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Chagas disease, caused by the parasite Trypanosoma cruzi, occurs most commonly in Latin 
America. As the treatment is highly toxic and ineffective in the chronic phase of the disease, 
alternative treatments are needed. Through quantitative structure-activity relationship modeling 
(QSAR) analysis using ligand-based and structure-based virtual screening methods, we predicted 
the trypanocidal potential of 47 neolignans against three targets, the enzymes cruzain, trypanothione 
reductase, and sterol 14-alpha demethylase. A combined analysis allowed for the selection of 
potent inhibitors against Trypanosoma cruzi. Of these compounds, two were isolated and shown 
to inhibit the growth of epimastigotes at concentrations of 9.64 and 8.72 µM, and trypomastigote 
forms at 4.88 and 2.73 µM. Therefore, the compounds (2R, 3R)-2,3-dihydro-2-(4-methoxyphenyl)-
3-methyl-5-(E)-propenylbenzofuran (46) and ottomentosa (47) may be a good option of growth 
inhibitors for the parasite stages and warrant additional study.
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Introduction

Trypanosoma cruzi the protozoan parasite that causes 
Chagas disease (CD), was initially endemic to Latin America, 
but has spread to other locations such as Canada, the United 
States, Europe, Australia, and Japan.1 It currently affects 
6-7 million people worldwide and causes approximately 
50,000 deaths per year.1,2 The transmission of T. cruzi can 
occur congenitally, through organ transplantation, blood or, 
ingestion of food and drinks contaminated by the parasite.3 

The parasites are transmitted predominantly to humans 
as metacyclic trypomastigote (MT) forms through the 
contaminated feces of blood-sucking triatomines at 
the bite site. After internalization by host cells near the 

entry site, MTs initially reside in a vesicle containing 
the parasite, the parasitophore vacuole, from where they 
escape into the host cell’s cytoplasm and differentiate in 
the proliferative amastigote form. After several cycles of 
replication, amastigotes differentiate into mobile flagellated 
trypomastigotes, which are released into the bloodstream, 
from where they can spread by infecting distant tissues or 
are captured by the triatomine vector during a blood meal. 
Ingested blood trypomastigotes become epimastigotes in 
the vector’s midgut, multiplying and then differentiating 
into infectious metacyclic trypomastigotes. Infectious 
trypomastigotes and intracellular replicative amastigotes 
are the parasite’s clinically relevant cycle stages to the 
drug target.3,4

Currently, no vaccines prevent diseases caused 
by trypomastigotas, and although chemotherapeutic 
drugs have been available for decades, they are highly 
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toxic and have unpleasant side effects. Benznidazole, a 
derivative of nitroimidazole, and nifurtimox, a nitrofuran 
compound, both developed more than 40 years ago, are 
currently the only drugs available for the treatment of 
CD.5 Although benznidazole is the first-line drug due 
to its better tolerability, both drugs have significant side 
effects.6 Therefore, patients should be monitored frequently. 
Unfortunately, the medications available are effective only 
in the acute phase and in 20% of cases the treatment must 
be stopped due to side effects.7

As neolignans are a diverse group of chemical structures 
present in several plant families and responsible for 
multiple biological activities, we chose to investigate the 
trypanomicidal potential of a set of neolignans.8-11 Some 
studies12-14 have reported the importance of neolignans as 
promising compounds in the treatment against T. cruzi.

Through a literature review, we were able to find and 
highlight three important targets (the enzymes cruzain, 
trypanothione reductase [TR], and sterol 14-alpha 
demethylase [CYP51]) for the proliferation and survival of 
the parasite in the parasite’s three cellular forms. Cruzain 
and TR enzymes are found only in tryponomastids, which 
contributes to the design of selective drugs that do not harm 
humans. Cruzain is the main cysteine protease of T. cruzi, 
TR is essential for redox metabolism and CYP51 is the 
key enzyme in ergosterol biosynthesis. Furthermore, the 
enzymes cruzain and CYP51 are essential for all stages of 
parasite development.15-17

We explored computational and experimental studies to 
select the most promising trypanomicidal compounds that 
may be effective in the acute and chronic phases of CD and 
present low toxicity. Thus, the identified compounds may 
be effective as insecticidal and drug agents in the acute and 
chronic phases of the disease.

Results and Discussion

Quantitative structure-activity relationship modeling (QSAR) 
modeling

Three prediction models were built using the random 
forest (RF) algorithm to perform ligand-based virtual 

screening. For the construction of these models, molecular 
descriptors were calculated for molecules with known 
activity against cruzain, TR and CYP51 of T. cruzi obtained 
through the ChEMBL database.18,19

RF models were evaluated for their predictive powers, 
using the parameters of specificity, sensitivity, precision, 
accuracy (AUC), positive predicted value (PPV) and 
negative predicted value (NPV), in addition to performance 
and robustness, using the receiver’s operating characteristic 
(ROC) curve and Mathews correlation coefficient (MCC). 
Table 1 describes the characteristics of the models, in terms 
of predictive power and robustness, and Figure 1 shows the 
performance of the models. The results showed that the 
models provided satisfactory classification, performance, 
and robustness, except for the CYP51 enzyme, for which 
the accuracy and specificity values were below 0.6. 
Therefore, this model was disregarded for the prediction. 

After the models were validated, they were used to 
analyze the set of neolignans for activity against T. cruzi. 
The neolignan bank was then screened to select compounds 
that are potentially active against cruzain and TR.

The RF model was able to select a compound with active 
potential, with probabilities from 50% for cruzain (Table 2). 
The TR model was able to classify all 47 compounds as 
potentially active, with probabilities ranging between 54 and 
84% (Table 2). According to these results, neolignans have a 
greater active potential for the TR protein than for cruzain. 

Docking consensus

The 47 neolignans also underwent a docking consensus 
assessment to increase the method’s reliability and decrease 
false positives. The enzymes cruzain, TR and CYP51 
were used for docking studies. The docking results were 
generated using three different scoring functions and 
validated by redocking the PDB ligand (ligand inhibitor 
crystallized with the protein of the Protein DataBank- 
PDB)20 for each enzyme. More negative values indicated 
better predictions for most scoring functions.

After docking, the results were standardized for each 
scoring function using the docking probability (ProbDc) 
formula:21

Table 1. Summary of parameters corresponding to the results obtained for all models

Enzyme Validation Specificity Sensitivity Accuracy PPVa NPVb MCCc AUCd

Cruzain
test 0.84 0.77 0.81 0.81 0.81 0.61 0.86

cross 0.80 0.68 0.75 0.75 0.75 0.49 0.82

TR
test 0.63 0.95 0.85 0.85 0.87 0.65 0.94

cross 0.70 0.92 0.85 0.86 0.81 0.65 0.89
aPositive predicted value; bnegative predicted value; cMathews correlation coefficient; dreceiver’s operating characteristic. TR: trypanothione reductase.
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, if Elig < EInib (1)

where ELig is the energy of the ligand, EMLig is the energy 
of the ligand with the highest score, and EInib is the energy 
of the inhibitor obtained from the crystallographic data 
of the test protein. The highest value in ProbDc is equal 
to 1. Thus, only those compounds with energy values 
equal to or greater than the interaction with energy of the 
crystallographic inhibitor ligand were considered to be 
potentially active. Then, an average of the standardized 
results for each scoring function was determined.

The docking results were validated by re-docking 
the crystallographic ligand and the root-mean-square 
deviation (RMSD) of the positions. Re-docking consists 

of positioning and predicting the binding affinity of the 
crystallographic ligand in the region of the enzyme’s active 
site. The RMSD compares and calculates the mean square 
root deviation of the postures obtained by re-docking 
and the ligand structure obtained experimentally. For the 
adjustment to be reliable, the RMSD value must be 2.0 Å 
or less.22 The results showed that the targets cruzain, TR 
and CYP51 obtained 0.77, 0.64 and 0.31 Å, respectively.

Among the 47 neolignans analyzed by molecular 
docking, two compounds were potentially active against 
cruzain. The cruzain test inhibitor had a ProbDc value of 
0.88 and only two neolignans showed values higher than 
the inhibitor, with values of 0.91 (compound 1) and 0.90 
(compound 35). For the TR enzyme, 31 neoligans were 
considered active, with ProbDc values   ranging from 0.49 

Figure 1. Receiver operating characteristic (ROC) curve-generated random forest (RF) model. (a) Test and (b) cross-validation for the enzyme cruzain 
and (c) test and (d) cross-validation for the TR.
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Table 2. Neolignans activity probabilities (pActivity) against cruzain and TR as assessed by the RF model. The compounds considered active in the models 
are highlighted in bold

ID
pActivity

ID
pActivity

ID
pActivity

Cruzain TR Cruzain TR Cruzain TR

1 0.37 0.73 17 0.38 0.73 33 0.46 0.83

2 0.38 0.67 18 0.27 0.65 34 0.31 0.78

3 0.40 0.76 19 0.41 0.75 35 0.48 0.82

4 0.39 0.73 20 0.40 0.73 36 0.41 0.74

5 0.29 0.75 21 0.31 0.78 37 0.34 0.69

6 0.35 0.66 22 0.36 0.75 38 0.35 0.68

7 0.31 0.72 23 0.29 0.75 39 0.34 0.72

8 0.48 0.79 24 0.29 0.68 40 0.37 0.69

9 0.41 0.76 25 0.39 0.78 41 0.37 0.73

10 0.37 0.54 26 0.30 0.79 42 0.34 0.78

11 0.35 0.64 27 0.48 0.79 43 0.47 0.82

12 0.50 0.78 28 0.29 0.78 44 0.29 0.80

13 0.34 0.70 29 0.35 0.76 45 0.35 0.74

14 0.37 0.76 30 0.47 0.84 46 0.36 0.62

15 0.31 0.75 31 0.28 0.80 47 0.39 0.72

16 0.39 0.71 32 0.32 0.60

TR: trypanothione reductase.

to 0.81. The TR inhibitor had a ProbDc value equal to 0.49. 
For the CYP51 enzyme, the inhibitor obtained a value of 
0.56 and 18 neolignans obtained an equal or greater value. 
These results indicated that neolignans, in general, were 
more likely to activate TR and CYP51 proteins, and are 
not selective for the cruzain enzyme. These results can be 
seen in Tables 3-5.

Structure and ligand-based combined analyses

A second consensus analysis was carried out to 
identify potential lignans and multitarget, which 
demonstrate the probabilities of being active potentials 
for more than one protein, based on the RF and docking 
model. In this case, we used all the results of the prediction 
of the biological activity of the neolignans and combined 
them with the docking results. In addition to selecting the 
active compounds, this combined analysis allowed the 
selection of the most potent compounds by combining 
two important methodologies, based on the ligand and 
structure. For this analysis, the following formula was 
used:21

, if ProbComb > 0.5 (2)

where ProbComb is the combined probability between the 
RF model and the docking model, ProbDc is the probability 
of a compound being active in the molecular coupling 

analysis, ESP is the value of the specificity of the RF 
model and PActivity is the probability value of a compound 
to be active in the RF model. The combined probability 
(Probcomb), based on the ligand and structure, can increase 
the predictive power of the models and decrease the number 
of false positives. For the molecules to be considered 
potentially active, the probability values must be equal 
to or greater than 0.5. The higher the Probcomb value,  
the greater the potential of the molecule. The combined 
probability values were calculated for all neolignans and 
each target enzyme, and we analyzed which molecules were 
multitargets. Only for the CYP51 enzyme was it impossible 
to calculate the Probcomb value, as we did not have biological 
activity data for this enzyme due to the low quality of 
the generated RF model. Therefore, we considered only 
the ProbDc values for this target. In this case, the Probcomb 
value needed to be higher than the crystallographic ligand, 
which was 0.56.

After performing the combined analysis, based on the 
ligand and structure, and using the formula to identify 
potentially active and multitarget molecules, we identified 
29 potentially active molecules for more than two target 
enzymes from the entire set of neolignans analyzed. 
In addition, after the combined probability analysis, 
we selected the multitarget compounds that passed the 
applicability domain for all enzymes in this study. Using 
Probcomb, we were able to select 22 compounds with a 
probability of activity ranging from 50-65% for cruzain 
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Table 3. Improved results in the combined probability between the prediction model and molecular docking analysis (Probcomb) for potential activity against 
cruzain. The compounds shown are the compounds considered active (with Probcomb equal to or above 0.50) with values of binding energy, molecular 
docking probability (ProbDc) and probability of biological activity (ProbAc)

ID Moldockscore ProbDc
a Plantscore ProbDc Vina ProbDc Mean ProbDc ProbAc

b ProbComb
c

1 −116.3 0.94 −100.3 0.90 −5.9 0.89 0.91 0.37 0.56

2 −89.40 0.72 −65.45 0.58 −5.7 0.86 0.72 0.38 0.50

3 −95.33 0.77 −83.19 0.74 −5.2 0.78 0.76 0.40 0.53

4 −88.76 0.71 −70.87 0.63 −5.3 0.80 0.71 0.39 0.50

8 −103.2 0.83 −74.23 0.66 −5.7 0.86 0.78 0.48 0.59

10 −107.3 0.86 −88.76 0.79 −5.7 0.86 0.84 0.37 0.53

12 −83.28 0.67 −37.54 0.33 −5.6 0.84 0.61 0.5 0.54

13 −109.6 0.88 −82.69 0.74 −5.8 0.87 0.83 0.34 0.51

19 −82.13 0.66 −75.93 0.68 −5.6 0.84 0.73 0.41 0.52

20 −96.09 0.77 −81.80 0.73 −5.3 0.80 0.77 0.40 0.53

21 −99.46 0.80 −77.27 0.69 −5.2 0.78 0.76 0.36 0.50

25 −96.83 0.78 −76.85 0.69 −.53 0.80 0.75 0.39 0.51

37 −94.64 0.76 −57.00 0.51 −5.7 0.86 0.71 0.48 0.56

30 −123.6 1.00 −111.2 1.00 −6.6 1.00 1.00 0.47 0.65

32 −109.5 0.88 −95.16 0.85 −6.4 0.96 0.90 0.32 0.52

33 −106.9 0.86 −76.32 0.68 −5.6 0.84 0.79 0.46 0.57

35 −106.3 0.86 −56.69 0.50 −5.6 0.84 0.73 0.48 0.57

36 −93.47 0.75 −64.61 0.58 −5.6 0.84 0.72 0.41 0.52

40 −94.63 0.76 −83.37 0.74 −5.4 0.81 0.77 0.37 0.51

43 −91.60 0.74 −80.04 0.71 −6.6 1.00 0.82 0.47 0.59

45 −92.24 0.74 −80.47 0.72 −5.8 0.87 0.78 0.35 0.50

47 −83.80 0.67 −77.48 0.69 −5.3 0.80 0.72 0.39 0.51

Inhibitor −117.3 0.94 −74.33 0.66 −6.9 1.04 0.88
aProbability of a compound being active in the molecular coupling analysis; bprobability of biological activity; ccombined probability between the ligand 
and structure-based.

(Table 3). The combined analysis allowed us to select more 
active compounds for this target than using the PActivity and 
ProbDc results separately. It was also possible to select 46 
neolignans potentially active against the TR enzyme with 
a Probcomb value ranging from 52-82% (Table 4), while 18 
neolignans obtained a probability ranging between 56-88% 
for the CYP51 enzyme (Table 5).

The set of 47 neolignans was submitted to several 
predictive parameters to identify the compounds with the best 
pharmacokinetic, pharmaco-chemical and pharmacological 
profiles. Initially, through physicochemical properties, we 
sought to verify compounds with good absorption, using 
the lipid rule as a parameter.

We evaluated the absorption and bioavailability 
properties using the Lipinski rule,23 comprising molecules 
with molecular weights below 500 Da, calculated the 
partition coefficient (LogP) (cLogP) values less than five, 
less than five hydrogen bonding donors, no more than 
ten hydrogen bonding acceptors and ≤ 10 rotating bonds 
with excellent absorption and bioavailability. Molecules 

that violate two or more of these rules do not demonstrate 
sufficient absorption. We observed that only one neolignan 
from our set of compounds did not meet this requirement. 
Therefore, 97.87% of the neolignans showed good 
absorption and bioavailability.

Factors such as lipophilicity and solubility contribute 
to the distribution of the drug in vivo, which is a 
requirement for advancing to preclinical and clinical 
testings. The most common descriptor for lipophilicity is 
the partition coefficient between n-octanol: water (log P). 
The results showed that all neolignans had ideal logP 
values below 5.0.

Pharmacokinetics are essential for understanding drug 
metabolism in the body, half-lives, and toxic metabolites. 
Unfortunately, many compounds fail in the pre-clinical and 
clinical testing phase due to the effects of metabolism and 
malabsorption on the brain. Therefore, an early assessment 
of this effect is necessary and an in silico approach 
contributes substantially to mitigate adverse reactions that 
some may experience. The results showed that 47.55% of 
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Table 4. Improved results in the combined probability between the prediction model and molecular docking analysis (Probcomb) for potential activity against 
TR. The compounds shown are the compounds considered active (with Probcomb equal to or above 0.50) with values of binding energy, molecular docking 
probability (ProbDc), and probability of biological activity (ProbAc)

ID Moldockscore ProbDc
a Plantscore ProbDc Vina ProbDc Mean ProbDc ProbAc

b ProbComb
c

1 −66.32 0.83 −59.59 1 −5.9 0.57 0.80 0.69 0.72

2 −57.65 0.72 −17.88 0.30 −4.9 0.47 0.49 0.67 0.61

3 −70.54 0.88 −23.93 0.40 −5.2 0.50 0.59 0.76 0.70

4 −49.40 0.61 −37.15 0.62 −5.5 0.53 0.59 0.73 0.68

5 −48.52 0.60 −30.76 0.51 −6.1 0.59 0.57 0.75 0.69

6 −51.82 0.64 −12.09 0.20 −5.9 0.57 0.47 0.66 0.59

7 −55.53 0.69 −42.41 0.71 −5.8 0.56 0.65 0.72 0.70

8 −54.15 0.67 −45.39 0.76 −4.5 0.43 0.62 0.79 0.73

9 −38.40 0.48 −9.34 0.15 −5.1 0.49 0.37 0.76 0.62

10 −45.26 0.56 −16.38 0.27 −6.5 0.63 0.49 0.54 0.52

11 −46.73 0.58 −15.93 0.26 −5.8 0.56 0.47 0.64 0.58

12 −62.18 0.77 −11.01 0.18 −4.3 0.41 0.46 0.78 0.66

13 −46.89 0.58 −44.40 0.74 −5.4 0.52 0.61 0.70 0.67

14 −58.57 0.73 −18.65 0.31 −5.3 0.51 0.52 0.76 0.67

15 −45.45 0.56 −10.53 0.17 −5.3 0.51 0.42 0.75 0.63

16 −40.49 0.50 −13.13 0.22 −5 0.04 0.25 0.71 0.55

17 −36.43 0.45 −12.86 0.21 −5.4 0.52 0.39 0.73 0.61

18 −61.88 0.77 −20.42 0.34 −5.9 0.57 0.56 0.65 0.61

19 −61.43 0.76 −37.00 0.62 −5.4 0.52 0.63 0.75 0.71

20 −49.21 0.61 −20.69 0.34 −5 0.04 0.33 0.73 0.59

21 −44.15 0.55 −23.60 0.39 −5.7 0.55 0.50 0.78 0.68

22 −64.33 0.80 −9.64 0.16 −5.9 0.57 0.51 0.75 0.66

23 −40.16 0.50 −16.93 0.28 −5.3 0.51 0.43 0.75 0.63

24 −40.14 0.50 −11.51 0.19 −5.6 0.54 0.41 0.68 0.58

25 −49.90 0.62 −34.74 0.58 −5.1 0.49 0.56 0.78 0.70

26 −49.24 0.61 −32.83 0.55 −5.8 0.56 0.57 0.79 0.71

27 −68.09 0.85 −4.23 0.07 −4.9 0.47 0.46 0.79 0.67

28 −49.14 0.61 −37.18 0.62 −6.1 0.59 0.61 0.78 0.72

29 −32.22 0.40 0.14 0.00 −5.6 0.54 0.31 0.76 0.60

30 −79.81 1 −35.71 0.54 −6.1 0.59 0.73 0.84 0.80

31 −50.03 0.62 −32.6 0.54 −6.1 0.59 0.58 0.80 0.72

32 −59.18 0.74 −20.43 0.34 −6.4 0.62 0.56 0.66 0.62

33 −77.97 0.97 −58.24 0.97 −5.2 0.50 0.81 0.83 0.82

34 −72.31 0.90 −21.00 0.35 −5.8 0.56 0.60 0.78 0.72

35 −65.48 0.82 −24.32 0.40 −5.2 0.50 0.57 0.82 0.73

36 −48.22 0.60 −4.96 0.08 −5.4 0.52 0.40 0.74 0.62

37 −56.29 0.70 −19.97 0.33 −5.7 0.55 0.53 0.69 0.63

39 −62.93 0.78 −12.24 0.20 −5.2 0.50 0.49 0.72 0.64

40 −52.84 0.66 −20.89 0.35 −5.4 0.52 0.51 0.69 0.63

41 −52.96 0.66 −44.53 0.74 −5.2 0.50 0.63 0.73 0.70

42 −62.18 0.77 −37.79 0.63 −6 0.05 0.49 0.78 0.67

43 −66.39 0.83 −28.39 0.47 −10.3 1 0.76 0.82 0.80

44 −53.40 0.66 −13.27 0.22 −6.3 0.61 0.50 0.80 0.69

45 −50.15 0.62 −21.29 0.35 −5.7 0.55 0.51 0.74 0.66

46 −55.91 0.70 −42.10 0.70 −6 0.05 0.48 0.62 0.57

47 −57.64 0.72 −36.96 0.62 −5.2 0.50 0.61 0.72 0.68

Inhibitor 44.76 0.56 −23.02 0.38 −5.6 0.54 0.49
aProbability of a compound being active in the molecular coupling analysis; bprobability of biological activity; ccombined probability between the ligand 
and structure-based.
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the neolignans were not a substrate for the CYP enzyme 
and did not cross the blood-brain barrier.

Toxicity was also evaluated, and we observed that only 
nine neolignans showed low or high toxicity in at least one 
parameter evaluated, such as mutagenicity or tumorigenesis, 
negative effects on the reproductive system, and irritability. 
Therefore, 80.85% of neolignans were considered to have 
the best ADMET (absorption, distribution, metabolism, 
excretion, and toxicity) properties, as they do not present 
toxicity risks. Tables S1-S4, in Supplementary Information 
(SI) section, shows the ADMET profile of the entire set of 
neolignans.

Interaction analysis

Several neolignans in this study obtained promising 
binding energy values, biological activity, combined 
analyses, pharmacokinetics and pharmaco-chemical 
properties, and low toxicity. We chose to analyze the 
interactions of the two compounds (33 and 43) that stood 
out in all these properties and of the compounds that were 
isolated (46 and 47) that obtained good results in docking 
(Figures 2 to 4).

Cruzain
Cruzain is the main cysteine protease in T. cruzi, and 

is essential at all stages of the parasite’s development. 
Overexpression of cruzaine increases the transformation 
of the parasite into an infectious form and is therefore 
considered an attractive target in drug planning.15

Compound 33 formed a hydrophobic interaction 
with Leu37, a steric interaction with Ala133 and three 
hydrogen bonds with the amino acids Trg59, Asp60 and 
Asp158. While compound 43 formed only two hydrogen 
bonds with the amino acids Ser61 and Asn70, in addition 
to several hydrophobic interactions with residues Met68, 
Gly65, Leu67, Gly66 and Ala133. Compound 47 showed a 
hydrogen bond with the amino acid Gly66, a van der Waals 
interaction with the amino acid Gly65 and hydrophobic 
interactions with the amino acids Leu67, Ala133, 
Asp156 and Leu157. According to Durrant  et  al.,24 an 
irreversible cruzain inhibitor, benzoyl-Tyr-Ala, could 
interact similarly to neolignans with a cruzain active 
site. According to the authors, interactions with Met68, 
Leu67 and Glu205 were important to inhibit the active 
of the enzyme’s active.

Table 5. Improved results in the probability of molecular docking (ProbDc) for potential activity against CYP51. Compounds considered active (with values 
equal to or greater than 0.56 in the ProbDc) are shown

ID Moldockscore ProbDc
a Plantscore ProbDc Vina ProbDc Mean ProbDc

2 −103.5 0.50 −82.78 0.70 −7.3 0.60 0.60

3 −88.14 0.43 −82.24 0.70 −7.2 0.60 0.57

5 −89.88 0.44 −68.66 0.58 −8.1 0.675 0.56

8 −124.1 0.60 −80.00 0.68 −6.2 0.51 0.60

9 −97.84 0.48 −79.03 0.67 −7.4 0.61 0.59

12 −121.2 0.59 −91.58 0.78 −6.6 0.55 0.64

18 −108.3 0.53 −88.22 0.75 −7 0.58 0.62

19 −96.69 0.47 −78.88 0.67 −8.1 0.67 0.60

20 −96.77 0.47 −74.36 0.63 −7.2 0.60 0.56

22 −99.31 0.48 −91.35 0.77 −7.3 0.60 0.62

23 −82.40 0.40 −71.74 0.61 −7.2 0.60 0.53

27 −106.5 0.52 −86.27 0.73 −6.6 0.55 0.60

30 −118.7 0.58 −100.1 0.85 −8.6 0.71 0.71

32 −85.79 0.42 −75.08 0.63 −8.5 0.70 0.58

33 −203.6 1 −117.4 1 −8 0.66 0.88

35 −107.0 0.52 −82.86 0.70 −7.2 0.60 0.61

37 −89.37 0.43 −72.98 0.62 −8.2 0.68 0.58

41 −94.52 0.46 −76.22 0.64 −7.3 0.60 0.57

43 −116.7 0.57 −107.4 0.91 −8.5 0.70 0.73

44 −87.29 0.42 −75.81 0.64 −7.3 0.60 0.56

Inhibitor −80.67 0.39 −77.65 0.66 −7.5 0.62 0.56
aProbability of a compound being active in the molecular coupling analysis.
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TR
TR, found in the epimastigote and trypomastigote forms 

of the parasite, is a key enzyme in redox metabolism and 
is essential for trypanosomes. This enzyme is absent in 
humans, replaced by glutathione and glutathione reductase, 
offering a target for selective inhibition. 

Compound 33 formed three strong hydrogen bonds with 
residues Gly14, Ser15 and Glu19. Hydrophobic interactions 
were also observed with the amino acids Cys53, Tyr111 
and Met114. Compound 43 showed more hydrogen bonds 

compared to compound 33, forming notable bonds with 
the amino acids Ser15, Glu19, Ile107, Ser110, Tyr111 and 
Met114. Only a weaker interaction was observed with the 
amino acid Ile339. Compound 46 formed an interaction 
with the amino acid Thr335 and several hydrophobic 
interactions with the amino acids Gly57, Cys58, Lys61, 
Ile200, Phe204 and Asp327. Compound 47 formed more 
stable bonds with amino acids Ser110, Tyr111, Met114 
and hydrophobic interactions with amino acids Ser15 and 
Glu19. Compound 47 formed more stable bonds with amino 

Figure 2. 3D and 2D interactions of neolignan 33, 43 and 47 with the cruzain enzyme. Hydrogen bonds are highlighted in green, hydrophobic interactions 
are highlighted in pink, and electrostatic interactions are highlighted in red.
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Figure 3. 3D and 2D interactions between neolignans 33, 43, 46 and 47 with the TR enzyme. Hydrogen bonds are highlighted in green, hydrophobic 
interactions are highlighted in pink, and electrostatic interactions are highlighted in red.
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Figure 4. 3D and 2D interactions between neolignan 33 and 43 with the CYP51 enzyme. Hydrogen bonds are highlighted in green, hydrophobic interactions 
are highlighted in pink, and electrostatic interactions are highlighted in red.

acids Ser110, Tyr111, Met114 and hydrophobic interactions 
with amino acids Ser15 and Glu19.

A study by Saravanamuthu et al.,16 showed that a 
T. cruzi inhibitor of TR formed several interactions also 
observed with neolignans and the active site of TR. Notable 
interactions include those with Glu19, Trp22, Cys53, 
Ser110, Tyr111, Asp117 and Leu399 stand out. 

CYP51
The CYP51 enzyme is involved in a key step in ergosterol 

biosynthesis, responsible for the oxidized demethylation of 
intermediate sterols through the heme group. It is essential 
for the parasite’s survival, development and proliferation, 
which is why it is present in all cellular forms.17

Compound 33 formed four strong hydrogen bonds 
with the amino acids Ala287, Ala291, Met358 and Ala414 
from the active site of CYP51. It also showed several 

hydrophobic interactions with the residues Tyr103, Met106, 
Ala115, Met123, Leu127 and Leu356. While compound 43 
showed hydrophobic interactions with residues Phe110, 
Ala115, Ala287 and Leu356. Two hydrogen bonds with 
the amino acids Tyr116 and Phe290 and a steric interaction 
with the amino acid Leu130.

Prediction of ADMET properties

Molecular dynamics simulations
After the virtual screening and the analysis of the 

activity potential of several neolignans against important 
T. cruzi enzymes, we conducted molecular dynamics 
simulations with the two compounds that we were able 
to isolate (compounds 46 and 47) to assess the flexibility 
and stability of the enzymes and their interactions in 
the presence of factors such as solvent, ions, pressure, 
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and temperature. This information is important because 
it complements the docking results and allows us to 
evaluate if the compounds remain strongly linked to the 
studied enzymes in the presence of factors found in the 
host organism. We chose the TR enzyme for this analysis, 
because neolignans were more selective for this protein. 
Then, the RMSD was calculated for the Cα atoms of the 
complexed enzyme and the structures of each ligand, 
separately.

The RMSD analysis of the TR enzyme complexed 
with the crystallographic ligand showed conformations 
ranging from 0.35 to 0.45 nm in size for 50 ns, with high 
stability (Figure 5). The same pattern was observed for 
the enzyme complexed with the neolignans. The stability 
of this protein is essential to keep compounds bound to 
the active site.

When we analyzed the flexibility of the ligands, we 
found that the crystallographic ligand was drastically more 
unstable than the neolignans during the entire dynamics 
simulation (Figure 6). Therefore, in the presence of 
solvents, ions and other factors, neolignans can establish 
stronger bonds with the active site.

To understand the flexibility of the residues and amino 
acids that contribute to the conformational changes in the TR 
enzyme, the mean quadratic fluctuation (RMSF) values were 
calculated for each amino acid in each enzyme. High RMSF 
values suggest greater flexibility, while low RMSF values 
reflect less flexibility. Since amino acids with fluctuations 
above 0.3 nm contribute to the flexibility of the protein 
structure, we found that residues at positions 1, 80-90, 460-
462, and 486 contribute to conformational changes in the TR 
enzyme (Figure 7). We also found that none of the amino 
acids affecting the structural conformations identified in TR 
were active site components. This helps the neolignans to 
remain in the active site.

Through graphic programs of molecular modeling, it 
was possible to analyze 2D interactions at different times 
during the simulation of molecular dynamics (Figure 8). We 
noticed that most of the interactions observed in docking, 
were also observed in the dynamics simulations, that 
is, even in the presence of solvent and ions. Among the 
observed interactions, Val58, Ile106, Tyr110 and Met113 
are notable.

Free energy calculations

The molecular mechanics - Poisson Boltzmann 
surface area approach (MM/PBSA) method was used to 
explore the arrangement of the interactions further and 
estimate the free energy after the molecular dynamic 
(MD)  simulation. As seen in Table 6, the crystallographic 
ligand had superior free binding energy to the neolignans 
that obtained the best results in docking and predicting of 
biological activity. Although lignans 46 and 47 showed 
higher values of binding affinity in the docking than the 

Figure 5. RMSD values for the Cα atoms of the TR enzyme complexed 
with neolignans and the Protein Data Bank (PDB) ligand. 

Figure 6. The RMSD values of the Cα atoms of the neolignans and the 
PDB ligand.

Figure 7. Root-mean-square fluctuation (RMSF) for the Cα atoms of the 
TR enzyme complexed with the neolignans and the PDB ligand.
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Figure 8. 3D structures and 2D interactions of compound 46 at different times during dynamics simulation.

Table 6. Results of free energy calculations using the MM/PBSA method

ID ΔEwdw / (kJ mol-1) ΔEElectrostatic / (kJ mol-1) ΔGPB / (kJ mol-1) ΔGSA / (kJ mol-1) ΔGMMPBSA / (kJ mol-1)

46 −99.24 ± 13.60 −9.39 ± 6.847 43.20 ± 15.78 −12.041 ± 1.43 −77.46 ± 14.73

47 −108.26 ± 14.39 −4.73 ± 3.46 42.03 ± 13.70 −13.23 ± 1.61 −84.20 ± 11.98

Inhibitor −151.46 ± 29.15 −139.33 ± 59.85 112.97 ± 89.26 −14.48 ± 2.92 −192.31 ± 37.04

ΔEwdw: summation of van der Waals interaction energies; ΔEElectrostatic: summation of eletrostatic interaction energies; ΔGPB: polar solvation energy; 
ΔGSA: nonpolar free solvation energy; ΔGMMPBSA: molecular mechanics - Poisson Boltzmann surface area approach energy.
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crystallographic ligand, only with the results obtained by 
the MM/PBSA calculations it was it possible to verify that 
in the presence of a solvent, the inhibitor provided better 
performance than the neolignans. When analyzing energy 
contributions, we note that the value of electrostatic and 
van der Waals energies favored the inhibitor’s increased 
free energy. However, although these results are excellent 
for the inhibitor, they do not indicate that neolignans did 
not produce activity, as hydrogen bonds are strong and are 
not evaluated by the MM/PBSA method.

Activity of two neolignans against epimastigotes and 
trypomastigotes T. cruzi

We isolated two neolignans that obtained excellent 
results during the virtual screening process. The 
compounds were evaluated for the potential to inhibit 
the growth of epimastigotes and trypomastigotes. The 
results showed that the neolignans (2R,3R)-2,3di-hydro-
2-(4-methoxyphenyl) -3-methyl-5-(E)-propenylbenzofuran 
(46) and ottomentosa (47) were able to potentially inhibit 
both cellular forms of T. cruzi, with inhibitory activity 
superior to benznidazole (Table 7). The best results were 
against trypomastigote forms, which correspond to the 
infectious phase of CD. The ottomentosa neolignan (47) 
proved to be lightly more potent than the neolignan 
(2R,3R)-2,3di-hydro-2-(4-methoxyphenyl)-3-methyl-
5-(E)-propenylbenzofuran (46). Therefore, both substances 
have trypanocidal activity and do not show cytotoxicity to 
renal cells.

Some previous studies have demonstrated the 
trypanocidal activity of neolignans, but this is the first 
report that describes the activity of these two neoligans 
as trypanocidal. A study by Cabral et al.13 showed that 
two neolignans, licarin A and burchellin, could inhibit the 
growth of the epimastigote by 45 and 20%, respectively. The 
authors also found that lycarin A and burchellin could induce 
trypomastigote death with IC50 (represents the concentration 
required for 50% inhibition of the parasites)/24 h of 960 and 
520 μM, respectively. Pelizzaro-Rocha et al.25 demonstrated 
that the neolignan eupomatenoid-5 exhibited activity 
against trypomastigotes, the infective form of T. cruzi half 
maximal effective concentration (EC50 40.5 μM), leading 

to ultrastructural alteration and lipoperoxidation in the cell 
membrane. In addition, they reported that the trypanocidal 
action of eupomatenoid-5 might be associated with 
mitochondrial dysfunction and oxidative damage, which 
can trigger destructive effects on the biological molecules of 
T. cruzi, leading to the death of the parasite. Ferreira et al.26 
used a semi-synthetic library of 23 derivatives of the 
neolignan dehydrodieugenol B that was prepared to 
explore synthetically accessible activity structure 
(SAR) relationships against T. cruzi. Five compounds 
demonstrated activity against trypomastigotes (IC50 
values   from 8 to 64 μM) and eight showed activity against 
intracellular amastigotes (IC50 values   from 7 to 16 μM).

Conclusions

We used a comprehensive computational studies 
approach to investigate the potential of neolignans in the 
treatment of CD, which made possible the isolation and 
experimental testing of natural products against cellular 
forms of T. cruzi. The predictive models generated from 
essential enzymes of the parasite obtained satisfactory 
performance results for the continuity and credibility of 
this study, with an accuracy greater than 75%, and selected 
a neolignan with a 50% probability of active potential for 
the cruzain enzyme. For the TR enzyme, an accuracy of 
85% was achieved, and the model selected all neolignans, 
with activity probabilities between 54 and 84%. Therefore, 
neolignans were considered selective against the TR enzyme.

For a structure-based investigation, a consensus docking 
analysis was conducted to ensure the reliability of the RF 
model and to reduce the number of false positives. Among 
the 47 neolignans analyzed by molecular docking, two 
compounds were considered potentially active against 
cruzain, 31 neolignans active against TR, and 18 against 
CYP51. These results indicated that neolignans, in general, 
are more likely to activate TR and CYP51 proteins, and are 
not selective for the cruzain enzyme.

A structure and ligand-based combined analysis, 
employed to increase the predictive power was able to 
identify potentially active molecules, using RF models 
and molecular docking, resulting in the identification of 
22 compounds with a probability of activity ranging from 

Table 7. Effect on Trypanosoma cruzi and renal cells

ID Epimastigote IC50 / µM Trypomastigote IC50 / µM Cytotoxicity (cells LLC-MK2) / µM

46 9.64 ± 1.75 4.88 ± 0.61 > 400

47 8.72 ± 1.14 2.73 ± 0.58 > 400

Benznidazole 16.58 ± 2.9 257.5 ± 14.32 > 400

IC50: concentration required for 50% inhibition of the parasites.
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50-65% for cruzain and 46 neolignans potentially active 
against the TR enzyme with a probability ranging from 
52-82%. We found that the combined analysis expanded 
the selection of active compounds for cruzain relative to 
the RF model and molecular docking. We also found that 
neolignans were more selective for the TR enzyme.

MD simulations revealed that neolignan-complexed 
RT was stable under several conditions, including solvent, 
ions, temperature, and pressure, with only small variations 
observed for some complexed compounds. Therefore, the 
binding affinity between proteins and ligands is unlikely 
to be affected by environmental changes. In addition, 
none of the amino acids responsible for the enzymatic 
conformational changes were at the active site, allowing the 
active site to remain stable. In addition, through calculations 
of free energy using the MM/PBSA method, we found that 
although the crystallographic ligand presented a higher 
energy bond value in the presence of factors, it is notable 
that strong hydrogen bonds also favor the permanence of 
the neolignans at the active site of TR.

Two neolignans with excellent ADMET profiles 
demonstrated to be potentially active inhibitors against the 
enzymes cruzain and TR enzymes by virtual screening, 
were isolated from Krameria tomentosa and subjected to 
in vitro tests. The results showed that the two neolignans (46 
and 47) could potentially inhibit T. cruzi, at concentrations   
of 9.64 and 8.72 µM for the epimastigote forms and 4.88 
and 2.73 µM for the trypomastigote forms, respectively. 
Therefore, the compounds (2R,3R)-2,3-di-hydro-
2-(4-methoxyphenyl)-3-methyl-5-(E)-propenylbenzofuran 
(46) and ottomentosa (47) proved to be promising inhibitors 
of growth for the epimastigote and promastigote stages of 
the parasite.

We also concluded that the neolignans investigated in 
this study that were considered active against the enzymes 
cruzain and CYP51 could be potent inhibitors of these 
enzymes in amastigotes, since these enzymes are present 
in all cellular forms of T. cruzi. Therefore, the neolignans 
selected in this study serve as a starting point for the 
development of new antichagasic compounds and should 
be investigated for their potential activity against the most 
relevant parasitic form of the parasite, the amastigote form.

Experimental

Data collection and curation

The biological activity and 3D structure data of the 
enzymes cruzain, trypanothione reductase (TR), and sterol 
14-alpha demethylase (CYP51) were investigated. Datasets 
with information on compounds and their activity values 

for each selected enzyme (Table 8) were downloaded from 
the ChEMBL database18,19 with the codes CHEMBL3563 
(cruzain), CHEMBL5131 (TR) and CHEMBL1075110 
(CYP51). These compounds were used to build predictive 
models and were classified based on the pIC50 (−log IC50). 
The compounds of each dataset were classified based on 
the pIC50, this information is described in Table 8. The 
IC50 value represents the concentration required for 50% 
inhibition of the parasites. The classification of compounds 
based on pIC50 is performed in order to have the necessary 
number of samples to create a pattern and increase the 
probability of the model being correct in selecting active 
molecules, that is, the higher the pIC50, the lower the 
concentration of the chemical compound and consequently 
more potent is its activity. However, it is necessary to 
have a sufficient number of samples so that the model 
can distinguish active from inactive compounds. Figure 9 
summarizes all the procedures performed in this study.

In addition, a search was performed in the ChEMBL 
database for lignans extracted from natural products. A total 
of 47 lignans were found, therefore, these were evaluated 
by virtual screening to identify molecules with potential 
activity against the three main enzymes listed above that 
are involved in the proliferation and survival of T. cruzi, 
according to the workflows presented by Fourches et al.27 
Three-dimensional structures were generated and 

Figure 9. Outline of all study procedures.
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standardized using the Standardizer v.18.17.0.28 This 
standardization is of paramount importance to create 
consistent compound libraries and is done through the 
following steps: addition of hydrogens, aromatization, 
generation of 3D structure (clean the molecular graph in 
three dimension) and exporting the compounds in SDF 
format. For a more detailed description on how the dataset 
was curated, please refer to the workflows described by 
Fourches et al.27,29,30 Codes for the structures of neolignans 
are available in the Table S1, SI section.

Quantitative structure-activity relationship modeling (QSAR)

Knime 3.6.2 software (Knime 3.6.2, Konstanz 
Information Miner, Zurich, Switzerland)31,32 was used to 
perform QSAR modeling. Given the success of our previous 
studies,33,34 we opted to perform a QSAR 3D analysis. To 
generate descriptors, all compounds with their standardized 
chemical structure were saved in SDF format and imported 
into Dragon 7.0 software (Kode Chemioinformatics SRL, 
Pisa, Italy), a total of 5270 molecular descriptors.35,36 The 
descriptors generated in Dragon were imported into the 
Knime software and the random forest algorithm (RF) was 
used to build prediction models. 

Each dataset was divided using the “Partitioning” tool, 
with the “stratified sample” option, to create a training set 
and an external test set, which represented 80 and 20% of 
the compounds, respectively. Although the compounds 
were selected randomly, the same proportion of active and 
inactive samples was maintained in both sets.

For external validation, we employed 5-fold cross-
validation using randomly selected, stratified groups. The 
distributions according to activity class variables were 
found to be maintained in all validation groups and in 
the training set. Descriptors were selected and modeled 
following a 5-fold external cross validation procedure using 
the random forest algorithm (RF).37-39 The 5-fold external 
validation technique used in this work is a technique that 
the entire data set is partitioned five times into a modeling 
set (training set) including 80% of the compounds the set, 
and the external cross validation data set, comprising the 
remaining 20% of the compounds the data set.37-39 After 
this, only the modeling set is used to build the models 

and then the models are validated with the external cross 
validation technique.37-39 There were 200 the total number 
of trees constructed and 1 seed in the generation of random 
numbers for the RF for all generated models.

Using Knime nodes the most important descriptors in 
the generation of each prediction model were evaluated. 
The external performances of the selected models were 
analyzed for sensitivity (true positive rate, i.e., active 
rate), specificity (true negative rate, i.e., inactive rate) 
and accuracy (overall predictability). The positive (PPV) 
and negative (NPV) predictive values inform us about the 
probability of predicted positives (PPV) and negatives 
(NPV) being the true positives and negatives, respectively. 
In addition, the sensitivity and specificity of the receiver 
operating characteristic (ROC) curve were found to 
describe true performance with more clarity than accuracy.39 

The model was also analyzed by the Matthews 
coefficient, a way to evaluate the model globally from the 
results obtained from the confusion matrix. The Matthews 
correlation coefficient (MCC) is a correlation coefficient 
between observed and predictive binary classifications. It 
results in a value between −1 and +1, where a coefficient 
of +1 represents a perfect forecast, 0 is nothing more than 
a random forecast, and −1 indicates total disagreement 
between forecast and observation.40

The MCC can be calculated from the following formula:

 (3)

where VP is the value of true positive, VN is the value of 
true negative, FP is the value of false positives and FN of 
false negatives.

The applicability domain (APD) was used to analyze 
the compounds of the test sets to evaluate whether their 
predictions were reliable. The APD is based on Euclidean 
distances, and similarity measures between the descriptors 
of the training set are used to define the applicability 
domain. Meaning, if a test set compound has distances and 
similarity beyond this limit, its prediction is not reliable. 
The APD calculation is performed behind the formula: 

APD = d + Zσ (4)

Table 8. Set of molecules from the ChEMBL Databases for each cruzain, TR and CYP51 database of T. cruzi

Database Active molecules Inactive molecules Total ChEMBL ID

Cruzain 217 (pIC50 ≥ 5.02) 255 (pIC50 ≤ 5.0) 472 CHEMBL3563

TR 117 (pIC50 ≥ 4.5) 150 (pIC50 ≤ 4.46) 267 CHEMBL5131

CYP45 271 (pIC50 ≥ 4.6) 317 (pIC50 ≤ 4.5) 588 CHEMBL1075110

TR: trypanothione reductase; IC50: concentration required for 50% inhibition of the parasites.
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where d and σ are the Euclidean distances and the standard 
mean deviation, respectively, of the compounds in the 
training set. Z is an empirical cut-off value, and in this 
work the Z value was used as 0.5.39,41-43

Study of molecular docking

Molecular docking was used to investigate the mechanism 
of action of selected compounds against the enzymes cruzain 
(PDB ID 1AIM),15 TR (PDB  ID  1GXF)16 and CYP51 
(PDB ID 4CK9).44 The 3D structures of the enzymes were 
obtained from the Protein Data Bank (PDB).20 Information 
about complexed enzymes and inhibitors can be seen in 
Table 9. Initially, all water molecules were removed from 
the crystalline structure and the mean square deviation 
(RMSD) was calculated from the positions, indicating 
the degree of reliability of the adjustment. To evaluate the 
docking procedure, we performed the redocking and RMSD 
calculation. The RMSD provides the connection mode close 
to the experimental structure and is considered successful if 
the value is less than 2.0 Å. The inhibitory ligands crystallized 
in each enzyme were used as templates to signal the active 
site region of the protein.

Molegro virtual docker (MVD) 6.0
We used the Molegro Virtual Docker v.6.0.1 (MVD) 

software45,46 with its predefined parameters. Then, a 
docking wizard was created in which the enzymes and 
ligands were inserted to analyze system’s stability through 
the interactions associated with the enzyme’s active 
site, using the energy value of the MolDock Score45 as a 
reference. The MolDock SE (Simplex Evolution) algorithm 
is based on differential evolution and was used with the 
following parameters: a total of 10 runs with a maximum 
of 1,500 iterations using a population of 50 individuals, 
2,000 minimization steps for each flexible residue and 
2,000 steps of global minimization per run. The MolDock 
Score (GRID) and PLANTS score (GRID) scoring function 
were used to calculate the fit energy values. A GRID was set 
at 0.3 A and the search sphere radius was set at 15 Å. For 
the analysis of the ligand energy, electrostatic interactions, 
hydrogen bonds and sp2-sp2 torsions were evaluated.

AutoDock Vina (Vina) 
We used AutoDock Vina47,48 under the graphical 

interface of the PyRx Virtual Screening program tool,49,50 

maintaining the default parameters of the software. This 

Table 9. Inhibitor-enzyme complex data for T. cruzi enzymes cruzain, TR, and CYP51

Enzyme PDB ID Ligand Resolution / Å 

Cruzain 1AIM

 

2.0 

TR 1GXF

 

2.7 

CYP51 4CK9

 

2.7

TR: trypanothione reductase; CYP51: sterol 14-alpha demethylase.
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program is based on the genetic algorithm and the empirical 
energy of the field strength. The protein and ligand files 
were converted to pdbqt format, and the generated GRID 
was conducted to the active site region. AutoDock Vina 
generated 10 conformations for each binder which were 
used for analysis. The binding affinity scoring function 
(kcal mol-1) corresponds to the sum of intermolecular and 
intramolecular contributions and the potentials are based 
on knowledge and empirical scores.

Consensus docking
A consensus analysis using three different scoring 

functions was used to decrease the number of false 
positives.

Prediction of absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) properties

ADME parameters were calculated using the 
SwissADME open-access web tool,51,52 which offers 
a set of rapid predictive models for the assessment of 
physicochemical, pharmacokinetic and pharmacological 
properties. The toxicity prediction was performed in the 
OSIRIS Property Explorer,53,54 based on the following 
parameters: mutagenicity, tumorigenicity, reproductive 
effects and irritability. For absorption, factors included 
membrane permeability, intestinal absorption and the 
glycoprotein P substrate or inhibitor. Thus, we investigated 
compounds that did not exceed more than two violations 
of the Lipinski rule and for which the logP consensus was 
not greater than 4.15. In addition, the compounds were not 
substrates for the permeability glycoprotein enzyme (P-gp). 
The distribution was evaluated by factors that included the 
blood-brain barrier (logBB) and the permeability of the 
central neural system (CNS). Metabolism was predicted 
based on the CYP substrate or inhibition models (CYP1A2, 
CYP2C19, CYP2C9, CYP2D6 and CYP3A4).

Molecular dynamics simulations
MD simulations were performed to estimate the 

flexibility of interactions between proteins and ligands, using 
GROMACS 5.0 software (European Union Horizon 2020 
Programme, Sweden).55-57 The protein and ligand topologies 
were also prepared using the GROMOS96 54a7 force field. 
The MD simulation was performed using the SPC water 
model of point load, extended in a cubic box.58 The system 
was neutralized by adding ions (Cl− and Na+) and minimized, 
to remove bad contacts between complex molecules and 
the solvent. The system was also balanced at 300 K, using 
the 100 ps V-rescale algorithm, represented by NVT 
(constant number of particles, volume, and temperature), 
followed by equilibrium at 1 atm of pressure, using the 

Parrinello-Rahman algorithm as the NPT (constant particles 
pressure and temperature), up to 100 ps. MD simulations 
were performed in 5,000,000 steps, at 50 ns. To determine the 
flexibility of the structure and whether the complex is stable 
and close to the experimental structure, RMSD values of all 
Cα atoms were calculated relative to the starting structures. 
RMSF values were also analyzed, to understand the roles 
played by residues near the receptor binding site. The RMSD 
and RMSF graphs were generated in Grace software59 and 
the protein and ligands were visualized in UCSF Chimera.60

Free energy calculations

The Molecular Mechanics-Poisson Boltzmann Surface 
Area approach (MM/PBSA) was used to calculate the free 
binding energy of the protein-binding complex in the study 
of the molecular behavior of the sulfotransferase enzyme 
and its respective ligands. The GROMACS g_mmpbsa 
module61,62 was applied to estimate the bond-free energy 
of the selected complex using the trajectory files obtained 
in the molecular dynamics simulation. The GROMACS 
MM-PBSA calculation consisted of three steps. First, the 
potential energy in the vacuum was calculated, and then, 
the energies of polar and, finally, nonpolar solvation were 
estimated. The non-polar solvation energy was calculated 
using the solvent accessible surface area model (SASA). 
The required input files and solvation energy values 
were then selected to evaluate the following energetic 
components: van der Waals energy, electrostatic energy, 
polar energy of solvation, non-polar solvation energy, and 
free energy of bonding. 

Isolation and identification of neolignans

Among the neolignans investigated in this study, 
two were possible to isolate, (2R,3R)-2,3di-hydro-
2-(4-methoxyphenyl)-3-methyl-5-(E)-propenylbenzofuran 
(compound 46) and ottomentosa (compound 47) 
(Figure 10). The neolignans were isolated from the roots 
of Krameria  tomentosa (2.2 kg) collected in the city of 
Santa Rita-PB, Brazil (7°09’15.4” S, 35°00’14.9” W) 

Figure 10. Isolated structures of the roots of Krameria tomentosa.
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in June 2014. Their access registrations in the National 
Management System of Genetic Patrimony and Associated 
Traditinal Knowledge (SisGen) were obtained under 
number A837A80. 

The air-dried and powdered roots of K. tomentosa 
(2.2 kg) were extracted with ethanol 95% for 72 h (3 × 4 L) 
at room temperature. The extract was concentrated under 
reduced pressure at 40° C to afford 380 g of crude extract 
(CE). Part of CE (50.0 g) was suspended in MeOH-H2O (7:3) 
and sequentially partitioned with hexane, dichloromethane, 
ethyl acetate (EtOAc) and n-BuOH. An aliquot of the 
dichloromethane-soluble fraction (2.0 g) was subjected to 
a medium pressure liquid chromatography (MPLC) with 
silica gel 60 (40-63 μm, 230-400 mesh, SiliCycle) and 
eluted with a gradient mixture of hexane, CHCl3, EtOAc and 
MeOH. The fractions obtained were combined according to 
the thin layer chromatography (TLC) profile to afford 14 
fractions. The fraction 1 (20 mg) was purified by preparative 
high performance liquid chromatography (HPLC) with 
the following elution gradient: solvent  A  =  H2O-formic 
acid 0.1%; solvent B = MeOH; elution system = 0-80 min 
(70-100% B). This resulted in compounds 46 (2.1 mg)63 
and 47 (2.4 mg).64 The equipment used was a Shimadzu 
apparatus with an SPDM10A VP diode array detector 
and an ACE C18 column (250 mm × 21.2 mm and 5 μm 
particles) and the flow rate was 8.0 mL min-1.

The compounds were identified by 1D- and 2D-nuclear 
magnetic resonance (NMR), high-resolution mass 
spectrometry (HRESIMS), optical rotation analysis and 
by with examination the literature.63-65

Activity of selected neolignans against T. cruzi epimastigotes 
and tripomastigotes

Parasites and cells
Epimastigote forms of T. cruzi, strain Y, were cultured 

liver infusion tryptose medium supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin-streptomycin 
10,000 IU per 10 mg and kept at 28 ºC in a of biochemical 
oxygen demand incubator. The parasites used in the 
experiments were aliquoted from cultures in an exponential 
growth phase, determined using a 10-day growth curve.

Rhesus monkey renal cells LLC-MK2 (ATCC CCL-7) 
were cultured in Dulbecco’s modified eagle medium 
(DMEM) medium, pH 7.2, supplemented (10% FBS and 1% 
100 U mL-1 penicillin and 100 μg mL-1 streptomycin) and 
incubated at 37 °C and 5% CO2. Maintenance was performed 
every two days or when the cells reached the confluence.

Trypomastigote forms were obtained by infection 
of LLC-MK2 cells. The cells were cultured (2 × 105) in 
DMEM medium supplemented with 10% FBS and 1% 

penicillin-streptomycin 10,000 IU per 10 mg maintained 
at 37 ºC and 5% CO2. After reaching the confluence state, 
they were infected with a suspension of epimastigotes 
(1 × 107). The infected cells were kept in DMEM medium 
with 2% SFB at 37 ºC and 5% CO2 for six days. Finally, the 
trypomastigote forms were removed from the supernatant, 
centrifuged and available for testing.66

Activity assay against epimastigotes and trypomastigotes 
of Trypanosoma cruzi

Epimastigote and trypomastigote forms were seeded in 
96-well plates (1 × 106) containing different concentrations 
of substances (1.56 to 400 µM) and liver infusion tryptose 
(LIT) medium with 10% FBS for epimastigote forms and 
DMEM medium with 2% SFB for trypomastigote forms. 
Then, they were incubated for 48 h at 28 ºC (epimastigotes) 
and 37 ºC (trypomastigotes). Growth inhibition was then 
assessed by quantification in a Neubauer chamber. The 
positive control was the standard drug benznidazole 
(Sigma-Aldrich, St. Louis, MO, USA) at concentrations 
of 1.56 to 400 µM.67

Cytotoxicity

Cytotoxicity was evaluated in 96-well plates using the 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT)  colorimetric assay. Approximately 
1  ×  106 LLC-MK2 cells per well were incubated in 
100 μL of DMEM medium supplemented with FBS at 
37 °C and 5% CO2 for 4 h to determine cell adhesion. 
First, non-adherent cells were removed by washing 
with pure DMEM medium. Next, a new supplemented 
DMEM medium containing increasing concentrations 
of the substances (1.56 to 400 µM) was added and then 
incubated at 37 ºC with 5% CO2 for 48 h. After incubation, 
cytotoxicity was assessed by adding 10 µL of MTT 
(5 mg mL-1). Next, the supernatant was discarded, and 
the formazan crystals were dissolved by adding 100 μL 
of dimethyl sulfoxide (DMSO). Finally, the absorbance 
at 540 nm was measured using an ELISA plate reader.67

Supplementary Information

Supplementary data (table with the prediction of the 
ADMET properties of the neolignans) are available free 
of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

This research was funded by the Brazilian National 
Council for Scientific and Technological Development 



Virtual Screening Based on Ligand and Structure with in vitro Assessment of Neolignans against Trypanosoma cruzi J. Braz. Chem. Soc.364

(Conselho Nacional de Desenvolvimento Científico e 
Tecnológico-CNPq), grant number 309648/2019-0 and 
431254/2018-4. 

Author Contributions

Mayara S. Maia, Marcus T. Scotti  was responsible for 

conceptualization; Mayara S. Maia, Rodrigo S. Andrade, Julyanne 

Maria S. de Sousa, Gabriela Cristina S. Rodrigues, Renata Priscila 

B. de Menezes, Marcelo S. da Silva, Josean F. Tavares, Klinger 

Antonio F. Rodrigues and Marcus T. Scotti for methodology; 

Gabriela Cristina S. Rodrigues, Natália F.de Sousa, Renata Priscila 

B. de Menezes, Luciana Scotti, Marcus T. Scotti for validation; 

Mayara S. Maia, Rodrigo S. Andrade and Julyanne Maria S. de Sousa 

for investigation; Marcus T. Scotti, Rodrigo S. Andrade, Marcelo 

S. da Silva, Josean F. Tavares, Klinger Antonio F. Rodrigues for 

resources; Mayara S. Maia and Gabriela Cristina S. Rodrigues for 

data curation; Mayara S. Maia, Natália F. de Sousa, Renata Priscila 

B. de Menezes, Luciana Scotti, Marcus T.Scotti for writing-review 

and editing; Mayara S. Maia, Marcus T. Scotti for supervision; 

Marcus T. Scotti for project administration.

References

 1. Lidani, K. C. F.; Andrade, F. A.; Bavia, L.; Damasceno, F. S.; 

Beltrame, M. H.; Messias-Reason, I. J.; Sandri, T. L.; Front. 

Public Heal. 2019, 7, 1. [Crossref]

 2. Gasparim, A. Z.; Fontes, C. E. R.; Rossoni, D. F.; Toledo, M. 

J. O.; Rev. Soc. Bras. Med. Trop. 2018, 51, 225. [Crossref]

 3. Villalta, F.; Rachakonda, G.; Expert Opin. Drug Discovery 

2019, 14, 1161. [Crossref]

 4. Ferri, G.; Edreira, M. M.; Front. Cell. Infect. Microbiol. 2021, 

11, 634793. [Crossref]

 5. Meymandi, S.; Hernandez, S.; Park, S.; Sanchez, D. R.; Forsyth, 

C.; Curr. Treat. Options Infect. Dis. 2018, 10, 373. [Crossref]

 6. Rajão, M. A.; Furtado, C.; Alves, C. L.; Passos-Silva, D. G.; de 

Moura, M. B.; Schamber-Reis, B. L.; Kunrath-Lima, M.; Zuma, 

A. A.; Vieira-da-Rocha, J. P.; Garcia, J. B. F.; Mendes, I. C.; 

Pena, S. D. J.; Macedo, A. M.; Franco, G. R.; de Souza-Pinto, 

N. C.; de Medeiros, M. H. G.; Cruz, A. K.; Motta, M. C. M.; 

Teixeira, S. M. R.; Machado, C. R.; Environ. Mol. Mutagen. 

2014, 55, 309. [Crossref]

 7. Vinuesa, T.; Herráez, R.; Oliver, L.; Elizondo, E.; Acarregui, A.; 

Esquisabel, A.; Pedraz, J. L.; Ventosa, N.; Veciana, J.; Viñas, 

M.; Am. J. Trop. Med. Hyg. 2017, 97, 1469. [Crossref]

 8. Zhao, C.; Chen, J.; Shao, J.; Shen, J.; Li, K.; Gu, W.; Li, S.; 

Fan, J.; J. Agric. Food Chem. 2018, 66, 10421. [Crossref] 

 9. de Arruda, C. C. P.; Hardoim, D. J.; Rizk, Y. S.; de Souza, 

C. S. F.; do Valle, T. Z.; Carvalho, D. B.; Taniwaki, N. N.; 

Baroni, A. C. M.; Calabrese, K. S.; Molecules 2020, 25, 37.  

[Crossref]

 10. Salleh, W. M. N. H. W.; Tawang, A.; Jauri, M. H.; Biointerface 

Res. Appl. Chem. 2022, 12, 1791. [Crossref]

 11. Kordbacheh, F.; Carruthers, T. J.; Bezos, A.; Oakes, M.; Du 

Fall, L.; Hocart, C. H.; Parish, C. R.; Djordjevic, M. A.; PLoS 

One 2018, 13, e0196843. [Crossref]

 12. Sear, C. E.; Pieper, P.; Amaral, M.; Romanelli, M. M.; Costa-

Silva, T. A.; Haugland, M. M.; Tate, J. A.; Lago, J. H. G.; 

Tempone, A. G.; Anderson, E. A.; ACS Infect. Dis. 2020, 6, 

2872. [Crossref]

 13. Cabral, M. M. O.; Barbosa-Filho, J. M.; Maia, G. L. A.; Chaves, 

M. C. O.; Braga, M. V.; de Souza, W.; Soares, R. O. A.; Exp. 

Parasitol. 2010, 124, 319. [Crossref]

 14. Trefzger, O. S.; das Neves, A. R.; Barbosa, N. V.; Carvalho, D. 

B.; Pereira, I. C.; Perdomo, R. T.; Matos, M. F. C.; Yoshida, N. 

C.; Kato, M. J.; de Albuquerque, S.; Arruda, C. C. P.; Baroni, 

A. C. M.; Chem. Biol. Drug Des. 2019, 93, 313. [Crossref]

 15. Gillmor, S. A.; Craik, C. S.; Fletterick, R. J.; Protein Sci. 1997, 

6, 1603. [Crossref]

 16. Saravanamuthu, A.; Vickers, T. J.; Bond, C. S.; Peterson, M. 

R.; Hunter, W. N.; Fairlamb, A. H.; J. Biol. Chem. 2004, 279, 

29493. [Crossref]

 17. França, R. R. F.; de Carvalho, A. S.; Branco, F. S. C.; Pinto, A. 

C.; Boechat, N.; Rev. Virtual Quim. 2014, 6, 1483. [Crossref]

 18. Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, 

M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; 

Al-Lazikani, B.; Overington, J. P.; Nucleic Acids Res. 2012, 

40, 1100. [Crossref]

 19. Bento, A. P.; Gaulton, A.; Hersey, A.; Bellis, L. J.; Chambers, 

J.; Davies, M.; Krüger, F. A.; Light, Y.; Mak, L.; McGlinchey, 

S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J. P.; 

Nucleic Acids Res. 2014, 42, 1083. [Crossref]

 20. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer Jr., E. 

F.; Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; 

Tasumi, M.; Arch. Biochem. Biophys. 1978, 185, 584. [Crossref]

 21. Barros, R. P. C.; Scotti, L.; Scotti, M. T.; Curr. Top. Med. Chem. 

2019, 19, 900. [Crossref]

 22. Plewczynski, D.; Łaźniewski, M.; Augustyniak, R.; Ginalski, 

K.; J. Comput. Chem. 2011, 32, 742. [Crossref]

 23. Mandal, S.; Moudgil, M.; Mandal, S. K.; Eur. J. Pharmacol. 

2009, 625, 90. [Crossref]

 24. Durrant, J. D.; Keränen, H.; Wilson, B. A.; McCammon, J. A.; 

PLoS Negl. Trop. Dis. 2010, 4, e676. [Crossref]

 25. Pelizzaro-Rocha, K. J.; Veiga-Santos, P.; Lazarin-Bidóia, D.; 

Ueda-Nakamura, T.; Dias Filho, B. P.; Ximenes, V. F.; Silva, S. 

O.; Nakamura, C. V.; Microbes Infect. 2011, 13, 1018. [Crossref]

 26. Ferreira, D. D.; Sousa, F. S.; Costa-Silva, T. A.; Reimão, J. Q.; 

Torrecilhas, A. C.; Johns, D. M.; Sear, C. E.; Honorio, K. M.; 

Lago, J. H. G.; Anderson, E. A.; Tempone, A. G.; Eur. J. Med. 

Chem. 2019, 176, 162. [Crossref]

 27. Fourches, D.; Muratov, E.; Tropsha, A.; J. Chem. Inf. Model. 

2010, 50, 1189. [Crossref]

https://dx.doi.org/10.3389/fpubh.2019.00166
https://dx.doi.org/10.1590/0037-8682-0173-2017
https://dx.doi.org/10.1080/17460441.2019.1652593
https://dx.doi.org/10.3389/fcimb.2021.634793
https://dx.doi.org/10.1007/s40506-018-0170-z
https://dx.doi.org/10.1002/em.21839
https://dx.doi.org/10.4269/ajtmh.17-0044
https://doi.org/10.1021/acs.jafc.8b03772
https://dx.doi.org/10.3390/molecules25010037
https://dx.doi.org/10.33263/BRIAC122.17911802
https://dx.doi.org/10.1371/journal.pone.0196843
https://dx.doi.org/10.1021/acsinfecdis.0c00523
https://dx.doi.org/10.1016/j.exppara.2009.11.007
https://doi.org/10.1111/cbdd.13417
https://dx.doi.org/10.1002/PRO.5560060801
https://dx.doi.org/10.1074/jbc.M403187200
https://dx.doi.org/10.5935/1984-6835.20140096
https://dx.doi.org/10.1093/nar/gkr777
https://dx.doi.org/10.1093/nar/gkt1031
https://dx.doi.org/10.1016/0003-9861(78)90204-7
https://dx.doi.org/10.2174/1568026619666190510094228
https://dx.doi.org/10.1002/jcc.21643
https://dx.doi.org/10.1016/j.ejphar.2009.06.065
https://dx.doi.org/10.1371/journal.pntd.0000676
https://dx.doi.org/10.1016/j.micinf.2011.05.011
https://dx.doi.org/10.1016/j.ejmech.2019.05.001
https://dx.doi.org/10.1021/CI100176X


Maia et al. 365Vol. 34, No. 3, 2023

 28. ChemAxon, Standardizer software, version 18.17.0; ChemAxon 

Ltd., 1998-2021.

 29. Fourches, D.; Muratov, E.; Tropsha, A.; Nat. Chem. Biol. 2015, 

11, 535. [Link]

 30. Fourches, D.; Muratov, E.; Tropsha, A.; J. Chem. Inf. Model. 

2016, 56, 1243. [Crossref]

 31. Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, 

T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B.; ACM SIGKDD 

Explor. Newsl. 2009, 11, 26. [Crossref]

 32. Knime-Konstanz Information Miner, v. 3.6.2; Zurich, 

Switzerland, 2019.

 33. Maia, M. S.; e Silva, J. P. R.; de Lima Nunes, T. A.; de Sousa, 

J. M. S.; Rodrigues, G. C. S.; Monteiro, A. F. M.; Tavares, J. F.; 

da Franca Rodrigues, K. A.; Mendonça-Junior, F. J. B.; Scotti, 

L.; Scotti, M. T.; Molecules 2020, 25, 2281. [Crossref]

 34. Maia, M. S.; de Sousa, N. F.; Rodrigues, G. C. S.; Monteiro, A. 

F. M.; Scotti, M. T.; Scotti, L.; Comb. Chem. High Throughput 

Screen. 2020, 23, 504. [Crossref]

 35. Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R.; Match 

Commun. Math. Comput. Chem. 2006, 56, 237.

 36. Dragon - Software for Molecular Descriptor Calculation, v. 7.0; 

Kode srl, Italy, 2006.

 37. Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S. Y.; 

Mumper, R. J.; Tropsha, A.; ACS Nano 2010, 4, 5703. [Crossref]

 38. Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; 

Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, 

Y. C.; Todeschini, R.; Consonni, V.; Kuz’min, V. E.; Cramer, 

R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, 

J.; Richard, A.; Tropsha, A.; J. Med. Chem. 2014, 57, 4977. 

[Crossref]

 39. de Menezes, R. P. B.; Viana, J. O.; Muratov, E.; Scotti, L.; Scotti, 

M. T.; Curr. Issues Mol. Biol. 2022, 44, 383. [Crossref]

 40. Matthews, B. W.; Biochim. Biophys. Acta, Protein Struct. 1975, 

405, 442. [Crossref]

 41. Scotti, M. T.; Scotti, L.; Ishiki, H. M.; Peron, L. M.; de Rezende, 

L.; do Amaral, A. T.; Chemom. Intell. Lab. Syst. 2016, 154, 137. 

[Crossref]

 42. Aptula, A. O.; Roberts, D. W.; Chem. Res. Toxicol. 2006, 19, 

1097. [Crossref]

 43. Gramatica, P.;  Int. J. Quant. Struct.-Prop. Relat. 2020, 5, 61. 

[Crossref]

 44. Friggeri, L.; Hargrove, T. Y.; Rachakonda, G.; Williams, A. 

D.; Wawrzak, Z.; Di Santo, R.; De Vita, D.; Waterman, M. R.; 

Tortorella, S.; Villalta, F.; Lepesheva, G. I.; J. Med. Chem. 2014, 

57, 6704. [Crossref]

 45. Thomsen, R.; Christensen, M. H.; J. Med. Chem. 2006, 49, 

3315. [Crossref]

 46. Molegro Virtual Docker, v. 6.0.1; CLC Bio Company, Denmark, 

2013.

 47. Trott, O.; Olson, A. J.; J. Comput. Chem. 2009, 31, 455. 

[Crossref]

 48. AutoDock Vina, v. 1.2.0; Molecular Graphics Lab, The Scripps 

Research Institute, USA, 2009.

 49. Dallakyan, S.; Olson, A. J. In Chemical Biology; Hempel, J. 

E.;  Williams, C. H.;  Hong, C. C., eds.; Humana Press: New 

York, NY, 2015, p. 243-250.

 50. PyRx - Virtual Screening Tool, v. 0.9.7; Sarkis Dallakyan, USA, 

2015.

 51. Daina, A.; Michielin, O.; Zoete, V.; Sci. Rep. 2017, 7, 42717. 

[Crossref]

 52. SwissADME; Molecular Modeling Goup, Swiss Institute of 

Bioinformatics, Switzerland, 2017.

 53. Sander, T.; Freyss, J.; von Korff, M.; Reich, J. R.; Rufener, C.; 

J. Chem. Inf. Model. 2009, 49, 232. [Crossref]

 54. OSIRIS Property Explorer; Thomas Sander, Idorsia 

Pharmaceuticals Ltd, Switzerland, 2009.

 55. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; 

Hess, B.; Lindahl, E.; SoftwareX 2015, 1-2, 19. [Crossref]

 56. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R.; Comput. 

Phys. Commun. 1995, 91, 43. [Crossref]

 57. Gromacs, v. 5.0; Royal Institute of Technology and Uppsala 

University, Sweden, 2022.

 58. Bondi, A.; J. Phys. Chem. 1964, 68, 441. [Crossref]

 59. Grace software; Grace Development Team, 1996-2008.

 60. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; 

Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E.; J. Comput. Chem. 

2004, 25, 1605. [Crossref]

 61. Kumari, R.; Kumar, R.; Lynn, A.; J. Chem. Inf. Model. 2014, 

54, 1951. [Crossref]

 62. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. 

A.; Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10037. [Crossref]

 63. Achenbach, H.; Utz, W.; Usubillaga, A.; Rodriguez, H. A.; 

Phytochemistry 1991, 30, 3753. [Crossref]

 64. Madeiro, S. A. L.; de Lucena, H. F. S.; Siqueira, C. D.; Duarte, 

M. C.; Braz-Filho, R.; Barbosa Filho, J. M.; da Silva, M. S.; 

Tavares, J. F.; J. Braz. Chem. Soc. 2012, 23, 2021. [Crossref]

 65. Sawasdee, K.; Chaowasku, T.; Likhitwitayawuid, K.; Molecules 

2010, 15, 639. [Crossref]

 66. Aparicio, I. M.; Scharfstein, J.; Lima, A. P. C. A.; Infect. Immun. 

2004, 72, 5892. [Crossref]

 67. Lima, D. B.; Sousa, P. L.; Torres, A. F. C.; Rodrigues, K. A. 

F.; Mello, C. P.; de Menezes, R. R. P. P. B.; Tessarolo, L. D.; 

Quinet, Y. P.; de Oliveira, M. R.; Martins, A. M. C.; Toxicon 

2016, 120, 128. [Crossref]

Submitted: July 23, 2022

Published online: August 30, 2022

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

https://www.nature.com/articles/nchembio.1881.pdf
https://dx.doi.org/10.1021/ACS.JCIM.6B00129
https://dx.doi.org/10.1145/1656274.1656280
https://dx.doi.org/10.3390/molecules25102281
https://dx.doi.org/10.2174/1386207323666200226094940
https://dx.doi.org/10.1021/nn1013484
https://dx.doi.org/10.1021/jm4004285
https://dx.doi.org/10.3390/cimb44010028
https://dx.doi.org/10.1016/0005-2795(75)90109-9
https://dx.doi.org/10.1016/J.CHEMOLAB.2016.03.023
https://dx.doi.org/10.1021/tx0601004
https://dx.doi.org/10.4018/ijqspr.20200701.oa1
https://dx.doi.org/10.1021/jm500739f
https://dx.doi.org/10.1021/jm051197e
https://dx.doi.org/10.1002/jcc.21334
https://dx.doi.org/10.1038/srep42717
https://dx.doi.org/10.1021/ci800305f
https://dx.doi.org/10.1016/J.SOFTX.2015.06.001
https://dx.doi.org/10.1016/0010-4655(95)00042-E
https://dx.doi.org/10.1021/j100785a001
https://dx.doi.org/10.1002/jcc.20084
https://dx.doi.org/10.1021/ci500020m
https://dx.doi.org/10.1073/pnas.181342398
https://dx.doi.org/10.1016/0031-9422(91)80103-8
https://dx.doi.org/10.1590/S0103-50532012005000077
https://dx.doi.org/10.3390/molecules15020639
https://dx.doi.org/10.1128/IAI.72.10.5892-5902.2004
https://dx.doi.org/10.1016/j.toxicon.2016.08.008

	_Hlk103185741
	_Hlk103185795
	MTBlankEqn
	_Hlk107591627
	_Hlk107591668
	_heading=h.1fob9te
	_Hlk100248148
	_Hlk100248157

