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Abstract

The joint X and R charts and the joint X and S2 charts are the most common charts used for monitoring the process 
mean and dispersion. With the usual sample sizes of 4 and 5, the joint X and R charts are slightly inferior to the joint 
X and S2 charts in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate 
case, the charts based on the standardized sample means and sample ranges (MRMAX chart) or on the standardized 
sample means and sample variances (MVMAX chart) are similar in terms of efficiency in detecting shifts in the mean 
vector and/or in the covariance matrix. User’s familiarity with the computation of sample ranges is a point in favor of 
the MRMAX chart. An example is presented to illustrate the application of the proposed chart.
Keywords
Control charts. Mean vector. Covariance matrix. Multivariate processes.

1. Introduction

The control of several parameters is a 
requirement to assure the quality of many processes 
nowadays. Hotelling (1947) provided the first 
solution to this problem by suggesting the use 
of the T2 statistic for monitoring the mean vector 
of multivariate processes. Many innovations have 
been proposed to improve the performance of the 
T2 charts. Costa and Machado (2007) studied the 
properties of the synthetic T2 chart with two-stage 
sampling. Machado and Costa (2008b) considered 
the use of simultaneous X charts as an alternative 
to the use of the T2 chart. Costa and Machado 
(2008b) considered the use of the double sampling 
procedure with the chart proposed by Hotelling. 

The first multivariate control chart for 
monitoring the covariance matrix Σ was based on 
the charting statistic obtained from the generalized 
likelihood ratio test. For the case of two variables, 
Alt (1985) proposed the generalized variance 
statistic |S| to control the covariance matrix Σ.

Control charts more efficient than the |S| chart 
have been proposed. Recently, Costa and Machado 

(2008a, 2009), Machado and Costa (2008a) 
and Machado, De Magalhães and Costa (2008), 
Machado, Costa and Rahim (2008), Machado, Costa 
and Claro (2009) considered the VMAX statistic 
to control the covariance matrix of multivariate 
processes. The points plotted on the VMAX chart 
correspond to the maximum of the sample variances 
of the p quality characteristics.

There are a few recent papers dealing with the 
joint control of the mean vector and the covariance 
matrix of multivariate processes. Chou et al. (2002) 
have considered the multivariate control chart for 
monitoring the process mean vector and covariance 
matrix for the related quality characteristics 
simultaneously by using log-likelihood ratio 
statistics. Takemoto and Arizono (2005) considered 
the multivariate (X, S) control chart for monitoring 
the mean vector m and the covariance matrix Σ 
simultaneously based on the Kullback–Leibler 
information as the test statistic.

Khoo (2005) proposed a control chart based on 
the T2 and |S| statistics for monitoring bivariate 
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2. Univariate charts for monitoring 
process mean and dispersion

In recent years, considerable attention has 
been devoted to the joint monitoring of the 
process parameters μ and s. The X chart is used 
for monitoring the parameter μ and the R or the 
S2  charts are used for monitoring the parameter s. 
For monitoring both process mean and dispersion, 
the R chart combined with the X chart has been 
more used than the S2 chart. The reason for this fact 
is that sample ranges are easier to compute. The 
joint X and R charts and X and S2 charts are briefly 
discussed in Section 2.1. In Section 2.2 the joint 
charts are compared in terms of their efficiency in 
detecting process shifts.

In this paper the average run length (ARL) 
measures the efficiency of a control chart in 
detecting a process change. During the in-control 
period the ARL = 1/a and is called ARL0, and during 
the out-of-control period the ARL = 1/(1 – b). The 
risks a and b are, respectively, the well-known Type I 
and Type II errors. A chart with a larger in-control 
ARL (ARL0) indicates lower false alarm rate than 
other charts. A chart with a smaller out-of-control 
ARL indicates a better ability of detecting process 
shifts than other charts.

2.1. The joint charts

Let X1, X2, ..., Xn be a random sample of size n 
from a normally distributed process with mean m 
and variance s2. The process is considered to start 
in a state of statistical control with the mean and 
the variance equal to m0 and s2

0 respectively. The 
occurrence of the assignable cause changes the 
mean from m0 to m1 = m0 + δs0 and/or the variance 
from s2

0 to s2
1 = a2s2

0, with δ ≠ 0 and a > 1.0.
The upper and lower control limits for the X 

chart are respectively

UCL k nX = +µ σ0 1 0
1 2 	 (1)

LCL k nX = −µ σ0 1 0
1 2 	 (2)

where k1 is the control limit coefficient of the X 
chart. The upper control limit for the R chart is

UCL kR = 2 0σ 	 (3)

where k2 is the control limit coefficient of the R 
chart. We make the lower control limit of the R 
chart equals to zero for convenience. The control 
limit for the S2 chart is 

CL
n n=

− −
σ

χ α
0
2

1
2

1 , 	 (4)

processes. The speed with which the chart signals 
changes in the mean vector and/or in the covariance 
matrix was obtained by simulation. The results are 
not compelling, once the proposed chart is slow in 
signaling out-of-control conditions. Chen, Cheng 
and Xie (2005) proposed a single EWMA chart to 
control both, the mean vector and the covariance 
matrix. Their chart is more efficient than the joint 
T2 and |S| in signaling small changes in the process. 
Zhang and Chang (2008) proposed two EWMA 
charts based on individual observations that are 
not only fast in signaling but also very efficient 
in informing which parameter was affected by the 
assignable cause; if only the mean vector or only 
the covariance matrix or both. 

Machado, Costa and Marins (2009) proposed 
two new control charts for monitoring the mean 
vector and the covariance matrix of bivariate 
processes. First, they proposed the MVMAX chart, 
which only requires the computation of statistics 
familiar to the users, that is, sample means and 
sample variances. Second, they proposed the 
joint use of two charts based on the non-central 
chi-square statistic (NCS statistic), named as the 
NCS charts. The joint NCS charts are recommended 
for those who aim to identify the out-of-control 
variable instead of the nature of the disturbance, 
that is, the one that only affects the mean vector or 
only affects the covariance matrix or both. 

For the univariate case, the joint X and R charts 
are commonly used for monitoring process mean and 
variance. According to the literature, a control chart 
based on sample means and sample ranges has not 
yet been proposed for monitoring the mean vector 
and the covariance matrix of multivariate processes.

As an alternative to the MVMAX chart, we propose 
a chart based on the synthetic procedure, named as 
the synthetic MRMAX chart, to control both the mean 
vector and the covariance matrix of multivariate 
processes. The sample points correspond to the 
maximum among the values of the standardized 
sample means (in module) and ranges (weighted) of 
p quality characteristics. The sample points plotted 
on the MVMAX chart correspond to the maximum 
among the values of sample means and sample 
variances. User´s familiarity with sample means and 
sample ranges is a point in favor of the MRMAX chart.

The paper is organized as follows. In section 2 
we compare the efficiency of the joint X and R 
charts and X and S2 charts. In Section 3 we present 
the properties of the synthetic MRMAX chart. We 
also present its competitors, that is, the synthetic 
MVMAX chart and the joint T2 and |S| charts. The 
proposed chart is compared with its competitors in 
Section 4. In Section 5, an example is presented 
to illustrate the application of the proposed chart. 
Conclusions are in Section 6. 
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We adopt a Type I error of five per one thousand 
(a = 0.005), that is, ARL0 = 200.0. The study with n > 5 
led to larger values of Pv. According to expression (6), 
the power of the X chart is independent of the shift 
direction, that is, if the process mean increases or 
decreases. Based on that, the values of δ in Table 1 
and, in all other tables, are in module.

3. Multivariate charts for monitoring 
process mean and dispersion

3.1. The MRMAX chart

In this section we propose a new chart based on 
sample means and sample ranges for monitoring the 
mean vector m and/or the covariance matrix  S of 
multivariate processes with p quality characteristics 
that follow a multivariate normal distribution. 
The sample point plotted on the proposed chart 
corresponds to the largest value among (|Z1|, 
|Z2|, ..., |Zp|, W1, W2, ..., Wp), i = 1, 2, ..., p, where 
Z n Xi i i i= −( )µ σ  and Wi = kRi/si. As the monitoring 
statistic is the maximum value among standardized 
sample means and weighted standardized sample 
ranges, the chart is called the MRMAX chart.

The parameter k is required to attend the 
imposed condition that, during the in-control 
period, the statistics (|Z1|, |Z2|, ..., |Zp|, W1, W2, ..., 
Wp) have the same probability to exceed CL, the 
control limit of the MRMAX chart. 

The process is considered to start with the 
mean vector and the covariance matrix on target 
(m = m0 and S = S0), where m´0 = (m1, m2, ..., mp) 

and 0
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of the assignable cause changes the mean vector 

The joint charts have probability P of signaling:

P P P P PM D M D= + − 	 (5)

Then, the ARL = 1/P.
The probability PM of X exceeding the upper or 

the lower control limits is given by:

P k a n a k a n aM = − −( ) + − +( )Φ Φ1
1 2

1
1 2δ δ 	 (6)

where Φ( ) is the cumulative standard normal 
distribution. 

If the R chart is used to control the process 
dispersion, then the probability PD of R exceeding 
the upper control limit is given by

P F k aD w= − ( )1 2 	 (7)

being Fw( ) the accumulated distribution function 
of the random variable W = R/s. Fw( ) has been 
tabulated, see Costa, Epprecht and Carpinetti (2005).

If the S2 chart is used to control the process 
dispersion, then the probability PD of S2 exceeding 
the control limit is given by

P
aD n
n= − >











−

−1 1
2 1

2

2Pr ,χ
χ α 	 (8)

2.2. Comparing the joint charts
In this section we compare the joint X and R 

charts with the joint X and S2 charts. Table 1 shows 
their ARLs. The joint X and S2 charts are faster than 
the joint X and R charts in detecting increases in 
the variance followed or not by shifts in the process 
mean. The superiority of the joint X and S2 charts 
becomes more evident when the process variance 
is subject to large increases, see the Pv values in 
Table 1, which are given by:

Pv
ARL ARL

ARL
XR XS

XR

=
−( )

100
2

%

Table 1. The ARL of the joint charts (n = 5).

a | δ | X & S2 X & R Pv (%) a | δ | X & S2 X & R Pv (%)

1.0 0 200 200 0.0 1.5 0 24.8 26.4 6.1
0.2 129.1 129.1 0.0 0.2 21.5 22.7 5.3
0.4 52.2 52.2 0.0 0.4 14.8 15.3 3.3
0.6 20.5 20.5 0.0 0.6 9.1 9.3 2.2
0.8 9.0 9.0 0.0 0.8 5.6 5.6 0.0
1.0 4.6 4.6 0.0 1.0 3.6 3.6 0.0

1.2 0 70.9 73.3 3.4 2.0 0 8.8 9.5 7.4
0.2 54.3 55.7 2.6 0.2 8.2 8.8 6.8
0.4 29.1 29.5 1.4 0.4 6.8 7.2 5.6
0.6 14.2 14.3 0.7 0.6 5.2 5.4 3.7
0.8 7.3 7.3 0.0 0.8 3.9 4.0 2.5
1.0 4.1 4.1 0.0 1.0 2.9 2.9 0.0
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The in-control covariance matrix is given by 

=






∑
σ σ
σ σ
11 12

21 22
0 . The assignable cause changes the 

mean vector from m´0 to m´1 (m1 + d1s1; m2 + d2s2) 
and/or changes the covariance matrix from S0 to 

=
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅







∑
a a a a
a a a a
1 1 11 1 2 12

1 2 21 2 2 22
1

σ σ
σ σ . The assignable cause 

does not affect the correlation between X1 and X2, 

given by ρ
σ

σ σ
= 12

1 2
. We have that xi ~ N (mi, aisi), 

with i = 1, 2. Then,

P F w wD = − ( )1 1 2, 	 (12)

being w1 = CL/a1 and w2 = CL/a2. CL was divided by 
ai to hold the condition that xi/aisi ~ N(mi/aisi,1), 
with i = 1, 2.

Let (x1,x2) be the pair of values of the two quality 
characteristics of each inspected item. Consider that 
y1 = min(x11, x12, ..., x1n) and y2 = min(x21, x22, ..., x2n) 
and two cases: a) (x1i = y1, x2i =y2), that is, the ith 
item of the sample has the minimum value of the 
two quality characteristics; b) (x1j = y1, x2j > y2) and 
(x1k > y1, x2k = y2) with j ≠ k ∈ {1, 2, ..., n}, that 
is, the jth item of the sample has the minimum 
value of the first quality characteristic and the kth 
one has the minimum value of the second quality 
characteristic. Based on that,

F w w n D dB z z
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The probability D1 is given by:
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The probability D2 is given by:

D y x y w y y x y w y

A A
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According to the conditional distribution 
x|y ~ N(ry;(1 – r2)), see Mood, Graybill and Boes 
(1974). Then, it follows that:

from m´0 to m´1 = (m1 + d1s1; m2 + d2s2; ...; 
mp  +  dpsp) and/or the covariance matrix from S0 

to 1
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σ σij
ij

i j
= , i, j = 1, 2, ..., p, with i ≠ j, 

are not affected by the assignable cause. After the 
occurrence of the assignable cause it is assumed 
that at least one |di| becomes larger than zero 
and/or at least one ai becomes larger than one, 
i = 1, 2, ..., p.

If the MRMAX statistic falls beyond the control 
limit, CL, the control chart signals an out-of-control 
condition. Once the MRMAX chart signals, the user 
can immediately examine the sample means or 
the sample ranges of the p quality characteristics 
to discover which variable was affected by the 
assignable cause, that is, the one with the sample 
mean and/or the sample range larger than the 
control limit. For security, we might consider that 
the assignable cause has also affected an other 
variable when its sample mean and/or sample range 
is close, even though below the control limit.

3.1.1. The properties of the MRMAX chart 

Let us consider the bivariate case to illustrate how 
the properties of the MRMAX chart were obtained, 
that is, its false alarm risk α and power of detection 
P. We used the property that the sample means are 
independent of the sample ranges. Therefore, the 
MRMAX chart has probability P of signaling:

P P P P PM D M D= + − 	 (9)

Regarding to the sample means, the probability 
PM of |Z1| and/or |Z2| exceeding the control limit is 
given by:

P f Z Z d dM CL n
CL n

CL n
CL n

Z Z= − ( )− +
+

− +
+

∫∫1 1 2
2

2

1

1

1 2
,

δ
δ

δ
δ 	 (10)

where f(Z1, Z2) is a standardized bivariate normal 
distribution function, reminding that CL is the 
control limit of the MRMAX chart. The probability  
PM can be obtained for p > 2 using an algorithm 
given in Serel, Moskowitz and Tang (2000).

Regarding to the sample ranges, the probability  
PD of W1 and/or W2 exceeding the control limit is:

P W CL W CLD = − <( )∩ <( ) 1 1 2Pr 	 (11)

where W1 = kR1/s1 and W2 = kR2/s2, being Ri = max[xi1, 
xi2, ..., xin] – min[xi1, xi2, ..., xin], i = 1, 2 the sample 
ranges of two quality characteristics X1 and X2.
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Davis and Woodall (2002), Costa and Rahim (2006), 
Costa, Magalhães and Epprecht (2008)).

According to Davis and Woodall (2002) the 
proper parameter to measure the performance of 
the synthetic chart is the steady-state ARL, that is, 
the ARL value obtained when the process remains 
in-control for a long time before the occurrence of 
the assignable cause. 

We adopted the following approach to obtain 
the steady-state ARL for the synthetic MRMAX 
chart:

Specify r, ARL0, n, L, a1, a2, d1 and d2; 
With L and ARL0 find the value of Q0 that makes 

s M’
0 0

1
1 1 1× × = −( )−

1 - ARL 	 (18)

where M is a matrix of zeros except for m11= Q0; 
m12=  –Q0; mi, i+1 = Q0–1, i = 2,3,…,L; and 
mL+1,1 = Q0–1; 1 is an (L+1) × 1 vector of ones; and 
s0 is an (L + 1) × 1 vector with s01 = [1 + (L - 1) Q0]

-1 
and s0 j = Q0s01, j = 2,…,L+1. 

With d1 = d2 = 0, r, n and equation (10) find the 
value of CL that makes PM = 1 – Q0;

When the process is out-of-control, the steady-
state ARL is given by 

ARL s M= ′ × ×0 1 	 (19)

where M is now a matrix of zeros except for m11 = Q; 
m12= –Q; mi, i+1 = Q – 1, i = 2,…,L; and mL+1,1 = Q – 1, 
where Q = 1 - P with P given by expression (9).

Table 2 shows the influence of the design 
parameter L on the MRMAX performance. As L 
increases the speed with which the synthetic MRMAX 
chart signals also increases. The gain in speed is 
more significant when L increases from 1 to 6. For 
instance, when a1 = a2 = 1 and d1 = d2 = 0.5, the 
ARL reduces 18.0% (from 21.4 to 17.5). On the 
other hand, as L increases from 6 to 10, the ARL 
reduces 1.0% (from 17.5 to 17.3), see Table 2.

A y w y1 1 1 2
21= + −( ) −ρ ρ

A y y2 1 2
21= −( ) −ρ ρ

A y w y3 2 2 1
21= + −( ) −ρ ρ

A y y4 2 1
21= −( ) −ρ ρ

where Φ(x) is the standard normal cumulative 
distribution function. 

The parameter k is obtained by expression (11), 
fixing a1 = a2 = 1 and PD = − −1 1 α , recalling that 
CL is computed by expression (10). 

In the Appendix I we present the expression 
to compute PD for the trivariate case with good 
accuracy, once the simulation technique was used 
only to obtain the probability of a signal given by all 
standardized sample ranges W1, W2 and W3 falling 
beyond the control limit (CL). This probability is 
small if compared with the probability of a signal 
given by only one or two standardized sample 
ranges falling beyond the control limit. Following 
the calculation presented in the Appendix I, we can 
extend the study for the cases where p > 3.

When the rule of one point in the action region is 
adopted and the rate of false alarm is specified as α. 
Imposing equal in-control PD and PM probabilities, 
the control limit of the MRMAX chart is obtained by 
expression (10), with d1 = d2 = 0 and PM = − −1 1 α .  
The value of k is obtained by expression (12), 
with a1 = a2 = 1 and PD = − −1 1 α .  We used the 
subroutine BNRDF available on the IMSL Fortran 
library (MICROSOFT..., 1995) to compute the 
bivariate normal distribution function. The MRMAX 
chart is not always faster in signaling than the joint 
T2 and |S| charts. However, the synthetic procedure, 
introduced by Wu and Spedding (2000b), improves 
the performance of the MRMAX chart.

When the synthetic procedure is in use, a second 
sample point beyond the control limits and not far 
than L sampling intervals from the first one triggers 
the alarm, see Figure 1. According to this figure, 
the number of sampling intervals between the two 
points beyond CL is l = 3 and the design parameter 
L is equal to 5; consequently, the synthetic MRMAX 
chart signals once l < L. 

The growing interest in using this rule may 
be explained by the fact that many practitioners 
prefer waiting until the occurrence of a second 
point beyond the control limits before looking for 
an assignable cause (see Wu and Spedding (2000a, 
2000b), Wu, Zhang and Yeo (2001), Wu, Yeo and 
Spedding (2001), Calzada and Scariano (2001), 

Figure 1. The synthetic MRMAX chart.
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Table 2. The influence of the L value on the synthetic MRMAX chart’s performance (ρ = 0.5, n = 5).

L = 1 2 3 4 5 6 7 8 9 10

CL = 2.350 2.469 2.536 2.582 2.617 2.644 2.667 2.687 2.703 2.719

a1 a2 |d1| |d2| ARL

1.0 1.0 0 0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
0 0.5 45.3 40.9 39.1 37.9 37.2 36.8 36.3 36.1 35.8 35.8

0.5 0.5 21.4 19.2 18.4 17.9 17.7 17.5 17.4 17.3 17.3 17.3
1.25 1.25 0 0 15.4 13.6 12.9 12.5 12.3 12.1 12.1 12.0 12.0 11.9

0 0.5 9.67 8.43 7.98 7.74 7.60 7.5 7.5 7.4 7.4 7.4
0.5 0.5 6.95 6.06 5.75 5.59 5.50 5.5 5.4 5.4 5.4 5.4

1.5 1.0 0 0 9.82 8.28 7.69 7.36 7.17 7.0 7.0 6.9 6.8 6.8
0 0.5 7.42 6.40 6.03 5.84 5.73 5.7 5.6 5.6 5.6 5.6

0.5 0 7.02 5.90 5.49 5.27 5.14 5.1 5.0 5.0 4.9 4.9
0.5 0.5 5.68 4.89 4.60 4.46 4.38 4.3 4.3 4.3 4.3 4.2

3.2. The MVMAX chart

Section 5 compares the synthetic MRMAX 
chart with the synthetic MVMAX chart proposed 
by Machado, Costa and Marins (2009). The 
MVMAX statistic is based on the largest value 
among the standardized sample means (in module) 
and variances (weighted). For the bivariate 
case, MVMAX  =  max(|Z1|, |Z2|,  W1,  W2), where 
Z1 = √n(X1 – m1)/s1, Z2 = √n(X2 – m2)/s2, W1 = kS2

1/
s2

1, W2 = kS2
2/s

2
2, S

2
1 = Sn

j=1(x1j – X1)
2/n – 1 and 

S2
2 = Sn

j=1(x2j – X2)
2/n – 1.

The MVMAX chart has also probability P of 
signaling, reminding that P = PM + PD – PMPD. The 
probability PM is given by expression (10). 

According to Machado, Costa and Marins (2009) 
the probability PD for the bivariate case is given by:
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recalling that the notation c2
n(m) represents a 

non-central chi-square distribution with n degrees 
of freedom and non-centrality parameter given by 
m. The parameter k is required to attend the imposed 
condition that, during the in-control period, the 
standardized sample means and variances have the 
same probability to exceed CL, the control limit of 
the MVMAX chart. 

The approach described in the Appendix I can 
be used to obtain the properties of the multivariate 
MVMAX chart.

3.3. The joint T 2 and |S| charts

Section 5 also compares the MRMAX chart 
with the joint T2 and |S| charts. The T2 chart was 

introduced by Hotelling (1947) and it is the most 
common chart used to control the mean vector of 
multivariate processes. 

Consider that p correlated characteristics 
are being measured simultaneously and when a 
sample of size n is taken we have n values of each 
characteristic and it is possible to calculate the X 
vector, which represents the sample average vector 
for the p characteristics.

The charting statistic

T n X X2
0 00

1= −( )′ −( )−∑µ µ 	 (21)

is called Hotelling’s T2 statistic. When the process 
is in control, T2 is distributed as a chi-square 
variate with p degrees of freedom, that is, T2 ~ c2

p. 
Consequently, the control limit for the T2 chart is 
CL = c2

p,a, where a is the type I error. When the 
process is out-of-control, T2 is distributed as a 
non-central chi-squared distribution with p degrees 
of freedom and with non-centrality parameter 
l = n(m – m0)´S0

–1(m – m0) , that is, T2 ~ c2
p(l).

The first multivariate control chart for 
monitoring the covariance matrix S was based 
on the charting statistic obtained from the 
generalized likelihood ratio test, see Alt (1985). 
For the case of two variables Alt (1985) proposed 
the generalized variance |S| statistic to control the 
covariance matrix S. When the process is in control, 

2 1 1 2

0
1 2

⋅ −( )⋅

∑

n S
 is distributed as a chi-square variable 

with 2n – 4 degrees of freedom, where S =










s s
s s
11 12

21 22
, 

and S11 and S22 are the sample variances of X1 and 

X2 and S12 = S21 the sample covariances between X1 
and X2. Consequently, the upper control limit for 
the |S| chart is:
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Table 3. Values of X1, X2, X3, |Z1|,|Z2|, |Z3|, W1, W2, W3, MRMAX, T2 and |S|.

Sample Observations |Z| W* MRMAX T2 |S|

1 2 3 4 5

1 X1 1.973 0.584 –0.819 0.213 0.667 1.171 1.595 2.124 1.386 1.024
X2 0.474 1.358 –1.239 –0.038 0.914 0.657 1.484
X3 0.178 2.437 –0.156 –1.281 0.018 0.535 2.124

2 0.241 –0.258 0.955 –0.277 –1.641 0.438 1.483 1.483 1.344 0.199
1.469 –0.382 1.319 0.105 –0.955 0.696 1.385
0.621 –0.385 0.854 0.422 –1.666 0.069 1.440

3 1.057 –1.544 –1.449 0.787 –0.079 0.549 1.486 1.755 3.266 0.634
0.083 –1.977 –2.396 0.171 0.195 1.755 1.480
0.616 –0.021 –1.649 –0.633 –0.409 0.937 1.294

4 1.712 0.404 –0.219 –0.374 1.377 1.297 1.192 1.547 1.854 0.184
–0.244 0.971 0.433 0.456 0.636 1.007 0.694
0.03 1.926 1.179 –0.625 –0.781 0.773 1.547

5 0.652 –0.141 0.309 0.169 1.622 1.168 1.007 1.168 1.588 0.065
–0.37 0.615 –0.45 0.584 1.404 0.797 1.059
0.839 –0.927 0.428 –0.437 0.824 0.325 1.009

6 –2.446 –1.624 0.758 0.299 0.003 1.346 1.831 2.039 4.712 1.301
0.296 –1.003 0.988 0.911 0.600 0.801 1.138

–0.968 –1.524 –0.744 2.044 0.857 0.150 2.039
7 2.112 –0.505 0.852 –0.047 1.704 1.841 1.495 1.868 4.598 0.016

1.343 0.130 1.174 0.312 1.219 1.868 0.693
0.120 0.847 0.168 0.603 0.835 1.151 0.415

8 3.850 1.226 –0.451 1.386 0.260 2.804 2.458 2.804 12.551 2.351
0.727 0.643 –0.736 0.721 –1.600 0.110 1.330
1.401 –0.782 0.958 0.400 –1.350 0.280 1.572

9 –0.278 1.394 –1.123 0.418 1.543 0.874 1.523 1.570 1.660 0.124
–0.791 0.830 0.225 1.956 0.343 1.146 1.570
–0.349 0.732 0.398 0.932 0.660 1.061 0.732

10 –0.105 1.548 –1.388 1.266 0.079 0.626 1.678 2.564 9.869 0.094
1.528 0.607 0.889 0.942 1.767 2.564 0.663
0.371 1.891 1.131 0.646 1.351 2.410 0.869

11 1.327 1.170 –0.047 –0.894 0.810 1.058 1.269 2.024 4.191 0.300
0.518 1.556 1.095 –0.743 0.423 1.274 1.314

–0.033 2.522 1.369 0.280 0.388 2.024 1.460
12 0.684 1.595 1.331 1.595 1.170 2.851 1.707 2.851 8.662 0.115

1.864 –0.545 –0.434 –0.462 2.443 1.282 0.521
2.211 –0.452 0.070 1.153 1.398 1.959 1.522

13 0.169 0.946 –0.865 2.077 –0.260 0.924 1.681 1.818 2.252 1.151
–0.827 2.354 –0.070 1.273 0.533 1.459 1.818
0.937 0.131 –0.964 0.743 1.421 1.014 1.363

14 0.997 1.173 0.685 1.244 3.155 3.244 2.999 3.244 15.679 0.409
0.422 0.444 0.727 0.413 1.994 1.789 0.903

–1.841 0.258 0.500 –2.094 2.798 0.169 1.207
*k = 0.571.
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The magnitude of the disturbance is given by 
g2, where g2 = |S1|/|S0|. The power of the |S| chart 
is given by:

PD n
n= ≥
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




−

−Pr ,χ
χ

γ
α

2 4
2 2 4

2
	 (23)

According to expression (23), any change in 
the covariance matrix that generates the same g2 is 
detected by the |S| chart with the same power (PD), 
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Figure 2. The synthetic MRMAX chart – example.

Figure 3. The joint T2 and |S| charts – example.

recalling that ARL = 1/PD, see Aparisi, Jabaloyes and 
Carrón (2001). 

When there are p variables to control, Anderson 
(2003) gave an expression for the distribution of |S|:

n p

n
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∑
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2
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χ

Aparisi, Jabaloyes and Carrón (1999) obtained 
the expression to compute the probability density 

function of J
n
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0

S
. Based on Jn,p, the 

upper control limit for the |S| chart is: 
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and the chart’s power is given by:

P J
J

D n p
n p= >













Pr ,
,

α

γ 2 	 (25)

The drawback of the T2 and the |S| charts is 
that, in general, the user is not familiar with the 
computation of vectors and matrixes. 

4. Illustrative example

in this section we provide an example to 
illustrate the ability of the synthetic MRMAX chart 
and the joint T2 and |S| charts in detecting shifts in 
the mean vector and/or in the covariance matrix. To 
this end, we considered a process with three quality 
characteristics that follow a trivariate normal 
distribution. When the process is in-control, the 
mean vector and the covariance matrix are given by 

µ0

0
0
0

=
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, respectively. 

We initially generate 5 samples of size n = 5 
with the process in control. The remaining samples 
were simulated considering that the assignable 
cause changed the mean and the variability of X1, 
that is, d1 = 0.5 and a1 = 1.50.

Table 3 presents the data of X1, X2, X3, |Z1|, |Z2|, 
|Z3|, W1, W2, W3, the largest value among (|Z1|, |Z2|, 
|Z3|, W1, W2, W3), that is, the MRMAX values, T2 
and |S|.

Figure 2 shows the synthetic MRMAX chart 
with design parameters L = 7 and CL = 2.777. The 
control limit was determined using the algorithm 
given in Serel, Moskowitz and Tang (2000), with 
d1 = d2 = d3 = 0, to assure a false alarm risk a of 
0.005. As the number of sampling intervals l (=4) 

between the first and the second points beyond 
the CL is smaller than L (=7), the synthetic MRMAX 
control chart signals an out-of-control condition at 
sample  12. We also conclude that the assignable 
cause affected the X1  variable once the sample 
points beyond the upper control limit correspond 
to the |Z1| values. 

Figure 2 shows the joint T2 and |S| charts. 
The control limit for the T2 chart is given by 
CL = c2

3,0.0025 = 14.320 and for the |S| chart is given 
by expression (24). The joint T2 and |S| charts signal 
an out-of-control condition at sample 14. According 
to Figure 3, the T2 chart was the responsible for 
the signal; however, it is not possible to identify 
the variable that had the parameter(s) affected by 
the assignable cause. The |S| chart did not give any 
hint that the assignable cause also increased the 
variability of X1. 
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Table 4. Steady-state ARL values of the synthetic MVMAX and MRMAX charts. (n = 5 and L = 7).

Shifts 
(covariance 

matrix)

Shifts (mean vector)

|d1| 0 0 0.5 0.5 0 0.75 0.5 0.75 0.75 0 1.0 1.0

a1 a2 ρ |d2| 0 0.5 0 0.5 0.75 0 0.75 0.5 0.75 1.0 0 1.0

1.0 1.0 0.0 200.0 36.3* 36.3 17.4 10.8 10.8 7.9 7.9 5.1 4.3 4.3 2.3
200.0 36.3** 36.3 17.4 10.8 10.8 7.9 7.9 5.1 4.3 4.3 2.3

0.5 200.0 36.3* 36.3 17.4 10.8 10.8 7.9 7.9 5.1 4.3 4.3 2.3
200.0 36.3** 36.3 17.4 10.8 10.8 7.9 7.9 5.1 4.3 4.3 2.3

0.7 200.0 36.3* 36.3 17.4 10.8 10.8 7.9 7.9 5.1 4.3 4.3 2.3
200.0 36.3** 36.3 17.4 10.8 10.8 7.9 7.9 5.1 4.3 4.3 2.3

1.25 1.0 0.0 25.1 14.0 11.4 8.2 7.1 6.0 5.2 5.0 3.8 3.6 3.4 2.1
28.2 15.0 12.1 8.6 7.3 6.2 5.4 5.1 3.8 3.7 3.5 2.1

0.5 25.2 14.0 11.4 8.2 7.1 6.0 5.2 5.0 3.8 3.6 3.4 2.1
26.5 14.4 11.7 8.4 7.2 6.1 5.3 5.1 3.8 3.6 3.5 2.1

0.7 25.0 14.0 11.4 8.2 7.1 6.0 5.2 5.0 3.8 3.6 3.4 2.1
25.1 14.0 11.4 8.2 7.1 6.0 5.2 5.0 3.8 3.6 3.6 2.1

1.5 1.0 0.0 7.0 5.6 5.0 4.3 4.1 3.7 3.4 3.3 2.8 2.7 2.7 1.9
7.5 5.9 5.2 4.5 4.2 3.8 3.5 3.4 3.8 2.8 2.7 1.9

0.5 7.0 5.6 5.0 4.3 4.1 3.7 3.4 3.3 2.8 2.7 2.7 1.9
7.1 5.7 5.0 4.3 4.1 3.7 3.4 3.3 2.8 2.7 2.7 1.9

0.7 6.9 5.6 5.0 4.3 4.1 3.7 3.4 3.3 2.8 2.7 2.7 1.9
6.7 5.5 4.9 4.2 4.0 3.6 3.3 3.3 2.7 2.7 2.6 1.9

1.25 1.25 0.0 11.6 7.3 7.3 5.3 4.7 4.7 3.8 3.8 3.0 3.0 3.0 1.9
10.2 6.7 6.7 5.0 4.4 4.4 3.7 3.7 2.9 2.9 2.9 1.9

0.5 12.1 7.5 7.5 5.4 4.7 4.7 3.9 3.9 3.1 3.0 3.0 2.0
10.6 6.9 6.9 5.1 4.5 4.5 3.7 3.7 3.0 2.9 2.9 1.9

0.7 12.5 7.7 7.7 5.5 4.8 4.8 3.9 3.9 3.1 3.1 3.1 2.0
11.2 7.2 7.2 5.3 4.6 4.6 3.8 3.8 3.0 3.0 3.0 1.9

1.25 1.5 0.0 5.2 4.1 4.2 3.4 3.2 3.2 2.8 2.8 2.4 2.4 2.4 1.8
4.1 3.4 3.5 3.0 2.8 2.8 2.5 2.5 2.2 2.2 2.2 1.7

0.5 5.4 4.2 4.3 3.5 3.2 3.3 2.8 2.8 2.4 2.5 2.4 1.8
4.3 3.5 3.6 3.1 2.9 2.9 2.6 2.6 2.2 2.3 2.3 1.7

0.7 5.5 4.2 4.4 3.5 3.3 3.3 2.9 2.9 2.4 2.5 2.5 1.8
4.7 3.7 3.8 3.2 3.0 3.0 2.7 2.7 2.3 2.3 2.3 1.7

1.5 1.5 0.0 3.4 2.9 2.9 2.6 2.5 2.5 2.3 2.3 2.0 2.1 2.1 1.6
3.0 2.6 2.6 2.4 2.3 2.3 2.1 2.1 1.9 1.9 1.9 1.6

0.5 3.6 3.1 3.1 2.7 2.6 2.6 2.3 2.3 2.1 2.1 2.1 1.6
3.2 2.8 2.8 2.5 2.4 2.4 2.2 2.2 2.0 2.0 2.0 1.6

0.7 3.8 3.2 3.2 2.8 2.6 2.6 2.4 2.4 2.1 2.2 2.2 1.7
3.4 2.9 2.9 2.6 2.5 2.5 2.3 2.3 2.0 2.0 2.0 1.6

*synthetic MRMAX; **synthetic MVMAX chart.

5. Comparing charts
In this section we compare the synthetic MRMAX 

chart with the synthetic MVMAX chart. For the 
bivariate case, Machado, Costa and Marins (2009) 
have already compared the synthetic MVMAX chart 
with the joint T2 and |S| charts and it is, in general, 

faster in signaling, except when the correlation 
between the two variables is high.

Table 4 presents the steady-state ARLs for 
the synthetic MVMAX and MRMAX charts, where 
ρ = 0.0; 0.5; 0.7, a1 and a2 = 1.0; 1.25; 1.5 and d1  
and d2 = 0.0; 0.5; 0.75; 1.0. A type I risk of 0.5% 
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We did not consider the joint T2 and the |S| 
charts based on the synthetic procedure, because it 
is not simple to deal with two charts and the rule of 
two points in the action region.

6. Conclusions

In this article we proposed a new chart for 
monitoring the mean vector and the covariance 
matrix of multivariate processes. The monitoring 
statistic associated to the MRMAX chart is based 
on the sample means and sample ranges. As the 
practitioners are, in general, more familiar with 
means and ranges, they will not have difficult to 
use the proposed chart. In terms of efficiency, we 
can say that, for the bivariate case, the MRMAX 
chart and the MVMAX chart, which is based on 
sample means and sample variances, have similar 
performance. This result differs from the univariate 
case, where the joint X and R charts are slightly 
slower than the joint X and S2 charts in signaling. 

An interesting extension of this work is the 
development of a practical procedure to design 
the MRMAX chart considering a, p and n as input 
parameters. 
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Monitoramento do vetor de médias e da matriz de covariâncias  
de processos multivariados baseado nas médias  

e nas amplitudes amostrais
Resumo

Os gráficos conjuntos de X e R e X e S2 são os mais utilizados para o monitoramento da média e da dispersão do 
processo. Com os tamanhos de amostra usuais de 4 e 5, os gráficos de X e R em uso conjunto são ligeiramente 
inferior aos gráficos de X e S2 em uso conjunto em termos da eficiência em detectar alterações no processo. Neste 
artigo, mostra-se que para o caso multivariado, os gráficos baseados nas médias amostrais padronizadas e amplitudes 
amostrais (gráfico MRMAX) ou nas médias amostrais padronizadas e variâncias amostrais (gráfico MVMAX) são 
similares em termos da eficiência em detectar alterações no vetor de médias e/ou na matriz de covariâncias. A 
familiaridade do usuário com o cálculo de amplitudes amostrais é um aspecto favorável do gráfico MRMAX. Um 
exemplo é apresentado para ilustrar a aplicação do gráfico proposto.
Palavras-chave
Gráficos de controle. Vetor de médias. Matriz de covariância. Processos multivariados.

Appendix I. The probability pD of the MRMAX chart – the trivariate case.
Consider the statistics W1 = kR1/s1, W2 = kR2/s2 and W3 = kR3/s3 where Ri = max[xi1, xi2, ..., xin] – 

min[xi1, xi2, ..., xin], i = 1, 2, 3 are the sample ranges of three quality characteristics X1, X2 and X3. Then, 

P W CL W CL W CLD = − <( )∩ <( )∩ <( ) 1 1 2 3Pr

The in-control covariance matrix is given by 0
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. The assignable cause changes the 

mean vector from m´0 to m´1 = (m1 + d1s1; m2 + d2s2; m3 + d3s3) and/or changes the covariance matrix from S0 

to 1
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,  where ρ

σ

σ σij
ij

i j
= , i ≠ j ∈ {1, 2, 3}, sij = sji, ak > 1, k ∈ {1, 2, 3} 

and ai ≥ 1, i ≠ k ∈ {1, 2, 3}. Then we have

P F w w wD = − ( )1 1 2 3, , 	 (A1)

being wi = CL/ai, i = 1, 2, 3.
If A, B and C are the events of Wi < CL, i = 1, 2, 3, respectively, then the probability PD is given by:

P A B CD = − ∩ ∩( )1 Pr 	 (A2)

that is

P A B C A B A C B C A B CD = ( ) + ( ) + ( ) − ∩( ) − ∩( ) − ∩( ) + ∩ ∩( )Pr Pr Pr Pr Pr Pr Pr 	 (A3)

where the probabilities Pr(A), Pr(B) and Pr(C) are computed by expression (7) from Section 2.1; the 
probabilities Pr(A∩B), Pr(A∩C) and Pr(B∩C) are computed by expression (11) and the probability Pr(A∩B∩C) 
is obtained by simulation. This proposed way to compute (A3) allowed us to obtain the probability PD with 
good accuracy, once the probability of all samples ranges R1, R2 and R3  falling beyond the CL, is small if 
compared with the PD value. 

We compared the PD values given by expression (A3), where the simulation technique was used only to 
compute Pr(A∩B∩C), with the PD values given by expression (A2) obtained by pure simulation. We found 
that the results obtained by (A3) are much more precise than the ones obtained by (A2). Following the 
development proposed in this Appendix, we can extend the study for the cases where p > 3.


