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The aim of this study was to develop a fast, simple and accurate analytical method for the 
classification of reference tablet analgesic drugs containing dipyrone, orphenadrine and caffeine 
using differential scanning calorimetry (DSC) and visible-near infrared spectroscopy (VNIRS) 
associated with one-class chemometric classification algorithm. The training set is based on 
reference medicine with 15 samples as target class. Three different brands with 10 samples each 
and five reference medicine samples, obtaining 35 samples, were used as the test set. Chemometric 
models based on principal component analysis (PCA) and data-driven soft independent modelling 
of class analogy (DD-SIMCA) were used to obtain the results. Two DD-SIMCA models obtained 
100% sensitivity, specificity, and accuracy using DSC and VNIRS, both with a significance level 
of 0.01. This method using one-class classification as a chemometric tool proved to be a good 
alternative for quality control of pharmaceutical samples.
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Introduction

Many countries and their populations are harmed by 
the marketing of counterfeit medicines. The World Health 
Organization (WHO)1 at the 65th World Health Assembly, 
approved a Member State Mechanism to prevent and 
control substandard/spurious/falsely-labelled/falsified/
counterfeit medicines as a strategy to protect public health 

and to promote access to affordable, safe, effective and 
quality medicines. It is estimated that more than 10% 
of medicines in low- and middle-income countries are 
substandard or falsified to an estimated revenue from 
falsified drugs of $30.5 billion dollars.1,2 Special attention 
should be paid to analgesic medicines because more than 
35% of all samples studied have failed in quality tests.1 Two 
of the objectives to combat these problems are: to identify 
key challenges to develop national and regional capacities 
with appropriate methodologies for detection and control of 
“substandard/spurious/falsely-labelled/falsified/counterfeit 
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medical products”; and to strengthen regulatory capacity 
and quality control laboratories for developing countries.

Pisani et al.3 identified market risks for falsified or 
substandard products. The authors interviewed regulators, 
policy-makers, pharmaceutical manufacturers, physicians, 
pharmacists, patients and academics in selected middle-
income countries, namely China, Indonesia, Turkey and 
Romania. The responses of the questionnaires enabled 
identification of three large groups of market scenarios: 
(i) industry protects profit margins by reducing costs; 
(ii) industry protects profit margins by avoiding unprofitable 
products or markets; (iii) industry and healthcare providers 
promote profitable products. Based on responses, the authors 
concluded that organizations and governments must consider 
developing industrial, environmental and trade policies on 
the quality of medicines. In other words, fair prices would 
prevent consumers from seeking products without quality 
assurance but which have lower prices. The results obtained 
by the authors should now be extrapolated to other countries, 
mainly those without regulation of the commercialization of 
medicines and quality public healthcare.

Sweileh4 performed a bibliometric analysis of scientific 
production regarding substandard and falsified drugs. The 
author considers substandard and falsified drugs a crime 
against humanity based on observance of the significant 
growth of the problem over the three decades evaluated 
(1960 to 1990). The countries that were found to have 
published most articles about substandard and falsified 
drugs were mainly the developed countries (United States 
of America, United Kingdom, Germany, Belgium, France, 
Switzerland, Netherlands, Australia and Italy) and only two 
middle-income countries (India and China).

Rahman et al.,5 on the other hand, identified by country 
those articles that reported incidents involving damage 
to health due to falsified medicines between 1972 and 
2017. A total of 81 articles with 48 incidents related to 
falsified medicines were founded. In this study, 56.3% 
of related cases were obtained in developing countries 
(low and middle income) and 47.3% in developed 
countries, indicating that the distribution of this problem 
was regardless of the economic or social development 
of the countries named. In a similar study, Koczwara 
and Dressman6 found 41 articles related to counterfeit 
medicines between the years 2007 and 2016. In their study, 
articles with counterfeit or falsified medicines were only 
found from low or middle-income countries, except for two 
higher income countries (Japan and USA), but these with 
internet marketing to the whole world.

McManus and Naughton7 conducted a systematic review 
of substandard, falsified, unlicensed and unregistered 
medicine sampling studies in the years 2013 to 2018. In 

this paper, the researchers assessed the type of drug-related 
problems and six categories were found: four associated 
to the amount of active ingredients (inadequate, missing 
or other substance and excess) and two in terms of more 
global problems such as impurity and dissolution failure.

The quality control methods for drugs are, as presented 
above, based on quantitative analysis, verifying the 
quantified active constituents and comparing these with 
the label information, as described in the pharmacopoeias, 
among them United States8 and British9 pharmacopoeias. 
Missing, however, is a more complete drug analysis that 
considers not only the correct presence of the active 
ingredients listed, but also the interactions among these 
constituents and the excipients and the consistency in 
quality of the drugs across different batches or brands. 
This information is not yet available from national control 
agencies, such as FDA (Food and Drugs Administration) 
in the USA or ANVISA (Agência Nacional de Vigilância 
Sanitária) in Brazil.

The procedure of quantification of an available drug by 
observing only the active ingredients was not significantly 
problematic up to the end of the 1960s. Excipients, 
for example, were considered as inert substances3 and 
analytical instruments did not have the capability to 
obtain a large amount of data. Furthermore, considering 
that quantitative analysis is expensive and cannot assess 
the level of interaction between substances in drugs and 
therefore record the consistency of drugs across different 
batches or brands, there is a need for analytical screening 
techniques such as differential scanning calorimetry (DSC) 
and near infrared spectroscopy (NIRS).

Rebiere et al.10 published a review on analytical 
techniques that identified specific information about the 
organic and inorganic composition, the presence of an active 
substance or impurities, or the crystalline arrangement of 
a compound formulation that provides useful information 
for identifying problems such as counterfeiting or lack of 
quality in drugs.

Khanmohammadi et al.11 proposed a successive 
projection algorithm-partial least squares (SPA-PLS) 
chemometric model to quantify codeine and paracetamol 
in pharmaceutical tablets. The analytical technique 
used was thermogravimetric analysis (TGA); similar 
results were obtained for the reference high-performance 
liquid chromatography (HPLC) method. Thus, the 
thermogravimetric analysis (TGA) analytical method 
coupled with the SPA-PLS chemometric model provided 
a simple, rapid and reliable method of analysis without the 
need for sample preparation or extraction.

Modern analytical instruments obtain a huge amount 
of data, which can generate a very great amount of sample 
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data, and consequently evaluate a drug comprehensively. 
Preliminary assessment of drug quality requires pattern 
recognition techniques as a chemometric tool to treat this 
volume of analytical data.12-15

Lawson12 developed a low cost and rapid analytical 
method and easy interpretation of pharmaceutical ingredient 
screening results for the rapid identification of substandard 
and falsified paracetamol drugs using attenuated total 
reflectance-Fourier transform infrared (ATR-FTIR) 
spectroscopy. In terms of results, the determination of 
paracetamol was obtained using the partial least square 
regression (PLSR) equation obtained from the calibration 
data using the range of 1524-1493 cm-1; 12% of the tablet 
samples were identified as substandard.

Storme-Paris et al.13 studied different excipients in 
drugs with ciprofloxacin and fluoxetine as the active 
pharmaceutical ingredients using NIRS as an analytical 
method. In terms of chemometric models, principal 
component analysis (PCA) and soft independent modelling 
of class analogy (SIMCA) were used in six cases studied, 
and satisfactory results were obtained.

Rodionova et al.14 analyzed counterfeit fluconazole 
capsules using NIRS as an analytical technique and PLSR 
as a chemometric tool to quantify the active pharmaceutical 
ingredient, and SIMCA was used for authentication with a 
specificity equal to 94%.

Rebiere et al.15 used a multi-analytic approach 
to determine the manufacturing process factors of 
omeprazole drugs. The analytical methods used were gas 
chromatography-mass spectroscopy (GC-MS), NIRS, 
nuclear magnetic resonance (NMR), and X-ray powder 
diffraction. The chemometric models were hierarchical 
cluster analysis (HCA), PCA, SIMCA and PLS-discriminant 
analysis (PLS-DA). The authors concluded that NMR and 
XRPD were adequate in differentiating samples from 9 of 
the 11 manufacturers.

Santos et al.16 used HCA to discriminate between 
counterfeit and authentic sildenafil and tadalafil drugs with 
differential scanning calorimetry (DSC) coupled to HCA as 
the chemometric technique. The results showed different 
heat flow profiles between authentic and counterfeit 
drugs and similarity between the active pharmaceutical 
ingredients and each drug.

Despite all these publications involving the classification 
of pharmaceutical samples, few have been published using 
one-class classification methods. These methods distinguish 
objects of a particular class from all other objects and are 
used to detect adulteration or authentication of samples. The 
most commonly used one-class classification technique is 
data-driven soft independent modelling of class analogy 
(DD-SIMCA).17-19

Pomerantsev and Rodionova17 proposed the DD-
SIMCA chemometric method to determine extreme or 
outlier samples by observing appropriate thresholds. This 
method was applied to simulated and to real data; in this 
case it was for the identification of outliers in a taurine 
pharmaceutical substance packed in closed polyethylene 
(PE) bags, using NIR spectroscopy. Zontov et al.18 proposed 
an easy way of establishment and employment of data to 
build a chemometric model using DD-SIMCA.

Ciza et al.19 compared the performances of different 
portable NIR and Raman spectrometers for the detection 
of a group of falsified drugs: artemether-lumefantrine, 
paracetamol and ibuprofen. The chemometric models 
used were HCA, DD-SIMCA, and hit quality index (HQI). 
The authors concluded that portable NIR and Raman 
spectrometers are promising tools for the identification of 
substandard and falsified drugs.

Analgesics, which have a large consumer market, are 
among the drugs that can be studied by pattern recognition 
techniques. These drugs are among the most falsified, 
either in labeling, quantification of active ingredients, or 
in changing excipients in the pharmaceutical formulation, 
without bioequivalence and bioavailability studies, or 
drugs without legal registration to operate on the market. 
Given these findings, the aim of our study was to develop 
a new analytical method for rapid, simple and accurate 
classification of dipyrone, orphenadrine and caffeine-
containing drugs by identifying and grouping them. This 
study used DSC and visible-near infrared spectroscopy 
combined with chemometric DD-SIMCA one-class 
classification technique.

Experimental

Samples

Tablets containing dipyrone (300 mg), caffeine (50 mg) 
and orphenadrine (35 mg) were analyzed utilizing 50 drug 
samples purchased in the Northeastern Brazilian states of 
Ceará and Paraíba. In this work four different brands (C1 
to C4) of tablets were analyzed. In C2 to C4, ten different 
lots were analyzed; and in C1, twenty different lots were 
analyzed. C1 is a class with samples of reference drugs. 
C2 to C4 are samples of generic drugs.

Differential scanning calorimetry (DSC)

The DSC curves were obtained on a TA Instruments 
Calorimeter, model DSC Q20 (New Castle, USA), using 
aluminum crucibles with about 2 ± 0.1 mg of samples 
under nitrogen atmosphere, at the flow of 50 mL min-1. 
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Rising temperature experiments were conducted in the 
temperature range from 30 to 400 °C and a heating rate of 
10 °C min-1. Indium (mp 156.6 °C) was used as standard 
for equipment calibration. Data were analyzed using the 
software TA Instruments Universal Analysis 2000, 4.7 A.

Visible-near infrared spectroscopy (VNIRS)

A small fraction of each subsample was placed in a 
sample-holder for diffuse reflectance analysis, without any 
previous sample treatments or use of chemical reagents. 
The XDS Rapid ContentTM Analyzer (FOSS, Hilleroed, 
Denmark) was the chosen instrument, with 0.5 nm spectral 
resolution, equipped with holographic net and Si and PbS 
detection systems. Sample spectra were obtained from 
both sides of each of the tablets in the spectral range from 
400 to 2500 nm.

Chemometric study

The data were partitioned into training (15 samples) 
and test (35 samples) sets using the Kennard-Stone (KS) 
algorithm.20 Then, both data, DSC and VNIRS, were 
preprocessed using baseline offset correction. The training 
set was used to build the data driven soft independent 
modelling of class analogy (DD-SIMCA) models. The test 
set of samples was employed to evaluate the quality of the 
chemometric models built.

The samples were separated using the KS algorithm 
as the sample selection technique with two sets: a training 
set containing 15 samples of C1 brand, and a test set with 
5 samples of the C1 brand and other brands (10 each), 
making 35 samples.

Data preprocessing, sample selection using the KS 
algorithm and the DD-SIMCA analysis were performed 
in the MatLab® environment R2011a.21

Results and Discussion

Exploratory analysis

Figure 1a illustrates all tablet samples showing three 
events, with two endothermic peaks and one exothermic 
peak. The first event can be attributed to the volatile 
constituents of the sample losses, while the second and 
third peaks are related to the phase transition process and 
component decomposition. For the first event, samples 
from four brands showed similar characteristics. The 
endothermic peaks showed an average temperature of 
107.64, 108.65, 104.03 and 106.61 °C. The small variations 
in these temperatures can be attributed to the fact that water 
loss is an event which occurs similarly in samples with 
similar composition. The exothermic peak shows thermal 
decomposition processes with average temperatures of 
222.90, 224.57, 220.81 and 224.72 °C. The process was 
probably due to the early decomposition of dipyrone, 

Figure 1. Analytical data: (a) average DSC curves; (b) average VNIRS spectra, and PCA scores associated to: (c) DSC data and (d) VNIRS data. Brands: 
C1 (blue), C2 (orange), C3 (gray) and C4 (pink).
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since this drug shows an exothermic peak, characteristic 
of decomposition at 245.55 °C. For illustration, Figure 1b 
shown the average VNIRS spectra of C1 (blue), C2 (orange), 
C3 (gray) and C4 (pink) in the 400 to 1100 nm range. There 
is a similarity between the molecular absorption bands that 
are displayed in the same spectral regions.

In Figure 1c, score plot of PC1 (43.5%) × PC2 (26.0%) × 
PC3 (17.4%) of the DSC data, indicating that no clusters 
had been formed among the study drug samples (C1, C2, 
C3, and C4). For this reason, supervised pattern recognition 
tools were used for the classification of the remaining drugs. 
The PCA scores are illustrated in Figure 1d, VNIRS data 
with PC1 (95%) versus PC2 (3%), corroborate with the 
information displayed in the heat flow curve, Figure 1b, 
where C3 has a well-defined cluster due to the composition 
of the excipients.

After building the training models containing only the 
samples from the reference drug, the test set was evaluated. 
The model performance is shown in Figure 2. In Figures 2a 
and 2d, all training samples behave similarly to regular 
samples of the reference target. All training samples that 
lie within the bounds of the blue line set, considering a 
α-value of 0.05, are shown in blue circles, as can be seen 
in the acceptance plots in Figures 2a and 2d. No sample 
with anomalous behavior was found. Both models (0.01 
and 0.05) showed a sensitivity of 100%, which indicates the 
absence of false negative samples. All reference analgesic 
tablets were recognized within the region corresponding 
to the acceptance area.

The DD-SIMCA model at the 0.01 significance level 
showed a high ability (Figure 2c) to recognize reference 
samples and differentiate between the outlier samples and the 
other brands (C2, C3 and C4). The DD-SIMCA model with 
significance level (0.05) was similar; however, it showed only 
one case of false negative classification. Only one sample of 
the training set was not recognized as belonging to the target 
class. It is important to note that misclassified samples cannot 
be included in non-target samples; they are positioned near 
the boundary of the acceptance area.

Table 1 shows the figures of merit for the DD-
SIMCA models in the prediction phase. Both models 
achieved acceptable results. The former showed a correct 
rating (sensitivity = 100%, specificity = 100% and 
accuracy = 100%) and (sensitivity = 80%, specificity = 100% 
and accuracy = 97.1%) for the 0.01 and 0.05 significance 
levels, respectively.

DD-SIMCA stands out as presenting robust estimators 
by virtue of its approach, which is data-driven. This 
establishes that the empirical distribution method of the 
dataset contributes to improving the model’s help on the 
data. The models allowed the recognition of reference 
samples with high sensitivity. Thus, based on the results 
obtained in this study, we suggest that the combination of 
VNIRS data with class models based on the DD-SIMCA 
method are able to recognize reference analgesic tablet 
samples. These results may be useful for quality control in 
pharmaceutical industries that manufacture a wide range 
of reference and non-reference drugs.22

Figure 2. (a) Acceptance graph of the training samples for VNIRS data, (b) extremes graph and (c) acceptance graph of the test samples using statistical 
significance of 0.01, (d) acceptance plot for the training samples, (e) extremes plot, and (f) acceptance plot for the test samples using a statistical significance 
of 0.05.
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Conclusions

A fast, simple and accurate method was developed and 
validated using DSC curves and VNIRS spectra coupled 
with class pattern recognition models, namely DD-SIMCA 
to differentiate reference from non-reference drugs. The 
best result was obtained for DD-SIMCA from the VNIRS 
spectra at 0.01 level of significance, which achieved 100% 
sensitivity and accuracy, respectively, on the training set 
and 100% sensitivity, specificity, and accuracy on the test 
set, respectively. A similar result was obtained with DSC. 
Taking into account the time for analysis, cost, and the 
cheapest instrumentation, however, the VNIRS was the best 
method to identify reference drugs containing dipyrone, 
orphenadrine and caffeine. From this perspective, the 
results of this study may be used as screening and quality 
control of reference drugs.
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