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The objective of the present work was to apply self-organizing feature maps (SOFM) and 
multilayer perceptron (MLP) to evaluate the protective capacity of tert-butylhydroquinone (TBHQ), 
butylhydroxyanisole (BHA), and butylhydroxytoluene (BHT) antioxidants against the biodiesel 
oxidation reaction. For this, the antioxidant concentration and the biodiesel compliance parameters 
were used as continuous input variables and the type of antioxidant as a categorical. The SOFM 
proved to be an adequate tool for the classification of biodiesel samples containing antioxidants. 
The performance of the 5 most active networks of the model ranged from 89 to 99% for training, 
testing, and validation with an error below 1.42 × 10-4. Statistical tests applied to validate the model 
showed no significant difference between predicted and experimental values. The global sensitivity 
analysis showed that the relative protection factor (RPF) contributed with 34.89%, the antioxidant 
with 31.49%, the induction period with 10.69%, the water content with 6.00%, and the others all 
together with 16.93% in the construction of the regression models by MLP.
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Introduction

Biodiesel is a generic denomination for fuels produced 
from sustainable and renewable energy sources, such as 
vegetable oils, animal fat, and frying residues, to be used in 
compression ignition engines since its properties are generally 
similar to those of diesel.1-8 However, these raw materials 
have chemical substances in their composition containing 
unsaturated bonds, which are transferred to biodiesel 
making the obtained product susceptible to oxidation.9,10

Oxidation reactions occur in stages, forming products 
such as acids, aldehydes, ketones, and polymers, among 
others, that can damage the engine and modify the biodiesel 
physicochemical properties, such as density, flash point, 
iodine index and cetane, cloud and pour point, acidity 
index, among others. These changes lead to a loss of 
quality and non-compliance with the standards required by 
legislation.11-14 Therefore, to be commercialized, biodiesel 
must keep its essential characteristics little changed during 
the storage period. Thus, the maintenance of its quality for a 

long time has been a major concern for biodiesel producers 
and suppliers.15,16 

The addition of antioxidants is an efficient and low-cost 
way to delay the oxidation reaction of biodiesel. Synthetic 
antioxidants are industrially used for this purpose, ensuring 
the properties of the biodiesel for a longer period.17,18 The 
most used antioxidants are phenolic compounds that promote 
the removal or inactivation of free radicals produced in 
the biodiesel oxidation reaction, that is, interrupting the 
propagation of the radical oxidation. The most used are 
tert‑butylhydroquinone (TBHQ), butylhydroxytoluene 
(BHT), and butylhydroxyanisole (BHA).17,19 

To evaluate the concentration effect of different 
antioxidants added in biodiesel samples, computational 
tools, which work on data analysis such as artificial neural 
networks (ANNs) can be used. Several data processing 
techniques stand out: multilayers perceptron (MLP), 
radial basis and self-organizing feature maps (SOFM), and 
others.20,21 ANNs try to mathematically model the logical 
operations that the brain performs when executing tasks. 
These tools have gained importance in pattern recognition, 
images and objects, construction engineering, food science, 
and financial forecasting.20-26 
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This work aimed to apply and adapt SOFM and 
MLP neural networks to study the efficiency of synthetic 
antioxidants in a mixture with commercial biodiesel.

Experimental

Biodiesel

Twelve samples of commercial B100 biodiesel 
were used, with no antioxidant additives, supplied by 
the Laboratory of Research and Analysis of Fuels of 
the Department of Chemistry of the State University of 
Londrina. Samples with induction period values below 
those allowed by the EN1421427 standard were chosen to 
justify the use of synthetic antioxidants.

Biodiesel physical-chemical characterization

The analyzed parameters were: density (ASTM D4052),28 
flash point (ASTM D93),29 water content (ASTM D6304),30 
acid number (ASTM D664),31 viscosity (ASTM D445‑06),32 
cloud point and pour point (ASTM D2500),33 and oxidative 
stability (EN 14112).34

Antioxidants

The antioxidants used were butylhydroxyanisole 
(BHA) (Diadema, Brazil, Synth, 98.5% purity, P.A.), 
butylhydroxytoluene (BHT) (Guarulhos, Brazil, Biotec, 
99.0% purity, P.A.) and tert-butylhydroquinone (TBHQ) 
(São Paulo, Brazil, Sigma-Aldrich, 99.0% purity, P.A.). 
The antioxidant masses were obtained with an analytical 
balance. The additions antioxidants in biodiesel were made 
in 1 g:100 g of biodiesel.

Relative protection factor

The relative protection factor (RPF) was determined 
by the ratio between the B100 biodiesel with antioxidant 
additives and the induction period of the control sample, 
multiplied by the antioxidant concentration.35

Kinetic parameter

To calculate the rate constant (k) at 110 ºC, it was 
determined the slope (equation 1) of the linear fit of the 
time (t / h) and the natural logarithm of the electrical 
conductivity (Λ), where Λ0 is the initial conductivity.9

ln Λ = ln Λ0 – kt	 (1)

Artificial neural networks (ANN)

The physicochemical parameter values of the biodiesel 
samples, the concentration of antioxidants, the relative 
protection factor and rate constant at 110 ºC were processed 
by Statistica 13.4 software36 applying the SOFM and MLP 
type artificial neural network modules. For the SOFM 
network, 100% of the samples were used for training, 
12 × 12 topology, 7000 training cycles, learning rate ranging 
from 0.10 to 0.02, neighborhoods ranging from 3 to 0, and 
normal randomization of the network with a minimum 
mean equal to 0 and maximum variance equal to 1.

For the MLP network, the variables selected were 
antioxidant concentration in the proportion of 1 g:100 g 
of biodiesel, as the target continuous variable, the 
physicochemical parameters as the input continuous 
variables, and the antioxidants as the input categorical 
variable, where A = 1 for TBHQ, A = 2 for BHA and A = 3 
for BHT. The random sampling selected 70% of data for 
training, 15% for testing, and 15% for validation.

Computational processing

All spreadsheets were processed on a computer with an 
Intel® Core TM i7-4790 CPU 3.60 GHz©, 32 GB of RAM, 
and 250 GB HDD.

Results and Discussion

The 12 samples of commercial biodiesel, without 
antioxidants, were submitted to density tests (D) in kg m-3, 
flash point (FP) in °C, water content (W) in mg kg-1, acid 
number (AN) in mg KOH g-1, cloud point (CP) in °C, 
pour point (PP) in °C, kinematic viscosity at 40 °C (V) in 
mm2 s-1 and oxidative stability with the determination of the 
control induction period (IPc) in h, and rate constant (kc). 
For each 100 g of biodiesel, 0.0087 to 0.1028 g of TBHQ, 
0.0650 to 0.1576 g of BHA, and 0.0433 to 0.1576 g of 
BHT were added separately. After the addition of the 
synthetic antioxidants to biodiesel, induction periods (IP), 
relative protection factor (RPF) and rate constant (k) were 
determined. The values obtained and the concentration of 
the antioxidants added (C) to perform each test are shown 
in Tables 1, 2, and 3.

The compliance parameters established by ANP 
standard No. 4537 and 798,38 are a minimum induction 
period of 12 h, density ranging from 850 to 900 kg m-3, a 
minimum flash point of 100 °C, a maximum acid number of 
0.5 mg KOH g-1, a maximum water content of 350 mg kg-1, 
viscosity ranging from 3.0 to 6.0 mm2 s-1, and cloud point 
and pour point in °C (minimum values for these parameters 
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are not defined in the Brazilian legislation). According to 
the data presented in Tables 1, 2, and 3, all parameters, 
except the induction period and water content, are according 
to the Brazilian legislation.

In Tables 1, 2, and 3, it is possible to observe that all 
antioxidants increased the biodiesel induction period, 
with TBHQ presenting greater influence, as it has one 
more hydroxyl group than BHA and BHT in its chemical 

structure. In addition, it has a higher relative protection 
factor in most experiments.

To evaluate the antioxidants applied, the parameters and 
values in Tables 1, 2, and 3, in that order, were grouped 
into a single spreadsheet and processed by cluster analysis 
and neural networks regression module of the Statistica 
13.4 software.36

For both the cluster and regression modules, the seed 

Table 1. TBHQ concentration and physicochemical parameters values of the biodiesel samples

C / 
(g 100 g-1)

RPF IP / h k / h-1 D / 
(kg m-3)

FP / °C
W / 

(mg kg-1)
AN / 

(mg KOH g-1)
CP / °C PP / °C

V / 
(mm2 s-1)

kc / h-1 IPc / h

0.0599 70.99 15.32 0.15 887.20 118.60 305.40 0.34 6.00 2.00 4.79 0.91 3.60
0.0330 36.98 2.72 0.81 878.90 131.50 304.60 0.45 4.00 0.00 4.33 0.97 2.23
0.0340 35.66 2.70 0.89 878.90 131.50 304.60 0.45 4.00 0.00 4.33 0.97 2.23
0.0385 39.67 3.94 0.41 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
0.0340 39.46 4.34 0.63 878.50 141.50 260.90 0.45 3.00 0.00 4.50 0.78 3.24
0.0580 101.33 6.70 0.14 877.90 131.30 416.00 0.45 6.00 2.00 4.52 1.41 1.14
0.0369 27.25 2.20 0.89 877.20 129.50 353.60 0.23 7.00 3.00 4.55 1.38 2.19
0.1028 37.23 8.88 0.23 877.20 129.50 353.60 0.23 7.00 3.00 4.55 1.38 2.32
0.0534 23.67 2.93 1.50 877.20 129.50 353.60 0.23 7.00 3.00 4.55 1.38 2.32
0.0484 52.93 7.84 0.29 875.50 98.70 401.80 0.28 10.00 3.00 4.46 1.00 3.06
0.0503 35.91 4.01 0.67 876.30 109.50 390.53 0.30 9.00 4.00 4.57 1.38 2.22
0.0658 24.64 3.60 0.90 876.30 109.50 390.53 0.30 9.00 4.00 4.57 1.38 2.22
0.0222 60.97 8.04 0.34 876.20 110.00 310.00 0.29 6.00 2.00 4.44 0.44 5.94
0.0223 57.29 3.13 0.88 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.0087 115.41 2.46 1.10 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.0269 45.75 4.75 0.40 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.48 3.86
0.0455 30.58 5.37 0.45 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.48 3.86
0.0194 63.73 3.67 0.81 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
0.0427 47.81 6.06 0.43 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
C: concentration of the antioxidants added; RPF: relative protection factor; IP: induction period; k: rate constant; D: density; FP: flash point; W: water 
content; AN: acid number; CP: cloud point; PP: pour point; V: kinematic viscosity; kc: rate constant; IPc: control induction period.

Table 2. BHA concentration and physicochemical parameters values of the biodiesel samples

C / 
(g 100 g-1)

RPF IP / h k / h-1 D / 
(kg m-3)

FP / °C
W / 

(mg kg-1)
AN / 

(mg KOH g-1)
CP / °C PP / °C

V / 
(mm2 s-1)

kc / h-1 IPc / h

0.0650 30.59 7.16 0.39 887.20 118.60 305.40 0.34 6.00 2.00 4.79 0.91 3.60
0.0690 24.84 3.82 0.52 878.90 131.50 304.60 0.45 4.00 0.00 4.33 0.97 2.23
0.0990 21.27 5.43 0.41 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
0.0670 23.73 5.15 0.50 878.50 141.50 260.90 0.45 3.00 0.00 4.50 0.78 3.24
0.1576 18.76 3.37 0.73 877.90 131.30 416.00 0.45 6.00 2.00 4.52 1.41 1.14
0.1044 18.58 4.50 0.62 877.20 129.50 353.60 0.23 7.00 3.00 4.55 1.38 2.32
0.1043 20.96 6.69 0.39 875.50 98.70 401.80 0.28 10.00 3.00 4.46 1.00 3.06
0.1477 16.06 7.26 0.37 875.50 98.70 401.80 0.28 10.00 3.00 4.46 1.00 3.06
0.1492 18.36 6.08 0.41 876.30 109.50 390.53 0.30 9.00 4.00 4.57 1.38 2.22
0.1012 17.00 3.82 0.80 876.30 109.50 390.53 0.30 9.00 4.00 4.57 1.38 2.22
0.0475 25.41 7.17 0.38 876.20 110.00 310.00 0.29 6.00 2.00 4.44 0.44 5.94
0.1515 22.93 8.51 0.37 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.0981 29.04 6.98 0.46 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.0700 21.92 5.92 0.44 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.48 3.86
0.1067 21.33 6.76 0.41 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
0.0789 24.35 5.71 0.47 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
0.0651 28.12 5.44 0.44 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
C: concentration of the antioxidants added; RPF: relative protection factor; IP: induction period; k: rate constant; D: density; FP: flash point; W: water 
content; AN: acid number; CP: cloud point; PP: pour point; V: kinematic viscosity; kc: rate constant; IPc: control induction period.



Clemente et al. 687Vol. 34, No. 5, 2023

for sampling equal to 1000 was selected. The choice of 
the random number seed generator is important in data 
analysis since it is related to the sequence of numbers 
provided by the program. When the same value is defined, 
the same sequence of random numbers will always be 
generated, which allows the reproduction of data whenever 
the program is initialized. This value should be changed 
if it is desirable to obtain a sampling of different data.36

In the cluster module, the concentration of antioxidants, 
in 1 g:100 g of biodiesel, and the other parameters were 
considered as continuous input variables, and the synthetic 
antioxidants used were defined as the categorical input 
variable, with A = 1 for TBHQ, A = 2 for the BHA and 
A = 3 for the BHT.

For data analysis by SOFM, the neighborhood 
parameter started at 3 and decreased to 0, the learning rate 
started at 1 and decreased exponentially to 0.02, with an 
increasing number of training cycles.

The number of cycles is an important parameter for the 
good performance of an ANN, as it refers to the number of 
times the network analyzes the data provided. This number 
must be determined so that at the end of the training step the 
error will be stabilized. However, it must not be too large 
because it would imply a longer processing time.

The choice of the network topology is fundamental 
for its good performance because if it is too small for the 
database, the neighborhood relationship can be so close 
between all neurons that all samples will be classified in just 

one group, suggesting no difference between them. If the 
network topology is too large, many groups of specialized 
neurons will be formed, due to the many possibilities of the 
neighborhood relationships. In this case, there is a large data 
dispersion, which may impair the grouping of the samples.39 
The topology used was chosen according to the number of 
samples analyzed, and the one with the best result was 12 × 12.

The SOFM network used is part of an ANN group called 
networks based on competitive learning models in which 
the output neurons of the grid compete with each other to 
be activated, and are mainly used to visualize clusters.40

According to Link et al.,24 once the network has been 
initialized, there are three essential processes involved 
in its formation: competition, cooperation, and synaptic 
adaptation. The basic principle of the SOFM map is that 
it represents high-dimensional input vectors in a lower-
dimensional 2D topology in an unsupervised way. Network 
neurons calculate their respective Euclidean distance 
values, and these values provide the basis for competition 
between them.24,40,41 The neuron with the shortest Euclidean 
distance is declared the winner, that is, the one that best 
meets the stimulus provided by the input vector.42

In a cluster-type neural network, neurons are connected 
by directed and weighted edges. During training, the input 
and output signals are adjusted by the generated weights. 
The adjustments are based on previous errors and learning 
rates, and the connection pattern between neurons is called 
the network topology.43

Table 3. BHT concentration and physicochemical parameters values of the biodiesel samples

C / 
(g 100 g-1)

RPF IP / h k / h-1 D / 
(kg m-3)

FP / °C
W / 

(mg kg-1)
AN / 

(mg KOH g-1)
CP / °C PP / °C

V / 
(mm2 s-1)

kc / h-1 IPc / h

0.0796 25.55 7.32 0.37 887.20 118.60 305.40 0.34 6.00 2.00 4.79 0.91 3.60
0.0812 22.54 4.08 0.57 878.90 131.50 304.60 0.45 4.00 0.00 4.33 0.97 2.23
0.1189 17.70 5.43 0.36 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
0.0990 18.17 4.64 0.40 879.30 86.60 292.10 0.40 3.00 0.00 4.45 0.82 2.58
0.0772 18.79 4.70 0.59 878.50 141.50 260.90 0.45 3.00 0.00 4.50 0.78 3.24
0.1521 15.69 2.72 0.97 877.90 131.30 416.00 0.45 6.00 2.00 4.52 1.41 1.14
0.1020 14.41 3.41 0.85 877.20 129.50 353.60 0.23 7.00 3.00 4.55 1.38 2.32
0.1007 19.15 5.90 0.43 875.50 98.70 401.80 0.28 10.00 3.00 4.46 1.00 3.06
0.1540 15.51 7.31 0.30 875.50 98.70 401.80 0.28 10.00 3.00 4.46 1.00 3.06
0.1475 15.82 5.18 0.54 876.30 109.50 390.53 0.30 9.00 4.00 4.57 1.38 2.22
0.1038 21.22 4.89 0.57 876.30 109.50 390.53 0.30 9.00 4.00 4.57 1.38 2.22
0.0433 27.33 7.03 0.36 876.20 110.00 310.00 0.29 6.00 2.00 4.44 0.44 5.94
0.1576 21.55 8.32 0.35 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.1310 22.00 7.06 0.35 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.1076 25.87 6.82 0.43 879.00 117.70 316.60 0.26 1.00 –1.00 4.22 1.06 2.45
0.0697 18.58 5.00 0.44 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.48 3.86
0.1035 14.89 5.95 0.40 877.30 135.00 409.50 0.17 7.00 4.00 4.43 0.48 3.86
0.1056 17.66 5.54 0.45 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
0.1247 15.52 5.75 0.37 876.60 136.40 348.30 0.22 7.00 2.00 4.70 1.07 2.97
C: concentration of the antioxidants added; RPF: relative protection factor; IP: induction period; k: rate constant; D: density; FP: flash point; W: water 
content; AN: acid number; CP: cloud point; PP: pour point; V: kinematic viscosity; kc: rate constant; IPc: control induction period.
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This type of network uses unsupervised training, so the 
network seeks to find similarities based only on the input 
patterns. The main objective of Kohonen’s self-organizing 
maps is to group input data that are similar to each other, 
forming classes or groupings called clusters.44

For training the network (Figure 1), 7000 cycles were 
used, chosen by previous experiments, which proved to 
be an adequate amount since the error stabilized at 0.02 
after 6000 cycles.

The principle of training a network involves changing 
the weights of the winning neuron and its neighbors to 
make the weight vectors more similar to the input. This 
is done by gradually decreasing the learning rate and the 
neighborhood parameter at each iteration.45

Figure 2 shows the topological map provided by the 
network, the position of the antioxidants and frequency 

in the neurons, with values in parentheses and indicated 
by different colors. In the topological map, the definition 
of the groups is characterized by the presence of empty 
neurons between the clusters. If the topology is too small 
for the database, the neighborhood relationship between all 
neurons can be so close that the network can classify all 
the samples as a single cluster. If the network topology is 
too large, there is a large data dispersion, which can affect 
the clustering of the samples.24,41,42

In the map, it is possible to observe the formation 
of two well-defined groups of samples containing the 
antioxidants TBHQ and BHA and another containing 
BHT. On the right of the map is the TBHQ, on the upper 
left the BHA, and on the lower left the BHT. In the central 
part, we have neurons with BHT close to the TBHQ and 
also close to the BHA, therefore, they are more dispersed. 
However, we have more neurons containing BHT close to 
those with BHA, suggesting a similar behavior between 
these two antioxidants. Because we have empty neurons 
between the clusters, it can be concluded that the network 
was able to identify the differences in the behavior of the 
antioxidants used.

The BHA antioxidant located in the neuron (1,7), 
where the first number refers to the row and the second to 
the column in the map, presents only the wine color of the 
topological map with frequency 3. The three assays located 
in this neuron were performed with the same biodiesel 
sample and with similar BHA antioxidant concentrations.

In locations (9,5) and (7,2) the BHT samples presented 
frequency 2. They used different biodiesel for each neuron, 
but the same biodiesel for each test in the indicated 
positions. The same happens in positions (2,10), (4,10), 

Figure 1. Error stabilization and the number of cycles used by the 
network SOFM.

Figure 2. Distribution of samples containing antioxidant position, frequency, in parentheses, and the position of the winning neuron in red. The colors 
green, orange and wine indicate the frequencies in the neurons.
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and (4,12), all containing TBHQ, with frequency 2, being 
close on the map because the IP of the samples is similar. 
In positions (1,1) and (1,5), with frequency 2, containing 
different BHA and biodiesel in both, even between the tests, 
they showed similar antioxidant concentrations.

In the central region of the map, positions (7,6), (9,7), 
and (7,8) are close, because they present similar antioxidant 
action, despite having different concentrations. The 
molecular structure of these compounds should be taken 
into account, as the antioxidant BHA was used in higher 
concentration, with 0.157 g:100 g, when compared to BHT 
with 0.101 g:100 g and TBHQ with 0.058 g:100 g.

The effectiveness of an antioxidant is related to its 
molecular structure, steric hindrance, and electronic 
behavior of the substituent. The phenolic antioxidants 
used have hydroxyl groups (-OH) that provide hydrogens 
that react with the free radicals formed in the biodiesel 
samples, delaying or decreasing the oxidation rate. TBHQ 
molecules have two -OH groups connected to the aromatic 
ring structure, while BHT and BHA have only one.46,47 

To model the behavior of the antioxidants in biodiesel, 
the data from Tables 1, 2, and 3 were also grouped into a 
single spreadsheet and used in the regression module of the 
multilayer perceptron (MLP) artificial neural networks. In 
the worksheet, cases from 1 to 19 correspond to samples 
containing TBHQ, from 20 to 36 correspond to samples 
with BHA, and from 37 to 55 to samples with BHT. In 
the regression module, the concentration of antioxidants, 
in 1 g:100 g of biodiesel, was considered as the target 
continuous variable, the other parameters were considered 
as continuous input variables and the synthetic antioxidants 
were used as categorical input variables, with A = 1 for 
TBHQ, A = 2 for BHA and A = 3 for BHT.

 5 to 20 hidden units were selected, and 200 networks 
were trained to solve the problem. The 5 best networks 
represent the relationship between the input and output 
variables, that is, those networks that reach the maximum 

correlation between the targets and the neural network 
outputs were chosen by the Statistica software.36

The Statistica MLP regression module specifies the 
number of hidden layers and the number of neuron units 
in each layer. For neurons of the hidden and output layers, 
the activation functions used were identity, logistic, tanh, 
and exponential. From the total number of samples chosen 
randomly, 70% were trained by the network, 15% for 
testing, and 15% for validation.36

The decay weight in the hidden layers and in the output 
layer varied between 10-4 and 10-3, reducing the overfitting 
and improving the generalization efficiency of the network. 
Larger values can affect network performance in an 
unacceptable way.36 Before the network initialization, the 
sum of the squares error (SOS) function was selected and 
the training algorithm used was the BFGS, individually 
proposed by Broyden-Fletcher-Goldfarb-Shanno.36,41

Choosing the number of hidden layers is important, as 
the greater the number the greater the non-linear mapping 
capacity. However, the excess of neurons in these layers leads 
to a reduction in the learning rate and over-fitting. The choice 
of 70% for training samples proved to be adequate because 
a larger number can cause an increase in processing time, 
reducing the efficiency of the network, and a small number 
can affect the fit and generalization ability of the network.41,48

The activation functions in a network transform the 
input signals of previous layer neurons into an output signal 
by a mathematical function, which is chosen before starting 
the regression module, and can influence the performance 
of the model obtained.36,41,49

To assess whether the number of cycles chosen was 
adequate, error graphs were obtained for the first and 
fourth networks of the five ones with the best performance. 
Figure 3 shows the number of cycles used to train and test 
the best performing 1.MLP 15-15-1 and the fourth best 
performing 4.MLP 15-20-1 networks. The first required 22 
training cycles to reach stability and the latter 79. The error 

Figure 3. Error stabilization and the number of cycles used by the MLP network.
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reduction, which represents the sum of squared differences 
between the target and output values (SOS) was fast, and 
small oscillations were observed only in the first training 
and testing cycles.

The global sensitive analysis, which provides information 
about the relative importance and evaluates the contribution 
of the input variables in the model construction, showed that 
the RPF contributed with 34.89%, the type of antioxidant 
with 31.49%, the induction period with 10.69%, the water 
content with 6.00% and the others all together with 16.93%. 
The variables order of importance was RPF > A > IP > W 
> kc > CP > AN > D > PP > k > IPc > V > FP. 	

Tables 4, 5, and 6 show the cases used for training, 
testing, and validation, respectively, values of concentrations 
of synthetic antioxidants added to biodiesel (target) and 
estimated by the 5 best networks selected. In the networks 
column, the first number represents the 15 input variables, 
the second the number of hidden units and the last one is 
the number of outputs. In the last two columns are the mean 
values and standard deviations (StdD). The performance 
of the 5 most active networks ranged from 89 to 99% for 
training, from 90 to 99% for testing, and from 92 to 99% for 
validation. Furthermore, the error ranged from 1.00 × 10-6 to 
2.25 × 10-4 for the training, from 6.00 × 10-6 to 4.47 × 10-4 

Table 4. Samples used for training, targeting, and predicted concentration of antioxidants (TBHQ, BHA and BHT), and statistical test employed

Sample
C (Target) / 
(g 100 g-1)

C (15-15-1) / 
(g 100 g-1)

C (15-5-1) / 
(g 100 g-1)

C (15-13-1) / 
(g 100 g-1)

C (15-20-1) / 
(g 100 g-1)

C (15-16-1) / 
(g 100 g-1)

Mean StdD

1 0.060 0.059 0.032 0.061 0.060 0.049 0.052 0.012

2 0.033 0.033 0.037 0.037 0.033 0.052 0.038 0.008

3 0.034 0.034 0.037 0.038 0.034 0.052 0.039 0.007

4 0.039 0.038 0.037 0.037 0.038 0.052 0.041 0.007

5 0.034 0.035 0.032 0.033 0.034 0.048 0.036 0.007

6 0.058 0.057 0.043 0.051 0.058 0.061 0.054 0.007

7 0.037 0.037 0.040 0.040 0.037 0.058 0.043 0.009

8 0.103 0.103 0.043 0.112 0.103 0.061 0.084 0.030

9 0.053 0.054 0.039 0.048 0.053 0.057 0.050 0.007

13 0.022 0.022 0.029 0.024 0.022 0.046 0.029 0.010

14 0.022 0.021 0.038 0.026 0.022 0.053 0.032 0.013

16 0.027 0.026 0.032 0.027 0.027 0.049 0.032 0.010

17 0.046 0.046 0.033 0.040 0.046 0.050 0.043 0.007

19 0.043 0.044 0.036 0.036 0.043 0.053 0.042 0.007

20 0.065 0.064 0.071 0.062 0.065 0.081 0.069 0.008

21 0.069 0.068 0.097 0.074 0.069 0.093 0.080a 0.014

24 0.158 0.158 0.153 0.155 0.158 0.125 0.150 0.014

25 0.104 0.103 0.115 0.095 0.104 0.113 0.106 0.008

26 0.104 0.105 0.114 0.117 0.104 0.115 0.111a 0.006

27 0.148 0.148 0.118 0.132 0.148 0.117 0.133 0.015

30 0.048 0.048 0.059 0.042 0.047 0.072 0.054 0.012

31 0.152 0.148 0.127 0.138 0.152 0.105 0.134 0.019

32 0.098 0.100 0.119 0.106 0.098 0.102 0.105 0.008

33 0.070 0.071 0.073 0.073 0.070 0.088 0.075 0.008

34 0.107 0.109 0.096 0.108 0.107 0.102 0.104 0.005

35 0.079 0.078 0.092 0.086 0.078 0.100 0.087 0.009

37 0.080 0.080 0.077 0.080 0.080 0.090 0.081 0.005

41 0.077 0.078 0.078 0.075 0.077 0.084 0.078 0.003

42 0.152 0.151 0.161 0.155 0.152 0.128 0.150 0.012

43 0.102 0.103 0.120 0.093 0.102 0.118 0.107 0.011

45 0.154 0.154 0.128 0.142 0.154 0.122 0.140 0.015

46 0.148 0.149 0.141 0.139 0.147 0.127 0.141 0.009

47 0.104 0.103 0.136 0.128 0.104 0.126 0.119 0.015

48 0.043 0.043 0.062 0.042 0.043 0.078 0.054 0.016

50 0.131 0.133 0.134 0.135 0.131 0.112 0.129 0.010

52 0.070 0.070 0.077 0.077 0.070 0.095 0.078 0.011

53 0.104 0.104 0.080 0.100 0.103 0.097 0.097 0.010

54 0.106 0.108 0.102 0.109 0.106 0.108 0.107 0.003

55 0.125 0.122 0.104 0.117 0.124 0.109 0.115 0.009
aHypothesis of homogeneity of variance not accepted. C: concentration of the antioxidants; StdD: standard deviations.
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for the test and from 8.00 × 10-6 to 1.42 × 10-4 for validation, 
indicating the quality of the models represented by these 
networks.

The application of testing and validation (Tables 5 and 
6) is recommended because the performance of a neural 
network is measured by how much it generalizes unseen 
data, that is, how well it predicts data that were not used 
during training. Like the test sample, a validation sample 
is not used to train the neural network but for additional 
verification of the models’ performance. If the network 
performs consistently and well across testing and validation 
samples, then it is reasonable to assume that the network 
generalizes well unseen data.36

Since the Tukey’s method is only valid if the variance 
is homogeneous, Levene’s test was applied, which is 
a variance analysis of the absolute deviation values of 
the respective means of the group. The hypothesis of 
homogeneity was accepted because the p-values obtained 
were greater than 0.05, except in two cases that are 
presented in the table with an asterisk. The Tukey’s test 
applied to the means did not show a significant difference 
at the 5% level in any of the cases, considering the values 
of the TBHQ, BHA, and BHT antioxidants concentrations 

added to the biodiesel and the average of the values obtained 
by the 5 best networks.20,36

Figure 4 shows the dispersion between the target 
and the output concentration values during the training 
of the two MLP-type networks that presented the 
best performance, which is a quality indication of the 
regression model used.

Table 5. Cases used for testing, targeting and predicted concentration of antioxidants (TBHQ, BHA and BHT) and statistical tests employed

Cases
C (Target) / 
(g 100 g-1)

C (15-15-1) / 
(g 100 g-1)

C (15-5-1) / 
(g 100 g-1)

C (15-13-1) / 
(g 100 g-1)

C (15-20-1) / 
(g 100 g-1)

C (15-16-1) / 
(g 100 g-1)

Mean StdD

15 0.009 –0.008 0.033 0.022 0.008 0.050 0.021 0.022

18 0.019 0.011 0.033 0.024 0.017 0.051 0.027 0.016

28 0.149 0.165 0.133 0.139 0.151 0.123 0.142 0.016

36 0.065 0.061 0.091 0.076 0.061 0.099 0.078 0.017

39 0.119 0.101 0.110 0.100 0.116 0.104 0.106 0.007

40 0.099 0.083 0.108 0.088 0.103 0.103 0.097 0.011

44 0.101 0.083 0.122 0.119 0.098 0.120 0.108 0.017

49 0.158 0.162 0.137 0.146 0.151 0.113 0.142 0.019

C: concentration of the antioxidants; StdD: standard deviations.

Table 6. Cases used for validation, targeting, and predicted concentration of antioxidants (TBHQ, BHA and BHT), and statistical tests employed

Cases
C (Target) / 
(g 100 g-1)

C (15-15-1) / 
(g 100 g-1)

C (15-5-1) / 
(g 100 g-1)

C (15-13-1) / 
(g 100 g-1)

C (15-20-1) / 
(g 100 g-1)

C (15-16-1) / 
(g 100 g-1)

Mean StdD

10 0.048 0.045 0.040 0.049 0.049 0.059 0.048 0.007

11 0.050 0.047 0.043 0.059 0.066 0.064 0.056 0.010

12 0.066 0.061 0.043 0.074 0.078 0.064 0.064 0.014

22 0.099 0.093 0.101 0.084 0.101 0.095 0.095 0.007

23 0.067 0.068 0.073 0.063 0.067 0.076 0.070 0.005

29 0.101 0.099 0.124 0.109 0.111 0.120 0.113 0.010

38 0.081 0.079 0.105 0.093 0.077 0.101 0.091 0.013

51 0.108 0.114 0.130 0.124 0.102 0.110 0.116 0.011

C: concentration of the antioxidants; StdD: standard deviations.

Figure 4. Dispersion graph between predicted values and target values 
obtained by the 1.MLP 15-15-1 and 4.MLP 15-20-1 networks.
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Conclusions

In this work, the relationship between the biodiesel 
physicochemical parameters and the concentration of 
the synthetic antioxidants TBHQ, BHA and BHT added 
were studied, by applying SOFM (self-organizing feature 
maps) and MLP (multilayer perceptron) artificial neural 
networks type.

The SOFM neural network proved to be an adequate 
tool for the classification and recognition patterns of 
biodiesel samples containing TBHQ, BHA, and BHT.

The sensitive analysis showed that the relative 
protection factor and the type of antioxidant used were the 
variables that most influenced the construction of regression 
models using multilayer perceptron networks.

Statistical tests applied to validate the predictive model 
showed no significant difference between predicted and 
experimental values.

The application of mathematical modeling using 
SOFM and MLP neural networks to estimate the amount 
of antioxidant to be added to biodiesel can be interesting to 
improve manufacturing techniques, choice of antioxidant 
and help industries to produce biodiesel with induction 
period values within specifications.
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