cycle, or in the solid state. Depending on the aggregation state, the cycle application is connected with different technical and material issues. Liquid state cycles are probably more convenient for larger industrial applications as they allow for potentially better reaction kinetics since the mass transport is easier in a liquid phase. Additionally, mass transport can be improved by stirring the bath of molten carrier. The liquid phase, however, is problematic mainly due to corrosive impact on container materials used. In case of solid state oxygen carriers the kinetics of the reactions is also dependent on the quality of the porous structure of the material, influencing the availability of the contact area. In the literature^{4,6,18} numerous examples of iron application as a potential material for hydrogen storage or hydrogen production from carbonaceous materials are given, along with numerous problems reported, such as weak utilization of reducing gases (H_2 , CO and CH_4), carbon deposition and Fe₃C formation. In the light of the above in the study presented, germanium was selected as potentially superior to iron.

The comparison of the potential performance of the Fe-Fe₃O₄ loop and the double Fe-Fe₃O₄ Ge-GeO₂ loop in hydrogen storage and production, assessed on the basis of compositions of thermodynamically feasible gas mixtures applied and produced during the studied cycles is discussed below.

Comparison of iron based loop and double iron and germanium based loop

The comparison was made for reactors of theoretical capacity of 100 mol of hydrogen during oxidation stage of the cycle. It is assumed that 100 vol.% hydrogen, carbon monoxide or methane is applied in the reduction stage and 100 vol.% steam in the oxidation stage. In case of using methane as a reducing agent, the pressure of 1 MPa is

Table 1. Fe reactor performance

considered. The hydrogen production process is assumed to be performed at 300 $^{\circ}$ C, and the reduction at 800 $^{\circ}$ C.

Hydrogen production in iron based loop - oxidation with steam

A reactor with the capacity of 100 mol of H_2 contains 75 mol of Fe. The amount of steam consumed in hydrogen generation is 103.92 mol. The gas produced

Hydrogen production / oxidation stage; T = 300 °C inlet gas H,O 0.03.92 ml (100.00 ml) (96.23 vu.5)) H,O 3.92 ml (3.77 vu.5%) reactor state 5.00 mol of Fe,O,O Fe/Qu to Fe ₁₅₄₇ O stage H,O 28.08 mol (100.00 vul.5%) outlet gas H,O 28.08 mol (100.00 vul.5%) outlet gas H,O 28.08 mol (100.00 vul.5%) outlet gas H,O 28.08 mol (100.00 vul.5%) reactor state H,O 28.08 mol (100.00 vul.5%) reactor state H,O 28.08 mol (100.00 vul.5%) reactor state H,O 28.08 mol (100.00 vul.5%) outlet gas H,I 28.08 mol (100.00 vul.5%) outlet gas H,I 28.09.11 mol (100.00 vul.5%) outlet gas H,I 28.09.11 mol (100.00 vul.5%) outlet gas H,I 28.09.11 mol (100.00 vul.5%) outlet gas CO 75.31 (100.00 vul.5%) outlet gas CO 24.50 mol (100.00 vul.5%) outlet gas CO 24.50 mol (100.00 vul.5%) outlet gas CO 24.50 mol (100.00 vul.5%)		Fe reactor; the capacity of 100 m	ol of H ₂ , containing 75 mol of Fe		
inlet gas H_cO 103.92 mol (100.00 vol.%) outlet gas H_cO 3.92 mol (3.77 vol.%) H_cO 3.92 mol (3.77 vol.%) reactor state 25.00 mol of Fe.O ₄ State H_cO 25.00 mol of Fe.O ₄ Fe(o, to Fe.sar,O stage inlet gas H_c 28.08 mol (100.00 vol.%) outlet gas H_c 28.08 mol (100.00 vol.%) 0.00 mol (74.07 vol.%) Fe(o, to Fe.sar,O stage inlet gas H_c 20.80 mol (74.07 vol.%) eractor state Fe.sar,O 7.22 mol (25.93 vol.%) 1.00.00 vol.%) outlet gas H_c 269.11 mol (100.00 vol.%) 1.00.00 vol.%) outlet gas H_c 269.11 mol (100.00 vol.%) 1.00.00 vol.%) outlet gas H_c 269.11 mol (100.00 vol.%) 1.00.00 vol.%) outlet gas H_c 79.20 mol 1.00.00 vol.%) fold amount of pure H_c consumed CO 27.31 (100.00 vol.%) 1.00.00 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) 1.00.00 vol.%) 1.00.00 vol.%) outlet gas <		Hydrogen production / ox	idation stage; T = $300 ^{\circ}$ C		
outlet gas H_1 100.00 mol (96.23 vol.%) I reactor state 25.00 mol of Fc,0,0 Reduction with H_2 , T = 800 °C Fc,0,1 to Fc,sar,0 stage inlet gas H_2 28.08 mol (100.00 vol.%) outlet gas H_2 28.08 mol (100.00 vol.%) 0.00 mol (76.17 vol.%) Fc,0,1 to Fc,sar,0 stage inlet gas H_2 28.08 mol (100.00 vol.%) Fc,0,1 to Fc,sar,0 stage inlet gas H_2 26.911 mol (100.00 vol.%) Fc,0,1 to Fc,sar,0 to Fe stage inlet gas H_2 26.911 mol (100.00 vol.%) outlet gas CO 79.20 mol Total amount of pure H_2 consumed CO_2 27.31 (100.00 vol.%) consumed CO_2 27.31 (100.00 vol.%) consumed CO_2 27.20 mol Conol 27.20 mol 79		inlet gas	H ₂ O	103.92 mol (100.00 vol.%)	
H ₂ O 3.92 mol (3.77 vol.%) reactor state 200 mol of Fe,O,C Reduction with H ₂ T = 800 °C Reduction with H ₂ T = 800 °C Fe,O, to Fe _{0.94} O stage inlet gas H ₁ 28.08 mol (100.00 vol.%) outlet gas H ₂ 2.08 mol (25.93 vol.%) 100.00 vol.%) Fe,O, to Fe _{0.947} O stage inlet gas H ₂ 2.08 mol (74.07 vol.%) Fe _{0.947} O to Fe stage inlet gas H ₂ 2.09.01 mol (10.00 vol.%) outlet gas H ₂ 2.09.11 mol (10.00 vol.%) 0.00.00 vol.%) outlet gas H ₂ 2.09.11 mol (10.00 vol.%) 0.00.00 vol.%) outlet gas H ₂ 2.09.11 mol (10.00 vol.%) 0.00.00 vol.%) outlet gas H ₂ 2.09.11 mol (10.00 vol.%) 0.00.00 vol.%) Total amount of pure H ₂ consumed CO 2.03.00 mol (76.16 vol.%) Fe _{0.947} O to Fe stage inlet gas CO 2.03.00 mol (76.16 vol.%) Fe _{0.947} O to Fe stage inlet gas CO 2.09.00 mol (76.16 vol.%) Teador state Fe 7.50 mol 2.00.10 mol (68.18 vol.%) ou		outlet gas	H_2	100.00 mol (96.23 vol.%)	
reactor state Reduction with H ₂ , T = 800 °C Reduction with H ₂ , T = 800 °C 28.08 mol (100.00 vol.%) Peq.0 to PenserO stage inlet gas H ₂ 28.08 mol (100.00 vol.%) Outlet gas H ₂ 20.80 mol (74.07 vol.%) 20.80 mol (74.07 vol.%) Peq.serO to Pe stage inlet gas H ₂ 20.90 mol (70.57 vol.%) Teactor state Fe _{aser} O 79.20 mol (70.57 vol.%) reactor state Fe 75.00 mol (75.7 vol.%) reactor state Fe 75.00 mol Total amount of pure H ₂ consumed CO 27.31 (100.00 vol.%) outlet gas CO 24.80 mol (100.00 vol.%) outlet gas CO 24.80 mol (10.00 vol			H_2O	3.92 mol (3.77 vol.%)	
Reduction with H ₂ T = 800°C FeQ, to Fe _{base} O stage inlet gas H ₂ 28.08 mol (00.00 vol.%) Peq.0 to Fe _{base} O stage H ₂ 28.08 mol (00.00 vol.%) reactor state Fe _{base} O 20.80 mol (74.07 vol.%) Peq.or Stage inlet gas H ₂ 20.80 mol (74.07 vol.%) Peq.or State Fe _{base} O 79.20 mol 79.20 mol Peq.or State H ₂ 26.91 1 mol (100.00 vol.%) 100.00 vol.%) Peq.or State H ₂ 79.20 C9.43 4 mol.%) 79.20 C9.43 4 mol.%) Teactor state Fe 75.00 mol 79.20 C9.43 4 mol.%) Teata amount of pure H ₂ consumed CO 27.31 (100.00 vol.%) 100.00 vol.%) Outler gas CO 20.80 mol (66.16 vol.%) 100.00 vol.%) 100.00 vol.%) Peq.or Os faste FebaserO 79.20 mol 10.00 vol.%) 100.00 vol.%) Outler gas CO 20.80 mol (66.16 vol.%) 100.00 vol.%) 10.00 vol.%) 10.00 vol.%) Peg.ar O for Festage inlet gas Fe 75.00 mol 10.00 vol.%) 10.00 vol.%) 1		reactor state		25.00 mol of Fe_3O_4	
Fe,0, to Fe,sar,0 stage inlet gas H. 28.08 mol (00.00 vol.%) outlet gas H, 7.28 mol (25.93 vol.%) Fec,oar,0 to Fe stage inlet gas H, 7.28 mol (25.93 vol.%) reactor state Fec,oar,0 79.20 mol outlet gas H, 269.11 mol (100.00 vol.%) outlet gas H, 189.91 mol (70.57 vol.%) reactor state Fe 75.00 mol reactor state Fe 75.00 mol Total amount of pure H, consumed - 297.19 mol Fe(o,1 to Fe,sar,0 Stage inlet gas CO 6.51 mol (23.84 vol.%) outlet gas CO 27.31 (100.00 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) Fector state Fector state Fector State 79.20 mol reactor state Fector state 79.20 mol reactor state CO 248.90 mol (100.00 vol.%) outlet gas CO 248.90 mol (00.00 vol.%) outlet gas CO 248.90 mol (00.00 vol.%) outlet gas CO 20.80 mol (66.81 vol.%) Fe Total amount of pure CO consumed - 75.01 mol Fe Fe Total state CO 20.20 mol (0.01 vol.%) outlet gas		Reduction with	$H_2, T = 800 ^{\circ}C$		
nullet gas H2 7.28 mol (25.93 vol.%) H2O 20.80 mol (74.07 vol.%) reactor state Fe _{0.87} O Fe _{0.87} O to Fe stage inlet gas H2 269.11 mol (100.00 vol.%) outlet gas H2 189.91 mol (70.57 vol.%) Total amount of pure H2 consumed Fe 75.00 mol Teactor state Fe 75.00 mol Fe _{0.40} to Fe _{0.857} O stage inlet gas CO 27.31 (100.00 vol.%) outlet gas CO 27.31 (100.00 vol.%) 0000 vol.%) 000 vol.%) outlet gas CO 27.31 (100.00 vol.%) 000 vol.%) 000 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) 000 vol.%) 000 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) 000 vol.%) 000 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) 000 vol.%) 000 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) 000 vol.%) 000 vol.%) outlet gas CO 20.80 mol (76.16 vol.%) 20.80 mol (76.16 vol.%) 20.80	Fe ₃ O ₄ to Fe _{0.947} O stage	inlet gas	H_2	28.08 mol (100.00 vol.%)	
Ho 20.80 mol (74.07 vol.%) reactor state Fe _{0.85} ,0 79.20 mol inlet gas H ₂ 269.11 mol (100.00 vol.%) outlet gas H ₂ 189.91 mol (70.57 vol.%) mount of pure H ₂ consumed Fe 75.00 mol Teactor state Fe 75.00 mol Total amount of pure H ₂ consumed 297.19 mol Teactor state Fe 75.10 (100.00 vol.%) Total amount of pure H ₂ consumed CO 27.31 (100.00 vol.%) Total amount of pure H ₂ consumed CO 25.1 mol (23.84 vol.%) Total amount of pure H ₂ consumed CO 25.1 mol (23.84 vol.%) Teactor state Fe _{0.857} O 79.20 mol Teactor state Fe _{0.857} O 79.20 mol Teactor state Fe 75.00 mol Total amount of pure CO consumed CO 248.90 mol (100.00 vol.%) Total amount of pure CO consumed CO 25.20 mol (31.83 vol.%) Teactor state Fe 75 mol <td co<="" td=""><td></td><td>outlet gas</td><td>H_2</td><td>7.28 mol (25.93 vol.%)</td></td>	<td></td> <td>outlet gas</td> <td>H_2</td> <td>7.28 mol (25.93 vol.%)</td>		outlet gas	H_2	7.28 mol (25.93 vol.%)
reactor state FeasysO to Fe stage inlet gas H_2 269.11 mol (100.00 vol.%) outlet gas FeasysO to Fe stage inlet gas H_1 189.91 mol (70.57 vol.%) H2O 79.20 (29.43 vol.%) 79.20 (29.43 vol.%) reactor state Fe 75.00 mol Total amount of pure H2 consumed 297.19 mol 297.19 mol Fe(ag.10 Fe_0sr,O stage inlet gas CO 6.51 mol (23.84 vol.%) Fe(ag.10 Fe_0sr,O stage inlet gas CO 6.51 mol (23.84 vol.%) Fe(ag.10 Fe_0sr,O stage inlet gas CO 6.51 mol (23.84 vol.%) Fe(ag.10 Fe_0sr,O stage inlet gas CO 20.80 mol (100.00 vol.%) outlet gas CO 20.80 mol (100.00 vol.%) 0000 vol.%) outlet gas CO 20.80 mol (100.00 vol.%) 0000 vol.%) outlet gas CO 20.80 mol (100.00 vol.%) 0000 vol.%) outlet gas CO 20.80 mol (100.00 vol.%) 0000 vol.%) outlet gas CO 20.80 mol (0.00 vol.%) 0000 vol.%) outlet gas CH 60.00 zon ol (0.01 vol.%)<			H_2O	20.80 mol (74.07 vol.%)	
Feasist O to Fe stage inlet gas H_1 269.11 mol (100.00 vol.%) outlet gas H_2O 189.91 mol (70.57 vol.%) H_2O 79.20 (29.43 vol.%) reactor state Fe 75.00 mol Total amount of pure H_ consumed 297.19 mol 297.19 mol Fe duction with CO, T = 800 °C 297.31 (100.00 vol.%) 000 vol.%) Fe duction with CO, T = 800 °C 200.80 mol (76.16 vol.%) 000 vol.%) Fe duction state Fe dustro state Fe dustro state Fe dustro vol.%) Fe dustro for Fe stage inlet gas CO 248.90 mol (100.00 vol.%) outlet gas CO 248.90 mol (100.00 vol.%) 000 vol.%) outlet gas CO 248.90 mol (100.00 vol.%) 000 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) 169.70 mol (68.18 vol.%) outlet gas CO 79.20 mol (31.82 vol.%) 169.70 mol (68.18 vol.%) outlet gas CO 5202 mol (33.33 vol.%) 169.70 mol (68.18 vol.%) Teator state Fe 5202 mol (33.33 vol.%) 169.70 mol (66.66 vol.%) fe dustro wit		reactor state	Fe _{0.947} O	79.20 mol	
outlet gas H_2 189.91 mol (70.57 vol.%) H_2 O 79.20 (29.43 vol.%) H_2 O 79.20 (29.43 vol.%) reactor state Fe 75.00 mol Total amount of pure H, consumed Reduction with CO, T = 800 °C 207.19 mol Fe(o,4 to Fe _{0.947} O stage inlet gas CO 6.51 mol (23.84 vol.%) Outlet gas CO 20.80 mol (76.16 vol.%) 20.80 mol (76.16 vol.%) Fe _{0.947} O to Fe stage inlet gas CO 248.90 mol (100.00 vol.%) Outlet gas CO 248.90 mol (100.00 vol.%) 248.90 mol (100.00 vol.%) Outlet gas CO 248.90 mol (100.00 vol.%) 248.90 mol (100.00 vol.%) Outlet gas CO 248.90 mol (100.00 vol.%) 248.90 mol (100.00 vol.%) Outlet gas CO 79.20 mol 31.82 vol.%) Total amount of pure CO consumed Z7.51 mol 27.621 mol Feo.94 to Fe_0.947 O stage inlet gas CH ₄ 5.202 mol (0.01 vol.%) Outlet gas CH ₄ 5.202 mol (0.01 vol.%) 20.901 mol (0.01 vol.%) Feo.94 to Fe_0.947 O to Fe stage <tht< td=""><td>Fe_{0.947}O to Fe stage</td><td>inlet gas</td><td>H_2</td><td>269.11 mol (100.00 vol.%)</td></tht<>	Fe _{0.947} O to Fe stage	inlet gas	H_2	269.11 mol (100.00 vol.%)	
H ₀ 79.20 (29.43 vol.%) reactor state Fe 75.00 mol Total amount of pure H ₂ consumed 297.19 mol Reduction with CO, T = 800 °C 2 Fe _{0.94} to Fe _{0.957} O stage inlet gas CO 27.31 (100.00 vol.%) Outlet gas CO 27.31 (100.00 vol.%) 20.00 Fe _{0.957} O to Stage inlet gas CO 27.31 (100.00 vol.%) reactor state Fe _{0.957} O 20.80 mol (76.16 vol.%) Fe _{0.957} O to Fe stage inlet gas CO 248.90 mol (00.00 vol.%) outlet gas CO 248.90 mol (00.00 vol.%) 20.00 reactor state Fe 75 mol 20.00 Total amount of pure CO consumed Z76.21 mol 20.00 20.00 20.00 Feo_0.4 to Fe_0.947O stage inlet gas CH ₄ 0.002 mol (0.01 vol.%) 20.00 CO 20.00 mol (36.33 vol.%) 20.00 mol (36.33 vol.%) 20.00 20.00 20.00 Feo_0.4 to Fe_0.947O stage inlet gas CH ₄ 0.002 mol (0.01 vol.%) 20.00 20.00 20.00 </td <td></td> <td>outlet gas</td> <td>H_2</td> <td>189.91 mol (70.57 vol.%)</td>		outlet gas	H_2	189.91 mol (70.57 vol.%)	
reactor state Fe 75.00 mol Total amount of pure H ₁ consumed 297.19 mol 297.19 mol Fe _{0.947} O stage inlet gas CO 27.31 (100.00 vol.%) outlet gas CO 6.51 mol (23.84 vol.%) CO CO2 20.80 mol (76.16 vol.%) CO 6.51 mol (23.84 vol.%) Fe _{0.947} O to Fe stage inlet gas CO 6.51 mol (23.84 vol.%) Fe _{0.947} O to Fe stage inlet gas CO 248.90 mol (76.16 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) CO reactor state Fe 75 mol 79.20 mol Total amount of pure CO consumed 206.2 79.20 mol (0.18.2 vol.%) Fe _{0.947} O stage inlet gas CH ₄ 5.202 mol (100.00 vol.%) outlet gas CH ₄ 5.202 mol (0.001 vol.%) 001 vol.%) outlet gas CH ₄ 5.202 mol (100.00 vol.%) 001 vol.%) outlet gas CH ₄ 5.202 mol (0.00.10.01.%) 0.002 mol (0.01.01.%) Fe _{0.947} O to Fe stage inlet gas CH ₄ 5.202 mol (0.00.10.01.%)			H_2O	79.20 (29.43 vol.%)	
Total amount of pure H ₂ consumed 297.19 mol Reduction with CO, T = 800 °C Fe ₃ O ₄ to Fe _{0.947} O stage inlet gas CO 27.31 (100.00 vol.%) outlet gas CO 6.51 mol (23.84 vol.%) CO CO ₂ 20.80 mol (76.16 vol.%) CO 79.20 mol reactor state Fe _{0.947} O 79.20 mol 79.20 mol reactor state Fe _{0.947} O 79.20 mol 79.20 mol outlet gas CO 248.90 mol (100.00 vol.%) 79.20 mol outlet gas CO 169.70 mol (68.18 vol.%) 79.20 mol outlet gas CO 169.70 mol (68.18 vol.%) 79.20 mol reactor state Fe 75 mol 75 mol Total amount of pure CO consumed 276.21 mol 276.21 mol Colspan="2">Colspan= CH ₄ 5.202 mol (100.00 vol.%) outlet gas CH ₄ 0.002 mol (0.01 vol.%) outlet gas CH ₄ 0.002 mol (0.01 vol.%) colspan="2">CO ₂ 5.201 mol (0.00 vol.%) outlet gas CH ₄ 0.002 mol (0.01 vol.%)		reactor state	Fe	75.00 mol	
Reduction with CO, T = 800 °C Fe _{0.04} to Fe _{0.047} O stage inlet gas CO 27.31 (100.00 vol.%) outlet gas CO 6.51 mol (23.84 vol.%) CO CO 20.80 mol (76.16 vol.%) CO 6.51 mol (23.84 vol.%) Fe _{0.047} O to Fe stage reactor state Fe _{0.047} O 79.20 mol reactor state Fe _{0.047} O 248.90 mol (100.00 vol.%) 0utlet gas CO 169.70 mol (68.18 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) 79.20 mol 18.92 vol.%) reactor state Fe 75 mol 75.00 mol 18.92 vol.%) Total amount of pure CO consumed CH ₄ 5.202 mol (100.00 vol.%) 01.00 vol.%) 01.00 vol.%) 01.00 vol.%) 10.00 vol.%)	Total amount of pure H ₂ consumed			297.19 mol	
Fe _{0.947} O stage inlet gas CO 27.31 (100.00 vol.%) outlet gas CO 6.51 mol (23.84 vol.%) CO2 20.80 mol (76.16 vol.%) CO2 20.80 mol (76.16 vol.%) CO2 20.80 mol (76.16 vol.%) reactor state Fe _{0.947} O 79.20 mol 79.20 mol Fe _{0.947} O to Fe stage inlet gas CO 248.90 mol (100.00 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) reactor state Fe 75 mol Total amount of pure CO consumed 276.21 mol 276.21 mol Fe ₃ O ₄ to Fe _{0.947} O stage inlet gas CH ₄ 5.202 mol (100.00 vol.%) outlet gas CH ₄ 5.202 mol (100.00 vol.%) 200 mol (66.66 vol.%) Fe ₃ O ₄ to Fe _{0.947} O to Fe stage inlet gas CH ₄ 0.002 mol (0.01 vol.%) CO ₂ 5.200 mol (33.33 vol.%) 10.40 mol (66.66 vol.%) 10.40 mol (66.66 vol.%) Fe _{0.947} O to Fe stage inlet gas CH ₄ 67.66 mol (100.00 vol.%) outlet gas CH ₄ 67.66 mol (100.00 vol.%) 10.40 mol (66.66 vol.%) Fe _{0.947} O t		Reduction with	CO, T = 800 °C		
outlet gas CO 6.51 mol (23.84 vol.%) CO2 20.80 mol (76.16 vol.%) Pea.947O to Fe stage inlet gas CO 248.90 mol (100.00 vol.%) outlet gas CO 248.90 mol (100.00 vol.%) 0 outlet gas CO 169.70 mol (68.18 vol.%) 0 coulet gas CO 169.70 mol (68.18 vol.%) 0 reactor state Fe 75 mol 0 Total amount of pure CO consumed 276.21 mol 276.21 mol Fe3.04 to Fe9.947 O stage inlet gas CH4 5.002 mol (00.00 vol.%) outlet gas CH4 0.002 mol (00.01 vol.%) 0 co2 5.20 mol (33.33 vol.%) 10.40 mol (66.66 vol.%) 10.40 mol (66.66 vol.%) Fe9.947 O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) co1 reactor state Fe9.947 O 79.20 mol Fe9.947 O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) co1 inlet gas CH4 67.66 mol (100.00 vol.%) co2 19.80 mol (18.46 vol.%) 20.40 mol (Fe ₃ O ₄ to Fe _{0.947} O stage	inlet gas	СО	27.31 (100.00 vol.%)	
CO2 20.80 mol (76.16 vol.%) reactor state Fe _{0.947} O 79.20 mol Fe _{0.947} O to Fe stage inlet gas CO 248.90 mol (100.00 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) CO CO2 79.20 mol (31.82 vol.%) CO 169.70 mol (68.18 vol.%) reactor state Fe 75 mol 75 mol Total amount of pure CO consumed 276.21 mol 276.21 mol Feo_047 O stage inlet gas CH ₄ 5.202 mol (100.00 vol.%) outlet gas CH ₄ 0.002 mol (0.01 vol.%) 0010 mol (66.66 vol.%) Feo_047 O to Fe stage inlet gas CH ₄ 0.002 mol (0.01 vol.%) Feo_047 O to Fe stage inlet gas CH ₄ 0.002 mol (0.01 vol.%) Feo_047 O to Fe stage inlet gas CH ₄ 0.002 mol (0.01 vol.%) Feo_047 O to Fe stage inlet gas CH ₄ 79.20 mol Feo_047 O to Fe stage inlet gas CH ₄ 79.20 mol O tot fe gas CH ₄ 47.86 mol (44.62 vol.%) CO ₂ 19.80 mol (18.46 vol.%)		outlet gas	СО	6.51 mol (23.84 vol.%)	
reactor state Fe _{0.947} O 79.20 mol Fe _{0.947} O to Fe stage inlet gas CO 248.90 mol (100.00 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) CO2 79.20 mol (31.82 vol.%) reactor state Fe 75 mol Total amount of pure CO consumed Fe 75 mol Feq.04 to Fe _{0.947} O stage inlet gas CH4 5.202 mol (100.00 vol.%) outlet gas CH4 0.002 mol (0.01 vol.%) 0001 mol (66.66 vol.%) Feo_047O to Fe stage inlet gas CH4 0.002 mol (0.01 vol.%) Feo_047O to Fe stage inlet gas CH4 0.002 mol (0.01 vol.%) Feo_047O to Fe stage inlet gas CH4 0.002 mol (0.01 vol.%) Feo_047O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) outlet gas CH4 67.66 mol (100.00 vol.%) CO2 19.80 mol (18.46 vol.%) Feo_047O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) CH4 67.66 mol (100.00 vol.%) CO2 19.80 mol (18.46 vol.%) 19.00 19.60 mol (36.92 vol.%)			CO_2	20.80 mol (76.16 vol.%)	
Fe _{0.947} O to Fe stage inlet gas CO 248.90 mol (100.00 vol.%) outlet gas CO 169.70 mol (68.18 vol.%) CO2 79.20 mol (31.82 vol.%) reactor state Fe 75 mol Total amount of pure CO consumed 276.21 mol Reduction with CH4, T = 800 °C Fe ₃ O ₄ to Fe _{0.947} O stage inlet gas CH4 5.202 mol (100.00 vol.%) outlet gas CH4 0.002 mol (0.01 vol.%) 0002 mol (0.01 vol.%) outlet gas CH4 0.002 mol (0.01 vol.%) 0002 mol (0.01 vol.%) reactor state Fe _{0.947} O 5.202 mol (0.00 vol.%) 0002 mol (0.01 vol.%) feo_0sar,O to Fe stage inlet gas CH4 0.002 mol (0.01 vol.%) feo_0sar,O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) outlet gas CH4 47.86 mol (44.62 vol.%) 0002 mol (18.46 vol.%) outlet gas CH4 47.86 mol (44.62 vol.%) 10.40 mol (66.69 vol.%) feo_0sar,O to Fe stage inlet gas CH4 47.86 mol (44.62 vol.%) fo0 19.80 mol (18.46 vo		reactor state	Fe _{0.947} O	79.20 mol	
outlet gas CO 169.70 mol (68.18 vol.%) CO2 79.20 mol (31.82 vol.%) CO2 79.20 mol (31.82 vol.%) reactor state Fe 75 mol Total amount of pure CO consumed 276.21 mol Reduction with CH4, T = 800 °C 276.21 mol Fe30, to Fe0.347O stage inlet gas CH4 5.202 mol (100.00 vol.%) outlet gas CH4 0.002 mol (0.01 vol.%) 0002 mol (0.01 vol.%) reactor state Fe0.347O 5.202 mol (33.33 vol.%) 10.400 mol (66.66 vol.%) Fe0.347O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) coullet gas CH4 47.86 mol (44.62 vol.%) 10.400 mol (66.66 vol.%) Fe0.347O to Fe stage inlet gas CH4 47.86 mol (44.62 vol.%) 10.400 mol (66.66 vol.%) coullet gas CH4 47.86 mol (44.62 vol.%) 10.400 mol (66.900 mol) 10.400 mol (66.900 mol) fe0 19.800 mol (18.46 vol.%) 19.800 mol (18.46 vol.%) 19.800 mol (18.46 vol.%) 19.800 mol (18.46 vol.%) fe1 Fe2 75.00 mol 19.800 mol (36.92 vol.%) 19.800 mol	Fe _{0.947} O to Fe stage	inlet gas	CO	248.90 mol (100.00 vol.%)	
CO2 79.20 mol (31.82 vol.%) reactor state Fe 75 mol Total amount of pure CO consumed 276.21 mol Reduction with CH4, T = 800 °C 276.21 mol Fe3.04 to Fe0.947 O stage inlet gas CH4 5.202 mol (100.00 vol.%) Outlet gas CH4 0.002 mol (0.01 vol.%) 000 mol (66.66 vol.%) Fe0.947 O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) Fe0.947 O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) O tot Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) O tot Fe stage inlet gas CH4 47.86 mol (44.62 vol.%) O tot fe stage inlet gas CH4 47.86 mol (44.62 vol.%) O tot fe stage inlet gas CH4 47.86 mol (44.62 vol.%) O tot fe stage inlet gas CH4 93.00 mol (36.92 vol.%) Fea.04 Fea.04 Fea.04 93.00 mol (36.92 vol.%) Fea.04 Fea.04 Fea.04 Fea.04		outlet gas	СО	169.70 mol (68.18 vol.%)	
reactor state Fe 75 mol Total amount of pure CO consumed 276.21 mol Reduction with CH4, T = 800 °C Fe3O4 to Fe0.947O stage inlet gas CH4 5.202 mol (100.00 vol.%) outlet gas CH4 0.002 mol (0.01 vol.%) CO2 5.20 mol (33.33 vol.%) Fe0.947 O to Fe stage inlet gas CH4 0.400 mol (66.66 vol.%) Fe0.947 O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) outlet gas CH4 67.66 mol (100.00 vol.%) CO2 Fe0.947 O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) outlet gas CH4 47.86 mol (44.62 vol.%) CO2 19.80 mol (18.46 vol.%) e0.947 O to Fe stage inlet gas CH4 47.86 mol (44.62 vol.%) CO2 19.80 mol (18.46 vol.%) CO2 19.80 mol (18.46 vol.%) CO2 19.80 mol (36.92 vol.%) CO3 19.80 mol (36.92 vol.%)			CO_2	79.20 mol (31.82 vol.%)	
Total amount of pure CO consumed 276.21 mol Reduction with CH4, T = 800 °C Fe3O4 to Fe0.947O stage inlet gas CH4 5.202 mol (100.00 vol.%) outlet gas CH4 0.002 mol (0.01 vol.%) CO2 5.200 mol (33.33 vol.%) H2O 10.40 mol (66.66 vol.%) H2O 10.40 mol (66.66 vol.%) Fe0.947O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) Outlet gas CH4 67.66 mol (100.00 vol.%) CO2 Fe0.947O to Fe stage inlet gas CH4 67.66 mol (100.00 vol.%) Outlet gas CH4 47.86 mol (44.62 vol.%) CO2 19.80 mol (18.46 vol.%) Pre.20 H2O 19.80 mol (18.46 vol.%) H2O 19.80 mol (36.92 vol.%)		reactor state	Fe	75 mol	
Reduction with CH_4 , T = 800 °C Fe ₃ O ₄ to Fe _{0.947} O stage inlet gas CH ₄ 5.202 mol (100.00 vol.%) outlet gas CH ₄ 0.002 mol (0.01 vol.%) CO ₂ 5.20 mol (33.33 vol.%) H ₂ O 10.40 mol (66.66 vol.%) H ₂ O 10.40 mol (66.66 vol.%) Fe _{0.947} O to Fe stage inlet gas CH ₄ 67.66 mol (100.00 vol.%) outlet gas CH ₄ 47.86 mol (44.62 vol.%) CO ₂ 19.80 mol (18.46 vol.%) H ₂ O 39.60 mol (36.92 vol.%) H ₂ O 39.60 mol (36.92 vol.%) CO ₂	Total amount of pure CO consumed			276.21 mol	
Fe ₃ O ₄ to Fe _{0.947} O stage inlet gas CH ₄ 5.202 mol (100.00 vol.%) outlet gas CH ₄ 0.002 mol (0.01 vol.%) CO ₂ 5.20 mol (33.33 vol.%) H ₂ O 10.40 mol (66.66 vol.%) reactor state Fe _{0.947} O Fe _{0.947} O to Fe stage inlet gas Outlet gas CH ₄ Outlet gas CO ₂ Pa0 19.80 mol (18.46 vol.%) H ₂ O 39.60 mol (36.92 vol.%) H ₂ O 75.00 mol		Reduction with C	$CH_4, T = 800 \ ^{\circ}C$		
outlet gas CH4 0.002 mol (0.01 vol.%) CO2 5.20 mol (33.33 vol.%) H2O 10.40 mol (66.66 vol.%) reactor state Fe0.947 Fe0.947 CH4 Oto Fe stage inlet gas Otutlet gas CH4 Oto Fe stage inlet gas Otutlet gas CH4 Otutlet gas CO2 H2O 39.60 mol (36.92 vol.%) H2O 39.60 mol (36.92 vol.%) Feactor state Fe 75.00 mol	Fe ₃ O ₄ to Fe _{0.947} O stage	inlet gas	CH_4	5.202 mol (100.00 vol.%)	
CO2 5.20 mol (33.33 vol.%) H2O 10.40 mol (66.66 vol.%) reactor state Fe0.947O Fe0.947O to Fe stage inlet gas Ottlet gas CH4 CO2 19.80 mol (18.46 vol.%) CO2 19.80 mol (18.46 vol.%) H2O 39.60 mol (36.92 vol.%) Fe0.947O to Fe stage Fe		outlet gas	CH_4	0.002 mol (0.01 vol.%)	
H2O 10.40 mol (66.66 vol.%) reactor state Fe0.947O Fe0.947O to Fe stage inlet gas Outlet gas CH4 Outlet gas CH4 CO2 19.80 mol (44.62 vol.%) H2O 19.80 mol (36.92 vol.%) Fe0.947O to Fe stage Fe 75.00 mol 75.00 mol			CO_2	5.20 mol (33.33 vol.%)	
reactor state Fe _{0.947} O 79.20 mol Fe _{0.947} O to Fe stage inlet gas CH ₄ 67.66 mol (100.00 vol.%) outlet gas CH ₄ 47.86 mol (44.62 vol.%) CO ₂ 19.80 mol (18.46 vol.%) H ₂ O 39.60 mol (36.92 vol.%) reactor state Fe 75.00 mol			H_2O	10.40 mol (66.66 vol.%)	
Fe _{0.947} O to Fe stage inlet gas CH ₄ 67.66 mol (100.00 vol.%) outlet gas CH ₄ 47.86 mol (44.62 vol.%) CO ₂ 19.80 mol (18.46 vol.%) H ₂ O 39.60 mol (36.92 vol.%) reactor state Fe 75.00 mol		reactor state	Fe _{0.947} O	79.20 mol	
outlet gas CH ₄ 47.86 mol (44.62 vol.%) CO ₂ 19.80 mol (18.46 vol.%) H ₂ O 39.60 mol (36.92 vol.%) reactor state Fe 75.00 mol	$Fe_{0.947}O$ to Fe stage	inlet gas	CH_4	67.66 mol (100.00 vol.%)	
CO2 19.80 mol (18.46 vol.%) H2O 39.60 mol (36.92 vol.%) reactor state Fe 75.00 mol		outlet gas	CH_4	47.86 mol (44.62 vol.%)	
H2O 39.60 mol (36.92 vol.%) reactor state Fe 75.00 mol			CO_2	19.80 mol (18.46 vol.%)	
reactor state Fe 75.00 mol			H_2O	39.60 mol (36.92 vol.%)	
		reactor state	Fe	75.00 mol	
Total amount of pure CH_4 consumed 72.87 mol	Total amount of pure CH4 consumed			72.87 mol	

consists of 100 mol of H_2 (96.23 vol.%) and 3.92 mol of H_2O (3.77 vol.%). During the oxidation stage 25 mol of Fe_3O_4 is created. Table 1 summarizes the Fe reactor performance.

Reduction with hydrogen in iron based loop

In the first stage, 25 mol of Fe_3O_4 is reduced to wustite. The amount of $Fe_{0.947}O$ produced is 79.20 mol. The amount of hydrogen consumed is 28.08 mol. The composition of product gaseous mixture is: H_2O : 20.80 mol (74.07 vol.%) and H_2 : 7.28 mol (25.93 vol.%). In the following step wustite is reduced to iron. The amount of iron produced is 75.00 mol, the amount of hydrogen consumed is 269.11 mol, and the composition of gas produced is: H_2O : 79.20 (29.43 vol.%) and H_2 : 189.91 mol (70.57 vol.%).

Reduction with carbon monoxide in iron based loop

25 mol of Fe₃O₄ is reduced to 79.20 mol of wustite with 27.31 mol of CO. The composition of the product gas is 20.80 mol (76.16 vol.%) of CO₂ and 6.51 mol (23.84 vol.%) of CO. Next, 79.20 mol of wustite is reduced to 75.00 mol of Fe with 248.90 mol of CO, and the resulting composition of the product gas is 79.20 mol (31.82 vol.%) of CO₂ and 169.70 mol (68.18 vol.%) of CO.

Reduction with methane in iron based loop

The reaction of 1 mol of methane with iron oxide creates 2 mol of H_2O and 1 mol of CO_2 . Thus, the fraction of CH_4 consumed during the reaction is correlated to the fraction of CH_4 in an equilibrium gas according to the following equation:

$$X_{CH_{4}consumed} = \frac{(X_{H_{2}O} + X_{CO_{2}})/3}{X_{CH_{4}} + (X_{H_{2}O} + X_{CO_{2}})/3} = (8)$$
$$= \frac{(1 - X_{CH_{4}})/3}{X_{CH_{4}} + (1 - X_{CH_{4}})/3} = \frac{1 - X_{CH_{4}}}{1 + 2X_{CH_{4}}}$$

The calculation presented below is made for the pressure of 1 MPa. 25 mol of Fe₃O₄ is reduced to 79.20 mol of wustite. The amount of CH₄ consumed is: $\frac{25}{4.807} / \frac{1 - 0.0001}{1 + 2 \times 0.0001} = 5.202 \text{ mol. The gas produced is}$ composed of 0.01 mol of CH₄ (0.01 vol.%), 5.20 mol of CO₂ (33.33 vol.%) and 10.40 mol of H₂O (66.66 vol.%). 79.20 mol of wustite is reduced to 75 mol of iron and the amount of CH₄ consumed is 68.40 mol. The resulting gas is composed of 47.86 mol of CH₄ (44.62 vol.%), 19.80 mol of CO₂ (18.46 vol.%) and 39.60 mol of H₂O (36.92 vol.%).

Iron and germanium based double loop

Iron and germanium reactor with the capacity of 100 mol of H_2 contains 37.5 mol of Fe and 25 mol of Ge. Hydrogen is generated by blowing Fe bed with steam, and subsequently by blowing Ge bed with produced H_2/H_2O stream. Hydrogen is generated at the temperature of 300 °C and the reduction reaction is performed at 800 °C. In case of methane, the pressure of 1 MPa is considered. The schematic diagram of Fe-Ge reactor performance is presented in Figure 4. Tables 2 and 3 summarize the Fe-Ge reactor performance.

Hydrogen production in iron and germanium double loop

37.5 mol of Fe is blown with 100.28 mol of H_2O to generate 12.5 mol of Fe₃O₄. The product gas is composed of 50 mol of H_2 and 50.28 mol of H_2O (the reaction is limited by the availability of Fe). This gaseous mixture reacts with 25 mol of Ge which results in 25 mol of GeO₂ produced. The outlet gas is composed of 100 mol of H_2 and 0.28 mol of H_2O .

Reduction with hydrogen in iron and germanium double loop

Magnetite is reduced with pure hydrogen to wustite and then to pure iron. The process is performed as described in Reduction with hydrogen in iron based loop sub-section. The compositions of the gas mixtures applied are similar, but the quantities are halved. The outlet gas from the $Fe_3O_4/Fe_{0.947}O$ stage is vented. GeO₂ is reduced with the outlet gas from the Fe_{0.947}O stage and some additional amount of hydrogen. The Fe_{0.947}O/Fe process gas contains $39.60 \text{ mol} (29.43 \text{ vol.}\%) \text{ of } H_2O \text{ and } 94.96 \text{ mol} (70.57 \text{ vol.}\%)$ of H_2 , which is not sufficient to reduce 25 mol of GeO_2 . The outlet gas from Ge reactor should contain 89.60 mol of H₂O (50 mol produced in GeO₂ reduction). The outlet gas will also contain 71.00 mol of H₂ (44.21 vol.%). The inlet gas composition would be 121.00 mol (75.34 vol.%) of H₂ and 39.60 mol (24.66 vol.%) of H₂O and the extra amount of H_2 is 26.04 mol.

Reduction with carbon monoxide in iron and germanium double loop

Magnetite is reduced with pure CO to wustite and then to pure iron in the process described in Reduction with carbon monoxide in iron based loop sub-section.

Hydrogen production, T=300 °C

Reduction, 1st stage, T=800 °C

Figure 4. Schematic diagram of Fe-Ge reactor performance.

Table 2. The Fe-Ge reactor	performance, hydro	ogen production
----------------------------	--------------------	-----------------

Fe-Ge	reactor; capacity of 100.00 mol of H ₂ , contain	ning 37.50 mol of Fe and 25	.00 mol of Ge
	Hydrogen production / oxidation	on stage; T = 300 °C	
Fe reactor	inlet gas	H_2O	100.28 mol (100.00 vol.%)
	outlet gas/Ge reactor inlet gas	H_2	50.00 mol (49.86 vol.%)
		H_2O	50.28 mol (50.14 vol.%)
	reactor state		12.50 mol of Fe_3O_4
Ge reactor	outlet gas	H_2	100.00 mol (99.72 vol.%)
		H_2O	0.28 mol (0.28 vol.%)
	reactor state	GeO_2	25.00 mol
	Reduction with H ₂ , 7	Γ = 800 °C	
Fe_3O_4 to $Fe_{0.947}O$ stage	inlet gas	H_2	14.04 mol (100.00 vol.%)
	outlet gas	H_2	3.64 mol (25.93 vol.%)
		H_2O	10.40 mol (74.07 vol.%)
	reactor state	Fe _{0.947} O	39.60 mol
$Fe_{0.947}O$ to Fe stage	inlet gas	H_2	134.56 mol (100.00 vol.%)
	outlet gas	H_2	94.96 mol (70.57 vol.%)
		H_2O	39.60 (29.43 vol.%)
	reactor state	Fe	37.50 mol
Ge reactor	inlet gas	H_2	121.00 mol (75.34 vol.%)
GeO ₂ to Ge		H_2O	39.60 mol (24.66 vol.%)
	outlet gas	H_2	71.00 mol (44.21 vol.%)
		H_2O	89.60 mol (55.79 vol.%)
	reactor state	Ge	25.00 mol
Total amount of pure H ₂ consumed			174.64 mol

Table 3. The Fe-Ge rector	performance,	reduction	with methane
---------------------------	--------------	-----------	--------------

Fe-Ge re	eactor; capacity of 100.00 mol of H ₂ , contain	ning 37.50 mol of Fe and 25	.00 mol of Ge
	Reduction with CO,	T = 800 °C	
Fe_3O_4 to $Fe_{0.947}O$ stage	inlet gas	СО	13.64 mol (100.00 vol.%)
	outlet gas	СО	3.25 mol (23.83 vol.%)
		CO_2	10.39 mol (76.17 vol.%)
	reactor state	Fe _{0.947} O	39.10 mol
$Fe_{0.947}O$ to Fe stage	inlet gas	СО	123.95 mol (100.00 vol.%)
	outlet gas	СО	84.85 mol (68.46 vol.%)
		CO_2	39.10 mol (31.54 vol.%)
	reactor state	Fe	37.50 mol
Ge reactor	inlet gas	СО	115.12 mol (74.41 vol.%)
GeO ₂ to Ge		CO_2	39.52 mol (25.59 vol.%)
	outlet gas	СО	65.12 mol (42.09 vol.%)
		CO_2	89.60 mol (57.91 vol.%)
	reactor state	Ge	25.00 mol
Total amount of pure CO consumed			168.37 mol
	Reduction with CH ₄ ,	T = 800 °C	
Fe reactor	inlet gas	CH_4	2.61 mol (100 vol.%)
Fe ₃ O ₄ to Fe _{0.947} O stage	outlet gas	CH_4	0.01 mol (0.13 vol.%)
		CO_2	2.60 mol (33.29 vol.%)
		H_2O	5.20 mol (66.58 vol.%)
	reactor state	Fe _{0.947} O	39.60 mol
Fe reactor	inlet gas	CH_4	33.53 mol (100 vol.%)
Fe _{0.947} O to Fe stage	outlet gas/Ge reactor inlet gas	CH_4	23.93 mol (44.62 vol.%)
		CO_2	9.90 mol (18.46 vol.%)
		H_2O	19.80 mol (36.92 vol.%)
	reactor state	Fe	37.50 mol
Ge reactor	outlet gas	CH_4	11.40 mol (14.50 vol.%)
GeO ₂ to Ge stage		CO_2	22.40 mol (28.50 vol.%)
		H_2O	44.80 mol (57.00 vol.%)
	reactor state	Ge	25.00 mol
Total amount of pure CH ₄ consumed			36.43 mol

The composition of gaseous reactants applied are similar, while their quantities are halved. The Fe₃O₄/Fe_{0.947}O stage outlet gas is vented. GeO₂ is reduced with the outlet gas from the Fe_{0.947}O stage and some additional amount of CO. The Fe_{0.947}O/Fe process outlet gas contains 84.85 mol (68.46 vol.%) of CO and 39.10 mol (31.54 vol.%) of CO₂. The amount of CO is too low for the reduction of 25 mol of GeO₂. The outlet gas from Ge reactor would contain 89.60 mol of CO₂ (50 mol produced in GeO₂ reduction) and 65.12 mol (42.09 vol.%) of CO. The inlet gas composition should be as follows: 115.12 mol (74.41 vol.%) of CO and 39.60 mol (25.59 vol.%) of CO₂ and the amount of extra CO is 30.27 mol.

Reduction with methane in iron and germanium double loop

Magnetite is reduced with pure CH_4 to wustite and then to pure iron in the process described in Reduction with methane in iron based loop sub-section. The composition of gases employed are similar and their amounts are halved. The Fe₃O₄/Fe_{0.947}O stage outlet gas is vented. GeO₂ is reduced with the outlet gas from the Fe_{0.947}O stage. The Fe_{0.947}O/Fe process outlet gas contains 23.93 mol of CH₄ (44.62 vol.%), 9.90 mol of CO₂ (18.46 vol.%) and 19.80 mol of H₂O (36.92 vol.%). The amount of CH₄ is sufficient to reduce 25 mol of GeO₂. The Ge reactor outlet gas would contain 22.40 mol of CO₂, 44.80 mol of H₂O (12.5 mol of CO₂ and 25 mol of H₂O are produced in GeO₂ reduction) and 11.4 mol of CH₄ (12.5 mol of CH₄ is consumed). The methane content in gas is still higher than in the equilibrium atmosphere. The percentage composition of the outlet gas is: 14.50 vol.% of CH₄, 28.50 vol.% of CO₂ and 57.00 vol.% of H₂O.

Conclusions

The LTSI process may be applied in hydrogen production and storage. The thermodynamic calculations

show that the reducing stage of the process may be problematic, since the reaction achieves equilibrium state when there is still a large fraction of the reducing gas (hydrogen, carbon monoxide or methane) present in the reaction atmosphere. The computations presented also indicate that the combination of iron and germanium loops may be an interesting option for the steam-iron process in a solid phase at temperatures below 1000 °C. In such a double cycle, the outlet gas contains a significantly smaller fraction of the reducing gas, since smaller quantity of the reducing gas needs to be used. For the double Fe-Ge loop a decrease of approximately 58.76, 60.96 and 49.99% for the reducing gases like H_2 , CO and CH_4 is reported, respectively.

Acknowledgments

This work was supported by the Ministry of Science and Higher Education, Poland, under Grant No. 11310046.

References

- 1. Ball, M.; Weeda, M.; Int. J. Hydrogen Energy 2015, 40, 7903.
- Maroufmashat, A.; Fowler, M.; Khavas, S. S.; Elkamel, A.; Roshandel, R.; Hajimiragha, A.; *Int. J. Hydrogen Energy* 2016, 41, 7700.
- Acha, E.; Requies, J.; Güemez, M. B.; Barrio, V. L.; Cambra, J. F.; Ariasm P. L.; *Int. J. Hydrogen Energy* 2014, *39*, 5257.
- 4. Cormos, C. C.; Int. J. Hydrogen Energy 2010, 35, 2278.
- 5. Lorente, E.; Peña, J. A.; Herguido, J.; *J. Power Sources* 2009, *192*, 224.

- Wang, H.; Liu, X.; Wen, F.; *Int. J. Hydrogen Energy* 2012, *37*, 977.
- Kathe, M. V.; Empfieldm, A.; Na, J.; Blair, E.; Fan, L. S.; *Appl. Energy* 2016, *165*, 183.
- 8. Gupta, R. B.; *Hydrogen Fuel. Production, Transport and Storage*; CRC Press Taylor & Francis Group: Boca Raton, USA, 2009.
- Hacker, V.; Fankhauser, R.; Faleschini, G.; Fuchs, H.; Friedrich, K.; Muhr, M.; Kordesch, K.; *J. Power Sources* 2000, *86*, 531.
- 10. Hacker, V.; J. Power Sources 2003, 118, 311.
- 11. Otsuka, K.; Kaburagi, T.; Yamada, C.; Takenaka, S.; *J. Power Sources* **2003**, *122*, 111.
- Kosaka, F.; Hatano, H.; Oshima, Y.; Otomo, J.; *Chem. Eng. Sci.* 2015, *123*, 380.
- Choa, W. C.; Seo, M. W.; Kim, S. D.; Kang, K. S.; Bae, K. K.; Kim, C. H.; Jeong, S. U.; Park, C. S.; *Int. J. Hydrogen Energy* 2012, *37*, 16852.
- 14. Otsuka, K.; Takenaka, S.; J. Jpn. Pet. Inst. 2004, 47, 377.
- Datta, P.; Rihko-Struckmann, L. K.; Sundmacher, K.; Fuel Process. Technol. 2014, 128, 36.
- Datta, P.; Rihko-Struckmann, L. K.; Sundmacher, K.; *Mater. Chem. Phys.* 2011, *129*, 1089.
- Urasaki, K.; Tanimoto, N.; Hayashi, T.; Sekine, Y.; Kikuchi, E.; Matsukata, M.; *Appl. Catal.*, A 2005, 288, 143.
- Svoboda, K.; Słowiński, G.; Rogut, J.; Baxter, D.; *Energy Convers. Manage.* 2007, 48, 3063.

Submitted: July 26, 2016 Published online: September 29, 2016