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Brazilian gasoline type C can be purchased with octane number as the main difference. 
This quality parameter directly affects the price. Intermediate formulations may not be easily 
distinguished from conform samples due to similarity in visual appearance and physicochemical 
properties. The use of anhydrous ethanol as an additive also influences the octane values of the 
product. In this context, the present study describes the use of 1H nuclear magnetic resonance 
spectroscopy (1H NMR) associated with chemometrics in the characterization and distinction 
of gasolines by different octane number. Conform samples of common, premium and blends 
of common-premium were used. Models of  NMR-PCA (principal component analysis) 
and NMR‑SIMCA (soft independent modelling of class analogies) showed a good correlation 
with the values determined by the standard method. The octane values predicted by the NMR-
PLS (partial least squares) model achieved a good correlation root mean square errors of 
prediction (RMSEP = 0.50), with the values determined by the standard method as well.

Keywords: 1H NMR gasoline analysis, chemometrics, octane number, premium gasoline, 
common gasoline

Introduction

Gasoline is a fossil fuel constituted by a complex 
mixture of liquid hydrocarbons from four to twelve carbon 
atoms, with 30 to 225 °C boiling points range.1 Included in 
the mixture are paraffins, isoparaffins, olefins, naphthenes 
and aromatic hydrocarbons (PIONA) as well as compounds 
containing nitrogen, sulfur and oxygen. The PIONA 
ratio reflects on properties such as fuel resistance against 
compression, parameter called octane number or octane 
rating. This parameter, related to complete fuel combustion, 
is directly associated to the quality parameters of gasoline 
and consequently to the prices.2-4

In Brazil, gasolines are sold at gas stations as common, 
premium and podium. These gasolines have different 
specifications for quality parameters, anhydrous fuel 
ethanol content and anti-knock index (AKI). The National 

Agency of Petroleum, Natural Gas, and Biofuels (ANP)5 
uses the AKI to represent the octane number and the 
minimum values for common and premium Brazilian 
automotive gasolines are 87 and 91 units, respectively. This 
is important because various technologies employed in Otto 
cycle engines require different fuel quality requirements, 
directly involved in their performance. In this way, engines 
with different compression ratios and combustion chamber 
volume require different anti-knock qualities of gasoline. 
In order to increase the anti-knock capacity of gasoline and 
to reduce vehicular emissions, additives such as aliphatic 
ethers and alcohols are used. The main additives used are 
ethanol, propanol and butanol isomers, methyl tert-butyl 
ether (MTBE) and ethyl tert-butyl ether (ETBE).6 In Brazil, 
anhydrous ethanol is used, and the proportion added to 
gasolines is stablished according to Inter-Ministerial Sugar 
and Alcohol Council (CIMA). The values vary according 
to the Brazilian government’s strategies and projections on 
the production of sugarcane. Currently, the ethanol contents 
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used are 27.0 and 25.0 (v/v), respectively for common and 
premium gasolines.7

In order to evaluate the Brazilian gasoline quality, ANP 
lays down tests for gasoline control based on international 
guides such as the American Society for Testing and 
Materials (ASTM) and the Brazilian Technical Standards 
Association (ABNT). ANP Technical Regulations 
No. 40/20135 includes visual inspection, relative density 
(ABNT NBR 7148,8 ASTM D 1298),9 distillation profiles 
(ABNT NBR 9619,10 ASTM D 86),11 anti-knock index 
(correlation to ASTM D 269912 and ASTM D 270013 
values), hydrocarbon types (ABNT  NBR  14932,14 
ASTM  D  1319),15 benzene (ABNT NBR 15289,16 
ABNT  NBR 15441,17 ASTM D 6277)18 and anhydrous 
ethanol (ABNT NBR 13992)19 contents. However, it is not 
always possible to identify adulterated gasoline by these 
tests because many solvents or gasoline blends exhibit 
physicochemical properties similar to gasoline.

Alternatively to the methods established by the 
Regulatory Agency, techniques such as near-infrared 
spectroscopy (NIR),20 Fourier transform (FT)‑Raman,21 
nuc lea r  magne t ic  resonance  (NMR), 22-26 and 
chromatographic methods27,28 have been employed to assess 
the quality of fuels, expanding the analytical capabilities 
of products traded worldwide.20-28

In order to determine the AKI value for gasoline 
using ANP regulations,5 it is necessary to carry out time-
consuming tests (1 h per sample), large quantities of samples 
(1 L), reference standards for octane number (isooctane and 
n-heptane) and combustion engines dedicated only to this 
type of analysis.20 Therefore, the development of rapid 
analytical protocols that allow obtaining information about 
octane number and how the chemical profiles and their 
alterations can compromise this parameter of quality have 
great importance.20,25

In this context, NMR spectroscopy demonstrates great 
applicability since the technique does not require any 
physical separation or pretreatment.29,30 Moreover, 1H NMR 
measurements are rapid and can be easily automated, 
allowing the analysis of a large number of samples in a 
short period of time. NMR also brings the possibility of 
qualitative and quantitative analyses in a single experiment, 
since there is a direct proportionality between the area of 
the signals and the number of nuclei responsible for those 
signals.

Indeed, because of the complexity and strong spectral 
overlap inherent in the complex mixture of substances 
that characterizes gasoline, few isolated compounds 
(benzene and oxygenates) can be individually identified 
and quantified by the analysis of a single 1H  NMR 
spectrum.31-33 In order, to assist in the interpretation and 

recognition of patterns, not evident by visual inspection of 
the NMR spectra, the chemometric analysis is indicated. 
Among the major chemometric tools used in fuel NMR 
data are principal component analysis (PCA), hierarchical 
class analysis (HCA), independent modeling by class 
analogies (SIMCA), and partial least squares regression 
(PLS).1,28,34,35

PCA, an unsupervised analysis, generates information 
on possible sample groupings and indicates which spectral 
variables are determinants for discrimination, through the 
decomposition of experimental information organized in 
data matrices. The application of PCA in the study of NMR 
fuels goes beyond the exploratory analysis.36 It can be 
used as a statistical basis for the execution of supervised 
methods such as SIMCA modeling. Each class is modeled 
by multidimensional spaces, used to classify new samples. 
The limits of each class are determined by critical values 
of variance, typical of each model, usually represented by 
hyperboxes or ellipses.36,37

The multivariate study of NMR gasolines also allows 
the implementation of least squares regression models 
(PLS), useful in estimating (or predicting) physicochemical 
properties (e.g., octane number) of a new sample set. 
During the creation of the PLS model, the NMR spectral 
information of a given group are organized into an X 
matrix, while measurements resulting from a standard 
test (e.g., AKI determined by physicochemical tests) are 
organized into a Y matrix. Multivariate regression for X 
and Y matrices by PLS algorithm has a correlation that 
can be used to estimate the properties of new samples.28

The present work describes the use of 1H  NMR 
associated with chemometrics as an analytical tool 
for non-conformities detection in Brazilian premium 
automotive type C gasoline (PG) intentionally adulterated 
with Brazilian common type C automotive gasoline (CG). 
Conform samples of the gasolines evaluated in this study 
had their chemical profiles characterized by 1H NMR, used 
to perform the PCA analysis and discriminate conform and 
non-conform ones. Based on this information, a SIMCA 
classification of all samples was performed by the class 
model created of the 1H NMR data from conform premium 
gasolines. An NMR-PLS model was applied in predicting 
the AKI of 28 samples of gasolines and compared with 
results of physicochemical parameters.

Experimental

Samples and physicochemical analyses

Eight premium (PG) and 8 common (GC) gasoline 
samples collected directly from gas stations in São Paulo 
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State, Brazil, were used in this work. Samples were 
analyzed for color, appearance, anhydrous ethanol content, 
distillation, AKI (motor octane number (MON) + research 
octane number (RON)/2), benzene, aromatics, olefin, and 
saturated hydrocarbons contents and the results indicated 
that they all conform to ANP specifications,5 as described 
on Table 1. All analyses were performed on a portable 
Petrospec IR, GS 1000 PLUS, with a spectral range of 
400-4000 cm−1. The GS-1000 Multi-Function Analyzer 
uses a mid-infrared spectroscopic (IR) analysis technique 
to differentiate and quantify the individual components in 
a fuel sample.38

Premium-common blends (M1-M9) were prepared from 
these commercial samples and used to simulate adulteration 
of PG with CG gasoline (Table 2). The CG and PG samples 
used to compose these mixtures were chosen randomly. 
All blends were prepared at Laboratório de Combustíveis 
e Biocombustíveis of Centro de Caracterização e 
Desenvolvimento de Materiais of Universidade Federal 
de São Carlos.

1H NMR analyses

The 1H NMR experiments were performed at 25 °C on 
a Bruker Avance III 500 spectrometer operating at 11.75 T, 
observing 1H at 500.13  MHz. The spectrometer was 
equipped with a 5 mm triple broadband inverse detection 
(TBI) four‑channel (1H, 2H, 13C and X-nucleus) probe. For 
each analysis, 100 μL of gasoline were dissolved in 500 μL 
of deuterated chloroform (CDCl3, CIL, Tewksbury, USA) 
containing tetramethylsilane (TMS), used as the internal 
standard. The spectra were acquired using single excitation 
pulse sequence (zg, Bruker), 32 scans with acquisition time 
of 3.27 s, 64k time domain points distributed in a spectral 
width of 20 ppm and recycle delay of 2 s. Spectra were 
processed with 64k time domain points and applying an 
exponential function over the FID (free induction decay) by 
a line broadening factor of 0.3 Hz. Baseline and phase were 
automatically corrected by the software TopSpin (Bruker, 
Billerica, MA, USA). 1H NMR spectrum for each sample 
were obtained in triplicate, resulting in 43 samples analyzed 
(8 CG, 8 PG and M1-9 in triplicate).

Statistical analyses

The chemometric analyses (PCA, SIMCA, and PLS) 
were performed in AMIX software (Bruker BioSpin). The 
data matrix was obtained from the bucketing procedure of 
the 1H NMR spectra of CG, PG and CG-PG blends. The 
spectral bucketing was performed in simple rectangular 
format of the signals between d 8.0 and 0.0 with integration 
mode obtained by sum of intensities. To keep most of 
the spectral information, the bucket’s width was set to 
0.01 ppm. The spectral region for the solvent and reference 
signals (CDCl3, d 7.5-7.0; TMS, d 0.5-0.0) were excluded 
from the data matrix.

Table 1. Reference values for common (CG) and premium (PG) gasoline physicochemical parameters according to ANP Technical Regulations No. 40/20135

Physicochemical parameter Method
ANP specification

CG PG

Benzene, max. / (% v/v) ASTM D 627718 1.0 1.0

Motor octane number (MON), min. ASTM D 270013 82.0 not specified

Research octane number (RON) ASTM D 269912 not specified not specified

Anti-knock index (AKI), min. ASTM D 2699,12 ASTM D 270013 87.0 91.0

Anhydrous ethanola / (% v/v) ABNT NBR 1399219 27.0 ± 1.0 25.0 ± 1.0

Aromatic hydrocarbons, max. / (% v/v) ASTM D 131915 35.0 35.0

Olefin hydrocarbons max. / (% v/v) ASTM D 131915 25.0 25.0

Saturated hydrocarbons / (% v/v) ASTM D 131915 not specified not specified

aThese values vary according to the Brazilian government’s strategies and projections on the production of sugarcane. ANP: National Agency of Petroleum, 
Natural Gas, and Biofuels; CG: common automotive type C gasoline; PG: premium automotive type C gasoline; min: minimum; max: maximum.

Table 2. Experimental design used to prepare common-premium (CG‑PG) 
blends. All samples were prepared on triplicate, resulting in 27 samples 
analyzed

Blend code PG / % CG / %

M1 10 90

M2 20 80

M3 30 70

M4 40 60

M5 50 50

M6 60 40

M7 70 30

M8 80 20

M9 90 10

PG: premium automotive type C gasoline; CG: common automotive 
type C gasoline.
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The exploratory analysis by PCA was performed with 
non-scaled and mean-centered data matrix and confidence 
interval of 95.0%. The SIMCA classification was made 
using a model based on the information of PG gasoline 
samples, not used in the PCA. Eight PCs (variance 
explained 91%) were used to model the class. The model 
was validated by the complete cross validation method, with 
the use of all samples and confidence interval of 95.0%. For 
the PLS model, all 43 spectral data from gasoline samples, 
previously evaluated by physicochemical parameters, were 
used. For training set, 30 spectral data were used, divided 
into 6 CG, 18 M1-9 and 6 PG. The model was validated by 
the leave-one-out-cross-validation method. Seven latent 
variables were used, the number found for the smallest root 
mean squared error of the cross validation (RMSECV), 
whose value was 0.13892. The prediction set was composed 
of 28 spectral data, divided into: 5 CG, 18 M1-9 and 5 PG 
not used in training set.

Results and Discussion

Table 3 shows the physicochemical parameters obtained 
for CG, PG and M1-9 blends. Two trends related to the 
octane variations (AKI) and the chemical composition of 
the samples could be identified.

The progressive increasing in percentage of premium 
gasoline in the blends samples resulted in decreasing of 
aromatic hydrocarbons contents, while the saturated ones 
increased. Both variations culminated in the progressive 
increase of the AKI in samples M1 to M9, which presented 
initial value of 88.5 units for M1 and 96.4 units for M9. 
Thus, a direct proportional relationship between saturated 
hydrocarbons and AKI was identified, while inverse 

relationship was observed for aromatic hydrocarbons 
(Figure 1). This result was corroborated by the AKI values 
for individual CG and PG samples analyses. The CG group 
presented the lowest value of AKI (87.6) and saturated 
hydrocarbons content (53.0%), but it was the group with the 
highest percentage of aromatic hydrocarbons (14.9%). On 
the other hand, the PG group had the highest values for AKI 
(97.6) and saturated hydrocarbons percentage (65.5%), but 
lower values for aromatic hydrocarbons contents (2.8%).

Considering the results obtained according to ANP 
regulations the blends M4 to M9, which contains up to 
60% of CG, would be considered conform since they have 
AKI higher than 91 units. The difficulty in identifying the 
non-conform gasolines to AKI through the IR test lies in 
the fact that only minimum values are set for AKI. In this 
way, in order to develop a systematic product conformity 
analysis for the AKI parameter, the spectral profiles for CG 
and PG gasoline samples were characterized by 1H NMR. 
Visually, the 1H NMR spectra of the CG and PG are readily 
distinguished, due to the greater complexity of the CG 
chemical profile (Figure 2). In both spectra, the  NMR 
signals of the hydrogens were characterized and supported 
by literature.25,32,33

In the 1H NMR spectra of the CG and PG samples, the 
signals between d 2.5 and 2.0 indicated the lower contents 
of α and β-benzylic hydrogens in the PG samples. The 
signals at d 1.27, 0.95, 0.92 and 0.90 were assigned to the 
n-octane,39 used as maximum reference standard (100 units) 
of AKI. The triplet and quartet signals, respectively in d 1.2 
and 3.68 (J  7.0 Hz), characterized the ethanol added as 
anti-knock additive in Brazilian gasolines.1

Signals for olefin hydrogens (d 6.5-4.5) demonstrated 
higher quantities of these compounds in the CG gasoline, 

Table 3. Physicochemical parameters values associated with ANP Regulation No. 40/2013 for CG, PG and M1-9 gasoline samples5,23

Sample Ole / v/v Sat / v/v Aro / v/v MON / units RON / units AKI / units

CG 6.2 ± 0.2 53.0 ± 0.5 14.9 ± 0.4 81.5 ± 0.1 93.6 ± 0.2 87.6 ± 0.1

M1 7.4 ± 0.2 53.0 ± 0.1 13.9 ± 0.2 82.4 ± 0.2 94.5 ± 0.2 88.5 ± 0.2

M2 7.0 ± 0.2 53.9 ± 0.2 13.1 ± 0.3 83.1 ± 0.1 95.5 ± 0.3 89.3 ± 0.1

M3 7.5 ± 0.3 54.8 ± 0.2 11.9 ± 0.4 84.0 ± 0.3 96.5 ± 0.1 90.3 ± 0.1

M4 7.8 ± 0.2 55.2 ± 0.4 11.1 ± 0.1 84.9 ± 0.3 97.7 ± 0.4 91.3 ± 0.3

M5 7.5 ± 0.1 57.2 ± 0.4 9.6 ± 0.1 85.5 ± 0.2 98.6 ± 0.2 92.0 ± 0.3

M6 7.5 ± 0.2 58.0 ± 0.4 8.8 ± 0.2 86.5 ± 0.3 100.0 ± 0.1 93.2 ± 0.2

M7 7.0 ± 0.2 60.0 ± 0.2 7.2 ± 0.1 87.3 ± 0.1 101.2 ± 0.2 94.2 ± 0.2

M8 6.1 ± 0.3 62.2 ± 0.1 6.0 ± 0.2 88.2 ± 0.2 102.5 ± 0.1 95.3 ± 0.3

M9 6.1 ± 0.1 63.9 ± 0.1 4.4 ± 0.3 89.0 ± 0.5 103.8 ± 0.2 96.4 ± 0.1

PG 6.3 ± 0.2 65.5 ± 0.2 2.8 ± 0.2 89.9 ± 0.2 105.2 ± 0.3 97.6 ± 0.2

Ole: olefins hydrocarbons; Sat: saturated hydrocarbons; Aro: aromatic hydrocarbons; MON: motor octane number; RON: research octane number; AKI: 
anti-knock index; CG: common automotive type C gasoline; PG: premium automotive type C gasoline.
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Figure 1. Variations between aromatic and saturated hydrocarbons contents with anti-knock index (AKI), determined for CG, PG and M1-9.

Figure 2. 1H NMR (500 MHz, CDCl3) spectra of representative samples of common (CG) and premium (PG) type C gasolines.
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as indicated by the comparison of the signal areas on 
1H NMR spectra (Figure 2). This fact may be related to 
the different origins of the petroleum or specific chemical 
processes for each type. The vinyl hydrogens signals were 
assigned as d 5.1-4.8 and 6.5-5.9 for monosubstituted 
(RHC=CHH, RHC=CHH, respectively); d 4.8-4.5 and 
5.8-5.3 for geminal and vicinal disubstituted, respectively 
(RRC=CHH, RHC=CHR), and d 5.3-5.1 for trisubstituted 
(RHC=CRR) alkenes. The signals from aromatic 
hydrocarbons hydrogens were observed between d 8.5‑6.8. 
The most representative compounds characterized were 
benzene by singlet at d 7.35 and xylenes (ortho- and 
meta‑dimethyl benzenes) by the signals between d 7.1-6.9. 
These assignments agree with Burri et al.,32 Meusinger,30 
and Sun and Wang.40

The signal areas of the aliphatic (d 1.8-0.4) and aromatic 
(d 8.0-6.5) hydrogens from CG, PG and M1,5,9 samples 
(Figure 3), supported the proportions between AKI, 
aromatic and saturated contents, previously determined by 
IR analyses (Figure 1).

The signal areas of the aromatic hydrogens (d 8.0-6.5) 
from CG, PG and M1-9 samples (Figure 3) demonstrated 

a linear decreasing in the aromatic compounds with the 
increasing of premium gasoline contents. This result 
corroborated the proportions between AKI and aromatic 
contents, previously determined by IR analyses correlated 
with ANP tests (Figure 1). On the other hand, the hydrogen 
signal areas from aliphatic groups did not present a direct 
relationship between the different gasolines. This fact 
is related to the overlapping of hydrogen signals from 
aliphatic hydrocarbon and −CH, −CH2 and −CH3 groups in 
β and γ positions of aromatic rings observed at d 1.8‑0.4.40 
Therefore, the PG increasing content in blends (M1 to M9) 
results both to the decrease in the signal areas of hydrogens 
β and γ from aromatics, as well as the concomitant 
increasing in the signal areas for aliphatic hydrocarbon 
hydrogens. In order to reinforce these observations, PCA 
analyses of NMR data from CG, PG and M1-9 samples were 
performed. The results evidenced the distinction between 
these different gasolines (Figure 4).

The first two PCs explained 86.6% of the cumulative 
experimental variance. Samples with lower AKI values 
(CG, M1 and M2) were discriminated in PC1 negative 
scores. The progressive increasing in the percentage 

Figure 3. 1H NMR (500 MHz, CDCl3) spectra of the CG, PG and M1-9 mixtures, highlighting the signal areas of hydrogens from saturated and aromatic 
compounds.
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of PG and the AKI of the mixtures moved the gasoline 
discriminations for positive PC1 scores. In this way, the 
gasolines that presented higher values of AKI (M7-9 and 
PG) were discriminated in positive scores of PC1 and PC2. 
These positive PC1 scores, responsible for discriminating 
the samples of higher AKI, were strongly influenced by 
hydrogen signals at d 0.92 and 0.90 according to PC1 × PC2 
loading plot (Figure 5). Compounds like n-octane, 
identified in Brazilian gasoline,41 present methyl hydrogens 
with chemical shifts in this range.39 On the other hand, the 
separation trends between the samples with lower AKI 
(CG, M1 and M2) observed in negative PC1, was strongly 
influenced by the signals from benzylic hydrogens at d 2.39 
and 2.38. Just one M5 and M6 replicates were not perfectly 
distinguishable each other by the NMR-PCA model.

The SIMCA PG model (Figure 6) confirmed the 
separation trends observed in PCA. In the model, which 
was represented by the hyperbox in the lower left corner, 
only samples of premium gasolines were classified, with 
no type I error (sample not included in its own class) or 
type II (sample included in the wrong class) occurring.

The PG class model limits were determined according 
to Hotelling’s T-squared distribution (T2), which is 
understood as a statistical generalization of Student’s 
t-analysis. The larger the difference between the sample 
information and the classifier (hyperbox of the class 
model), the higher is T2.36,37 CG samples, visually more 
distant from the center of the model, presented T2 
whose value was 360.5. As the percentages of premium 
gasoline in the M mixtures increased, the T2 values 

Figure 4. PC1 × PC2 score plots of the gasolines CG, PG and M1-9 NMR data.

Figure 5. Loading plot from PCA, showing the signals responsible for CG, PG and M1-9 distinction.
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decreased, reaching the lowest values for M8 (T2 = 7.3) 
and M9  (T2  =  1.3), visually the samples closest to the 
center of the model.

In order, to complement the information about 
adulterations of premium gasolines observed in SIMCA, 
an NMR-PLS model was applied for predicting the AKI 
of gasoline samples (Figure. 7).

The predictive capacity of the model was evaluated 
by the root mean square errors of prediction (RMSEP) 
values, whose value was 0.50, for a prediction set of 
28 samples. The low RMSEP value was interpreted 

Figure 6. Si versus Hi plot. The hyperbox represents the class model for PG samples.

Figure 7. NMR-PLS predicted versus reference values (ANP method) to the octane rating for CG, PG and M1-9 gasoline samples.

as a statistical measure of the good performance of 
the NMR-PLS model, when estimated the AKI of the new 
gasolines (not used in the calibration set) and presented 
good correlation with the values of AKI experimentally 
determined by the standard ANP method. The variance 
explained by the NMR‑PLS model was 98.7% for 8 latent 
variables used. The error (e) found in the prediction of 
the AKI values for the whole sample set was lower than 
2.0%, highlighting the greatest differences were 1.1 and 
0.90%, for M6 and M7, respectively, when compared to 
the IR analysis.
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Conclusions

In this work, the use of 1H NMR combined with the 
chemometric data treatment (PCA, SIMCA, and PLS) was 
described for the fast and unequivocal detection of a mixture 
of gasolines with different octane values. The discrimination 
trend between gasolines with different anti‑knock index 
(AKI), observed in the PCA analyses, was associated with the 
variations in aromatic and saturated hydrocarbons contents. 
The SIMCA model classified the analyzed gasolines and 
their mixtures with 100% accuracy. The NMR-PLS model 
proved to be adequate in estimating the AKI values of CG, 
PG and CG/PG blends in different percentages. The good 
performance of the described method corroborates the use 
of NMR as a confirmatory technique for quality control 
of gasoline in a single experiment against the various tests 
currently adopted by oversight bodies and market agents.
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