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Chagas disease is a tropical parasitic disease that is caused by Trypanosoma cruzi and causes 
12,000 deaths per year, mainly in Latin America. The available drugs for treating have severe 
limitations, including poor efficacy and high toxicity. One way to overcome these limitations is 
targeting priority molecules with computational tools to direct in vitro assays against validated 
targets. Farnesyl pyrophosphate synthase (E.C. 2.5.1.10) is an enzyme that participates in the 
initial stage of sterol biosynthesis, and its inhibition causes damage to membrane integrity, leading 
to parasite death. With the aim to identify potential inhibitors against this target from T. cruzi, 
hierarchical virtual screening approaches were performed through a combination of ligand-based 
pharmacophore models and molecular docking. First, pharmacophore model filtering resulted 
in 15,154 molecules that had the minimum structural requirements for inhibition (QFIT > 0). 
These molecules were subsequently submitted to molecular docking routine, which resulted in 
11,762 molecules (Grid Score between –232.74 to –0.96 kcal mol-1). The top 30 ranked molecules 
in these approaches were grouped in self-organizing maps. These analyses showed four promising 
compounds from natural products that mimic the major interactions present in the substrate/
inhibitor, which indicates that these molecules can be assayed by in vitro experiments.

Keywords: farnesyl pyrophosphate synthase, molecular docking, pharmacophore model, 
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Introduction

Chagas disease is a tropical disease that is caused by 
the protozoan Trypanosoma cruzi, which is transmitted to 
humans by a blood-sucking insect vector (triatomine bugs) 
commonly known as the “kissing bug”. Other forms of 
transmission for this disease occur by blood transfusion 
and congenital transmission.1

This disease presents an initial acute phase, which may 
be characterized by fever, myalgia, headache, generalized 
lymphadenopathy, oedema, hepatosplenomegaly, cardiac 
inflammation, and in severe cases, meningoencephalitis.2,3 
This phase is followed by a chronic stage that is 

characterized by cardiac, digestive, nervous or other clinical 
changes and, in some cases, it is only observed years after 
T. cruzi infection.4,5

According to the World Health Organization,6 Chagas 
disease is categorized among the neglected diseases, 
which are strongly associated with a population’s poverty 
status and limited access to health services, and these 
diseases are not seen as needing investment in research and 
development by the pharmaceutical industry. Considering 
the global picture, there are approximately 6 to 7 million 
people infected with Chagas disease and approximately 
12,000 deaths, primarily in Latin America.6

In Brazil, it is estimated that approximately 2 to 
3 million people suffer from chronic disease, which is 
a major cause of heart pacemaker implants and heart 
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transplants as well as death among adults 30 to 60 years 
old.7 There was an increase of approximately 47% in 
the number of heart transplants in Brazil between 2011 
and 2014.8 Chagas disease is the leading cause of heart 
failure in endemic areas and its third-highest leading 
cause in Brazil.9

The only drug available in Brazil is benznidazole 
(Rochagan®, Roche), although nifurtimox (Lampit®, 
Bayer AG) can be employed in other countries. However, 
these therapies are not effective at chronic stage and 
they have several adverse effects, such as skin rashes, 
paresthesia, asthenia, and skin peeling, which can hinder 
patient adherence to the treatment.10,11 For this reason, it 
is necessary to develop new selective drugs with low rates 
of adverse effects.

One of the strategies used for the control of parasitic 
infections is the search for new validated targets. Among 
them, the sterol biosynthesis pathway is considered very 
promising for T. cruzi as well as other tripanossomatids.12-14 
The farnesyl pyrophosphate synthase (FPPS) is noteworthy 
for being a rate limiting step of the isoprenoid synthesis, 
which is responsible for the condensation of isopentenyl and 
dimethylallyl diphosphates to form geranyl pyrophosphate 
and farnesyl pyrophosphate.15 These precursors are 
essential for the formation of most isoprenoids, including 
sterols, and the inhibition of which results in changes in 
the integrity of the lipid bilayer of cells, leading to parasite 
death.16

For the search of new chemical structures, potent 
inhibitors (e.g. the pharmacophore model) and/or 
tridimensional (3D) structures of the biological target 

(e.g. molecular docking) can help identify compounds 
with chemical, electronic and steric properties that 
are essential for biological activity.17 Due to chemical 
and structural diversity, the natural products have been 
widely recognized as an important source of new hit/lead 
through virtual screening.18 This study aimed to prioritize 
promising molecules derived from natural products 
for the T. cruzi FPPS (TcFPPS) inhibition assays by 
pharmacophore models and docking approaches.

Experimental

Generation of pharmacophore models from TcFPPS 
inhibitors

A set of 25 TcFPPS inhibitors that were previously 
described in the literature according to their biological 
activity information (half maximal inhibitory concentration 
(IC50)) was selected for the generation and evaluation of 
pharmacophore model.14,19,20 Thus, five molecules with 
IC50 < 1 µM were selected for pharmacophore models 
generation (training set; Figure 1) and the other compounds 
(n = 20) were employed in the evaluation steps (test set; 
Table S1, Supplementary Information (SI) section).

All molecules were drawn in MarvinSketch software 
5.12.121 and then converted to 3D format in SYBYL-X 
2.0 software.22 Next, using SYBYL-X 2.0 software, the 
Gasteiger-Huckel atomic partial charges were added and 
the structures were energy minimized using Tripos Force 
Field (ε = 80.0; maximum of iterations = 50,000) with 
1 × 10-3 kcal mol-1 convergence criterion.

Figure 1. Chemical structures of training set with their respective biological activity (IC50).
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The GALAHAD module in the SYBYL 2.0 X platform23 
was used to construct 10 pharmacophore models. For this 
reason, the population size and the maximum number of 
generations for the FPPS inhibitors were adjusted to 35 and 
80, respectively. The other parameters (mutation rate = 0.4, 
mutation decay = 1.0 and crossover rate = 1.0) were kept 
at their default values.

Pharmacophore models evaluation

First, the pharmacophore models with energy levels 
that were more than two orders of magnitude greater than 
the others were discarded. The remaining pharmacophore 
models were evaluated by Pareto score, by using the 
scoring components of the genetic algorithm (STERICS, 
HBOND and MOL_QRY). The pharmacophore models 
with Pareto values of zero were evaluated by their ability 
to differentiate true inhibitors from decoys, which were 
built with DUD-E server.24

Accordingly, the full database (one inhibitor: 50 
decoys) was aligned to each pharmacophore model 
(template), using GALAHAD default parameters 
and ranked according to their QFIT values. Receiver 
operating characteristic (ROC) curves, Boltzmann-
enhanced discrimination of ROC (BEDROC, α = 20) 
and early enrichment upon the top 1% (EF1%, enrichment 
factor) were employed to validate their efficiency in 
discriminating true inhibitors from decoys.

The best pharmacophore model selected was investigated 
regarding their ability to explain the structure-activity 
relationships for congeneric molecules not employed in the 
generation of pharmacophore models.25 Thus, 20 positive 
TcFPPS inhibitors that were previously described in the 
literature (IC50 = 0.013-6.386 µM) were subjected to the 
same minimization protocol employed for the inhibitors 
that were used to generate the models.14,19,20 Then, 
molecules were aligned individually onto pharmacophore 
models using the flexible alignment mode available in 
GALAHAD. The QFIT value was related to the biological 
activity values expressed in pIC50 and the bar graph plotted 
using SigmaPlot 12.0 software.26

Pharmacophore based virtual screening

The best pharmacophore model was used as template for 
3D flexible alignment, through UNITY module available in 
SYBYL-X 2.0, of approximately 99,000 natural products 
available from ZINC database.27 The quality of alignment 
of each molecule was expressed by QFIT value ranging 
from 0 to 100. Compounds with QFIT > 0 were selected 
for docking routine.

Molecular docking

Initially, 3D structure of the TcFPPS (PDB: 1YHL) was 
obtained from Protein Data Bank (PDB)28 and prepared 
using DockPrep module in Chimera 1.10.1 software.29 The 
selection was based on the resolution (1.95 Å) and was made 
in the presence of the dimethylallyl diphosphate (DMAPP) 
substrate. Artifacts water were removed and polar hydrogen 
atoms were added to the structure to optimize its hydrogen 
bonds. The protonation state was defined according to the 
optimum pH of catalysis (pH = 8.5)12 using H ++ 3.0 web 
server to determine pKa value.30

The docking routine was performed using the DOCK 
6.5 program.31 The delimitation of the search space was 
defined by DOCK 6.5 accessory programs. The molecular 
surface of the receptor was generated by Display Midas 
System (DMS) accessory program,32 the negative image 
of the molecular surface of the orthosteric site (risedronate 
binding region) was constructed with an additional 8 Å 
radius with SPHGEN and SPHERE_SELECTOR accessory 
programs.33 The molecular properties for that region were 
calculated using the GRID program in its default setting.34,35 
The docking was performed using Grid Score scoring 
function.35

To evaluate DOCK 6.5 parameters, an initial analysis 
was performed using root-mean-square deviation (RMSD) 
calculated between the coordinates of the crystallographic 
ligand and the best pose obtained by DOCK 6.5. An RMSD 
of less than 2 Å indicates good docking performance.36 The 
following deviations were evaluated: RMSDs, interatomic 
distance between atoms; RMSDm, minimum distance 
between the primary atoms; and RMSDh, correction of 
symmetry between the poses of the ligands.31

For the evaluation on the discriminatory power of the 
DOCK 6.5 to recognize true inhibitors, it was used the same 
strategy adopted for the pharmacophore models stage. For 
the construction of the ROC curve, energy data that were 
obtained through the scoring function were used.

Prioritization of molecules through pharmacophore and 
energy criteria

Top 500 ranked molecules among pharmacophore and 
docking screening were directed to the cluster analysis by 
self-organizing maps to select molecules with the higher 
QFIT (group A) and Grid Score (group B) values.

Virtual screening by self-organizing maps

The type of intermolecular interaction to the organization 
(hydrogen, electrostatic, lipophilic and all previous 
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intermolecular interactions) in the AuPosSOM 2.137,38 was 
selected by area under the curve (AUC) of an ROC curve 
(data not shown), using the same number of false positives 
and true inhibitors employed during the evaluation stages 
of the pharmacophore models. The type of intermolecular 
interactions with higher AUC value were selected.

After the generation of self-organizing maps, a 
representative of the group from each cluster was assessed 
individually in relation to intermolecular interactions. The 
choice of these representatives was based on equation 1 
as follows:

BR = QFIT – GS (1)

where BR is the best representative; QFIT is the setting of 
the value of the ligand atoms in relation to the coordinates 
of the pharmacophore point; and GS is the Grid Score.

Evaluation of intermolecular interaction

The analysis of the intermolecular interactions between 
the molecules that were selected through the self-organizing 
maps and the orthosteric site residues of TcFPPS were 
carried out by PoseView web 1.97.0.39 and the 3D maps 
constructed with PyMOL 1.7.4.40

Results and Discussion

Generation of pharmacophore models from TcFPPS 
inhibitors

The set of molecules used (IC50 < 1 µM) for the 
generation of pharmacophore models was selected 
because these structures possess physicochemical and 
stereoelectronic features that modulate biological activity 
towards TcFPPS, that allow the identification of new 
compounds with similar features.

The GALAHAD program allows to identify molecules 
with partial overlapping in pharmacophore features,41 
and then it is possible to select molecules with partial 
stereo-electronic requirements that can be optimized, 
thereby avoiding the exclusion of molecules without the 
full alignment of the characteristics in the pharmacophore 
model.42 For this reason, the program ensures greater 
flexibility in selecting the potentially active molecules that 
are present in compound libraries.43

Based on the GALAHAD advantages, this program 
was employed in the generation of pharmacophore models 
for TcFPPS inhibitors. Because of the stochastic nature 
of the genetic algorithm, 10 pharmacophore models were 
generated and evaluated (Table 1).

To select a pharmacophore model that can be used 
in the virtual screening for prioritizing potential TcFPPS 
inhibitors, a set of criteria described in the methodology were 
employed. The use of conformers with high energy values 
reflects distortions in molecules (torsional angles) for the 
atoms to approach the center of pharmacophore points.42,44 
With the analysis of the energy values (> 100 kcal mol-1), the 
pharmacophore models 5, 6, 7 and 9 were excluded.

All the pharmacophore models have a Pareto = 0, 
indicating that they are statistically equivalent when 
compared to each other.45 Thus, to select a pharmacophore 
model for the virtual screening stage, enrichment metrics 
were applied to choose the best pharmacophore model.

Evaluation of pharmacophore models

The evaluation steps are crucial to ensure that they 
represent not only the chemical space of the molecules 
used in the pharmacophore generation, but they must also 
be able to identify different chemical classes of molecules 
with the same pharmacophoric points.46

In general, the remaining pharmacophore models 
showed acceptable GALAHAD statistical parameters, but 
they are not sufficient to estimate its discriminatory power. 
Thus, enrichment metrics such as the ROC curve and the 
area under the ROC curve (AUC) were employed for the 
evaluation and selection of a pharmacophore model for the 
virtual screening step.47 Due to the lack of experimental 
data for a set of inactive TcFPPS molecules, it was 
necessary to use the DUD-E server to generate molecules 
with physicochemical characteristics (charge, molecular 
weight, number of rotatable bonds, number of Hbond 
donors/acceptors and log P) similar to positive inhibitors, 
but dissimilar based on some 2D fingerprint.24

To evaluate the pharmacophore models that were 
previously selected, a set of 20 positive inhibitors and 

Table 1. Statistical parameters of pharmacophore models for TcFPPS 
inhibitors

Model
Energy / 

(kcal mol-1)
STERICS HBOND MOL_QRY

1 9.98 96.10 559.50 74.16

2 5.92 90.50 570.10 59.85

3 8.17 93.10 539.50 85.97

4 7.51 98.90 586.40 17.67

5 482,850.20 77.60 592.30 92.96

6 3,678,012.00 118.20 595.70 15.00

7 9,154,801.00 80.90 637.20 52.49

8 2.27 65.60 554.90 34.62

9 6,670,649.00 62.20 623.10 91.49

10 5.57 74.90 531.50 18.67
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1,937 false positives (some true inhibitors showed more 
than one state of protonation) was aligned with the models, 
and the set value was used to ROC/AUC, EF1% and 
BEDROC analysis (Figure 2 and Table 2).

The evaluation of AUC shows that for an ideal method 
AUC should be equal to 1.0, whereas methods with 
AUC ≤ 0.5 would be associated as poor.48,49 Although the 
AUC is a metric that allows the overall evaluation of the 
classification of the data, it is not a metric sensitive to 
the early recognition. BEDROC is a metric that focuses 
on giving greater value to the true positives in the first 
positions of the ordered list and does not present the same 
limitations regarding the number of molecules and the ratio 
between active and inactive, characteristics of a random 
organization method, such as the ROC/AUC analysis.48 
The enrichment factor provides useful information on the 
early recognition of active molecules. For this reason, the 
AUC, EF1% and BEDROC values were evaluated to aid in 

the selection of a pharmacophoric model to be applied in 
virtual screening (Table 2).

Among pharmacophore models for TcFPPS inhibitors, 
the pharmacophore model 2 (AUC = 0.88; EF1% = 29.33 
and BEDROC = 0.41) was selected for virtual screening. 
Although the metrics used guarantee a statistical validation 
of the best model, they are not able to explain the recognition 
by the activity structure relation for molecules not used in 
the pharmacophore model generation. For this reason, an 
analysis was made through the relation between the potency 
values (pIC50) and the values obtained by the alignment 
(QFIT) of inhibitors known in the pharmacophore model 2 
(Figure 3).

Based on the results, only pharmacophore model 2 
has a relation between QFIT and pIC50 because the 
potent molecules scored better and the weak inhibitors 
showed lower QFIT values. This model shows nine 
pharmacophore features, with six hydrogen bond donor 
(HBD), one hydrogen bond acceptor (HBA) and two 
negative centers (NC) (Figure 4). These features are 
found in bisphosphonates, that have in vitro and in vivo 
efficacy against trypanosomes (T. cruzi and T. brucei), 
making them promising therapeutic agents against 
trypanosomal infections.12,50 Mg2+ ion interactions occur 
with charged phosphonate group (NC), similar to T. brucei 
pharmacophore models previously described on literature.51 
In addition, HBA and HBD can be responsible for the 
polar interactions to stabilize the complex. Therefore, the 
pharmacophore model 2 was selected as the most suitable 
for virtual screening.

For the set used for this analysis, the top ranked molecule 
(CHEMBL261432, IC50 = 0.013 µM) show QFIT = 75.31, 
and one of the less potent molecules (CHEMBL407221, 
IC50 = 1.399 µM) resulted in QFIT = 10.58.

Figure 2. ROC curves of pharmacophore models for TcFPPS inhibitors.

Table 2. Evaluation of the pharmacophore models for TcFPPS inhibitors

Model AUC EF1% BEDROC

1 0.58 19.55 0.30

2 0.88 29.33 0.41

3 0.50 0.00 0.05

4 0.90 0.00 0.33

8 0.86 4.88 0.10

10 0.79 0.00 0.04

AUC: area under the curve; EF: enrichment factor; BEDROC: Boltzmann-
enhanced discrimination of receiver operating characteristic.

Figure 3. Relationship between biological activity (pIC50) and QFIT for 
known inhibitors not employed in model training.
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Pharmacophore-based virtual screening

During the filtering step using pharmacophore model 2, 
98,379 structures in the natural products subset from ZINC 
database were aligned in a flexible manner to assess the 
degree of accuracy for the atoms with features. After this 
alignment, approximately 15% of the initial database 
(n = 15,154) had QFIT values ranging from 0.27 to 88.07. 
This new set of the molecules was submitted to molecular 
docking, due to all selected molecules having minimum 
stereoelectronic requirements for biological activity.

Docking-based virtual screening

The docking based virtual screening have the ability to 
identify essential features for biological activity; however, the 

prediction of the binding modes and affinity of compounds 
that interact with the binding site are the limitations of the 
technique. In order to circumvent these limitations, the 
docking consists of an approach to identify different binding 
modes by considering the stereoelectronic complementarity 
between the molecule and target. Thus, the techniques 
that use the 3D structure of the macromolecular target 
are complementary strategies to studies that are based on 
previous knowledge of ligands to allow the assessment of the 
modes of interaction of potential compounds, that are selected 
for the pharmacophore model in the active site, respecting 
the limitations of the molecular volume for docking.17

The combination of pharmacophore models with 
docking has been widely exploited in drug design.52 
Typically, the techniques that have a lower computational 
demand, as pharmacophore model, are initially applied, and 
the filtered molecules are consecutively directed to other 
strategies such as docking.

To evaluate docking search parameters, some metrics 
evaluations were used, the results are shown in Figure 5. The 
best crystallographic pose of the ligand generated by DOCK 
6.5 was evaluated using the RMSD value, in relation to the 
crystallographic ligand pose obtained in PDB. This result 
shows that the RMSDs found was 1.43 Å, and the RMSDh 
and RMSDm were 1.12 and 0.37 Å, respectively. The 
literature36 indicates that the results in which RMSD ≤ 2 Å 
are considered acceptable. Based on this data, the use of 
this docking search parameters can result in reliable poses.

The use of GS scoring function is based on molecular 
mechanics force fields (van der Waals and Coulomb 
interaction energy).36 For the evaluation of this function, 
ROC curve was built with a set of false positives and 

Figure 4. Representation of the best pharmacophore model for TcFPPS. 
All distances are shown in angstroms. Blue: negative centers; green: 
hydrogen bond acceptors; pink: hydrogen bond donors. The size of 
the spheres varies according to the radius of tolerance calculated by 
GALAHAD.

Figure 5. Docking evaluation: (a) re-docking analysis (red: crystallographic pose risedronate; yellow: DOCK 6.5 best pose generated) and (b) ROC curve 
for evaluation of Grid Score.
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positive inhibitors to evaluate the pharmacophore models. 
In the evaluation, the values of AUC, EF1% and BEDROC 
indicate that the score function was able to recover all true 
positive inhibitor and not decoys,25 thus the specificity and 
sensitivity of this function that should be set is 100%. The 
function was shown to be predictive for selecting natural 
products filtered by the pharmacophore model. After the 
docking, a set of 11,762 molecules was selected with GS 
values ranging from –232.74 to –0.96.

Prioritization molecules through pharmacophore and energy 
criteria

The hierarchical virtual screening allowed to reduce and 
to select the universe of molecules contained in the natural 
products database.17 A prioritization of the compounds 
was performed according to ranking generated in both 
pharmacophore and docking strategies. The top 500 ranked 
structures in the pharmacophore models screening were 
compared with the top 500 ranked structures in the molecular 
docking. The top 30 ranked structures in both strategies were 
subjected to analyses of intermolecular interactions.

The top 500 findings sorted by QFIT structures and GS 
were used to identify the best molecules classified for both 
methods (Figure 6).

It was possible to select 30 structures with better QFIT 
and GS values. The top 30 QFIT values ranged from 
85.18 to 54.53, while GS values ranged from –176.92 and 
–110.16 kcal mol-1. Thus, this strategy resulted in a set 
of molecules that was best scored by the pharmacophore 
model and docking simultaneously.

Virtual screening by self-organizing maps

The results obtained from the hierarchical virtual 
screening were ranked by affinity energy (GS), and the 

top 30 ranked structures were used for the clustering 
analysis by grouping compounds with similar contacts with 
the receptor.38 The categorization of molecules through 
intermolecular interactions generated by molecular docking 
poses allows to prioritize the compounds in a group on the 
basis of the number/pattern of contacts.

The evaluation results on the technical efficiency from 
the ROC curves for each of the four types of interactions 
evaluated by AuPosSOM showed that of the four types 
of selection contacts, hydrogen bonds (AUC = 0.93) and 
electrostatic interactions (AUC = 0.88) represent the best 
types of interactions for identifying active compounds, 
and the other contacts proved to be somewhat predictive, 
with AUC < 0.7.

The best AUC values in the clustering for the hydrogen 
and electrostatic contacts are due to the characteristics of the 
amino acids present in the orthosteric site (Asp98, Asp102, 
Arg107, Lys207, Thr208, Tyr211, Gln247, Lys264, Asp250, 
Asp251, Asp254, Arg51 and Lys362). Those interactions 
are also responsible for stabilizing the substrate/inhibitor 
complex.50 Thus, lipophilic interactions (AUC < 0.5) are 
insufficient for discriminating among molecules that are 
active against TcFPPS, affecting negatively the analysis 
of  all interactions (AUC = 0.65).

The results of clustering analysis using hydrogen 
bond interactions (best AUC value) for the top 30 ranked 
molecules are shown in Figure 7.

In the clustering analysis, it is possible to observe 
the grouping of molecules in four clusters, each cluster 
containing molecules that show similar footprint contacts. 
One representative molecule in each cluster, with the best 
QFIT and GS scores (BR), was selected for individual 
analysis of intermolecular interactions (Table 3 and 
Figure 8).

Analysis of intermolecular interactions

The analysis of the binding mode is used to identify 
and optimize the interactions between ligands and their 
macromolecular targets, and it can be useful for the design 
of more potent and selective drugs.53 For this purpose, the 
interactions of the four best molecules selected after the 
construction of self-organizing maps in the TcFPPS active 
site were analyzed (Figure 9).

In the TcFPPS orthosteric site residues, there is 
a predominance of those with side chains containing 
carboxylic group (Asp92, Asp102, Asp170, Asp250, 
Asp360) and amino group (Arg51 and Lys362),50 
which confirms the possible formation of hydrogen 
bonds or electrostatic interaction as suggested by the 
AuPosSOM 2.1.

Figure 6. Hierarchical virtual screening scheme (pharmacophore and 
molecular docking).
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Figure 7. Clustering tree (Newick representation) with the distribution of the top 30 ranked molecules, each cluster (1-4) signifies a different ligand 
footprint on the protein/ligand complex.

Table 3. QFIT and GS values of the molecules grouped by AuPosSOM 2.1

Cluster Molecule Structure QFIT GS / (kcal mol-1) BR

1

ZINC01532555

 

62.67 –176.92 239.59

ZINC20112619

 

84.21 –151.37 235.58

ZINC20112699

 

60.05 –145.40 205.45

ZINC49600303

 

61.12 –120.73 181.85
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Table 3. QFIT and GS values of the molecules grouped by AuPosSOM 2.1 (cont.)

Cluster Molecule Structure QFIT GS / (kcal mol-1) BR

1

ZINC49600305

 

56.06 –120.00 176.06

ZINC00518461

 

54.71 –116.44 171.15

2

ZINC20112455

 

85.18 –126.34 211.52

ZINC20112448

 

60.28 –145.85 206.13

ZINC20112420

 

79.49 –121.48 200.97

ZINC20112424

 

79.49 –115.02 194.51

ZINC20112515

 

57.88 –128.71 186.59
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Table 3. QFIT and GS values of the molecules grouped by AuPosSOM 2.1 (cont.)

Cluster Molecule Structure QFIT GS / (kcal mol-1) BR

2

ZINC03999617

 

61.65 –115.01 176.66

ZINC67911369

 

57.80 –115.09 172.89

3

ZINC12296728

 

62.67 –172.72 235.39

ZINC00895081

 

57.14 –175.35 232.49

ZINC20112512

 

77.32 –135.32 212.64

ZINC04349874

 

63.87 –132.47 196.34

ZINC20112460

 

61.23 –132.94 194.17

ZINC70665767

 

55.11 –135.29 190.40

ZINC20112430

 

54.90 –130.86 185.76
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Table 3. QFIT and GS values of the molecules grouped by AuPosSOM 2.1 (cont.)

Cluster Molecule Structure QFIT GS / (kcal mol-1) BR

3

ZINC35466020

 

61.25 –121.18 182.43

ZINC00518657

 

54.67 –117.59 172.26

ZINC03999015

 

55.20 –115.90 171.10

4

ZINC01730395

 

62.67 –172.91 235.58

ZINC20112388

 

66.45 –161.24 227.69

ZINC20112385

 

66.45 –160.07 226.52

ZINC20112453

 

85.18 –126.26 211.44

ZINC31154929

 

57.86 –120.11 177.97
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Cluster Molecule Structure QFIT GS / (kcal mol-1) BR

4

ZINC04098727

 

57.86 –116.84 174.70

ZINC36046319

 

54.53 –110.16 164.69

GS: Grid Score; BR: best representative.

Figure 8. Two-dimensional (2D) chemical structures of top ranked 
compounds in each cluster.

The ZINC12296728 phosphate group interacts with 
three Mg2+ ions (Figure 9a) that are present at the binding 
site, which interacts with Asp250, Asp98 and Asp102. In 
addition, cation-π interactions can be observed between 
the aromatic ring of the ligand and the amino group of the 
Lys264 and Lys362 sidechain.

The ZINC1532555 phosphate group (Figure 9b) forms 
interactions with the three Mg2+ ions of TcFPPS. In the 
dihydropurin ring of ligand forms a hydrogen bond with 
Lys362, other interaction of the same type was observed 
between the hydroxyl at tetrahydrofuran ring of the ligand 
with hydroxyl sidechain of Tyr211. The other hydroxyl 
tetrahydrofuran ring is coordinated by a hydrogen bond 
donor interaction with Tyr211. The dihydropurin ring of the 
ligand forms π-cation interaction with Lys254 protonated 
amino group.

The complex ZINC01730395-TcFPPS (Figure 9c), in 
turn, presents the same type of interaction pattern between 
its phosphate group and Mg2+ ions. The apolar side chain of 
Leu95 interacts with the ligand by hydrophobic contact. The 
hydrogen bond acceptor occurs with Lys264 and Lys362 
residues. Furthermore, dihydropurin ring at ligand form 
π-cation interaction with Lys362 residue.

For ZINC20112455, interactions are observed between 
the phosphates and Mg2+ ions. Hydrogen bond acceptors are 
also shown between ligand carbonyl groups with residues 
Ser104 and Arg107 (Figure 9d).

Table 3. QFIT and GS values of the molecules grouped by AuPosSOM 2.1 (cont.)
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Figure 9. Analysis of intermolecular interactions between TcFPPS and selected molecules through self-organizing maps. All distances are shown in angstroms.

Based on the observations on the intermolecular 
interactions present in both compounds, it can be 
concluded that the main types observed are the 
electrostatic interactions and hydrogen bonds. Similar 
interactions were shown for the crystallographic inhibitor 
(risedronate), in which the mean distance between the 
hydrogen bonding pairs and the inhibitor was 3.17 Å 
and for Mg2+ bonds occurred at a distance of 1.95 to 
2.24 Å.50 In other complexes between bisphosphonates 
and TcFPPS,53 three Mg2+ ions bridge the phosphates of 
the inhibitor bisphosphonate. The conserved aspartate 
residues of the two-aspartate rich motifs DDXXD (Asp98-
102 and Asp250-254) bind three divalent cations (Mg2+) 
that are in turn coordinated by the phosphate backbone of 
the bisphosphonates and are crucial for the activity. Thus, 
the interactions observed for both compounds mimic those 
found for risedronate and bisphosphonates and may be 
recognized in the orthosteric site of TcFPPS. Interactions 
with Mg2+ ions are critical in catalysis and were observed 
in four complexes.54

Conclusions

The use of the GALAHAD program allowed the 
generation and evaluation of pharmacophore models 
for TcFPPS inhibitors, resulting in the selection of a 
pharmacophore model with good discriminatory power that 
was able to help explain the relations between the setting 
value of fitting inhibitors and biological activity.

Pharmacophore model 2 has six hydrogen bonding 
donor, one hydrogen bonding acceptor and two negative 
centers that are essential for inhibitory activity against the 
TcFPPS and important to modulate potency of this class.

The selection of a pharmacophore model that is 
acceptable for prioritizing potential TcFPPS inhibitors and 
their subsequent application in virtual screening resulted 
in the identification of 15,154 molecules with minimum 
requirements to recognize onto binding site.

For the docking, GS score function was used to select 
molecules that were filtered by the pharmacophore model, 
which was shown to be predictive for the set of true and 
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false-positive inhibitors. Furthermore, the DOCK 6.5 
search parameters showed good performance in positioning 
the crystallographic ligand and reproducing the spatial 
conformation of the crystallographic binder because the 
RMSD values were less than 2 Å.

Self-organizing maps prioritized four compounds, 
which showed binding pattern between oxygen atoms, 
magnesium ions and aspartic acid residues from conserved 
regions of the catalytic site, which is crucial for their 
activity.

This study identified four promising compounds from 
natural products database (ZINC1532555, ZINC12296728, 
ZINC20112455 and ZINC01730395) that mimic the major 
interactions present in the substrate/inhibitor (Asp98, 
Asp102, Asp250 and Mg2+ ions), which indicates that these 
molecules are candidates for in vitro assays.

Supplementary Information

Supplementary data (dataset 2-20 true inhibitors) are 
available free of charge at http://jbcs.sbq.org.br as PDF file.
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