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INTRODUCTION

Chicken (Gallus gallus domesticus) has 
made valuable contributions to our understanding of 
immunology. However, the “chicken is not a mouse 
with feathers” (by Jim Kaufman (Kaiser, 
2012)), and “the hens’ immune system differs from 
mammals’ in various ways” (Schade et al., 2001). 
In this context, important differences exist, especially 
in the diversity of the lymphoid tissue. For instance, 
the bursa of Fabricius is present in hens but not in 
mammals. The major blood antibody class present 
in hens is immunoglobulin Y (IgY), whereas that 
in mammals is IgG. IgE antibodies are absent in the 
hens’ immune system. Additionally, the transference 
of maternal antibodies in the hen occurs by egg yolk 
absorption, and by transplacental passage in mammals. 

One aspect that hens and mammals have 
in common, is the presence of both, the innate as 

well as the acquired immune response. These 
animal groups possess immune cells and molecules. 
Among these immune cells are the dendritic 
cells (DC), macrophages, and lymphocytes. 
With regard to the hens’ immunity, the crucial 
function of these molecules as signaling proteins 
has been demonstrated. They are also known as 
cytokines. Besides, a lytic protein system named the 
complement system protects the host by both, innate 
and acquired immune response mechanisms. 

Interestingly, according to phylogenetic 
analysis, hens developed before mammals. In 
addition, the avian immune system is genetically 
simpler than that of the mammalian immune 
system. The former can mount a robust immune 
response against a wide range of antigenic targets. 
Corroborating this robustness, the avian repertoire 
of antibodies has an elevated number of antigen 
binding combinations. These have been achieved 
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by the antibodies’ gene recombination and gene 
conversion. In conclusion, the efficacy of the hens’ 
immune system has been proven in its elaborate 
defenses against aggressors by different mechanisms. 
The IgY antibodies are a valuable tool in the hens’ 
immune system, and, a promising immunobiological 
reagent. Hence, these can be tapped as an alternative 
for the mammals’ IgG antibodies.

Lymphoid Tissues
Chicken has made valuable contributions to 

our understanding of immunology (KAISER, 2012). 
The avian and mammal immune systems are organized 
into groups of immune cells, such as the T cells and B 
cells, and are homed into organized lymphoid tissues, 
which are strategically positioned to protect the 
host (BOEHM et al., 2012; ROSTAMI et al., 2018). 
Functionally, the lymphoid tissue has been classified 
into the primary lymphoid tissue, such as the thymus 
and bursa of Fabricius, and the secondary lymphoid 
tissue, such as the spleen (Figure 1) (MADEJ et al., 
2015; SUN et al., 2016; IFRAH et al., 2017). 

The hens’ primary lymphoid tissue 
includes the thymus and bursa of Fabricius (BOEHM 

et al., 2012). The thymus is located at the ventral neck 
region and the bursa of Fabricius is reported at the top 
of the cloacal region (SUN et al., 2016; IFRAH et al., 
2017). Primary lymphoid tissue works by selecting 
lymphocytes such as the T cells (thymus-dependent 
cells) and the B cells (bursa of Fabricius-selected 
cells) for an appropriate immune response and 
avoiding autoimmunity (SUN et al., 2016; IFRAH et 
al., 2017). The T and B cell precursors are generated 
by the lymphoid stem cells in the bone marrow 
(BOEHM et al., 2012). 

The bursa of Fabricius is a lymphoid tissue 
that is absent in the immune system of mammals, as 
a consequence of the species’ evolution (Figure 1) 
(BOEHM et al., 2012). After puberty, in the hens and 
mammals, the primary lymphoid tissue is involuted 
by the effects of the sex hormones. 

The selected T and B cells, leaving the 
primary lymphoid tissue, move forward to their 
defense position in the secondary lymphoid tissue, 
such as the spleen and mucosa-associated lymphoid 
tissue (MALT) (LANNING & KNIGHT, 2015; 
MADEJ et al., 2015; SEPAHI & SALINAS, 2016). 
Also, they are present in parenchyma, the bursa of 

Figure 1 - An overview of the lymphoid tissue of the avian immune system compared to mammals’ and the evolutionary position 
of these animals. APC: antigen presenting cells; MHC: major histocompatibility complex; Ig: immunoglobulin.
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Fabricius, and the bone marrow tissue (MADEJ 
et al., 2015). Peripheral lymphoid tissue has been 
established as the site for the generation of an immune 
response following contact with a pathogen. The 
spleen is a capsulated tissue reported in abdominal 
cavity, close to the stomach (ZHANG et al., 2015), 
while the MALT is a lymphoid tissue scattered 
throughout the body, on surfaces, such as the mucosa 
of the digestive system and the eyes (Harderian 
glands) (VAN GINKEL et al., 2012; GURJAR et al., 
2013), the respiratory system, and skin (SMIALEK et 
al., 2011; LANNING & KNIGHT, 2015; SEPAHI & 
SALINAS, 2016). Some peripheral lymphoid tissue 
is absent in the avian immune system, such as the 
lymph nodes, (Figure 1), however, there are lymphoid 
aggregates, such as Meckel’s diverticulum and cecal 
tonsils (BOEHM et al., 2012; HEIDARI et al., 2015). 
The apparent absence of lymphotoxin genes might 
explain the lack of lymph nodes in hens, because 
these genes are crucial to lymph node formation in 
mammals (KAISER, 2012).

	 The health of the reproductive 
tract is important for the formation and production 
of high quality and hygienic eggs (YOSHIMURA 
& BARUA, 2017). The hen ovary and oviduct 
have lymphoid tissue that contains populations of 
immunocompetent cells such as macrophages and 
lymphocytes. Influx of immune cells increases 
with hen maturity and decreases with aging. The 
ovary’s parenchyma and the oviduct’s lamina 
propria express TLR (Toll-like receptor) molecules, 
triggering the production of pro-inflammatory 
cytokines and chemokines, and defensin molecules 
(YOSHIMURA & BARUA, 2017). 

Regarding the lymphocyte position in the 
secondary lymphoid tissue, the T cells are reported 
close to the B cells, in a location called the germinal 
center. Following contact with pathogens, the spleen 
is enlarged in size by hyperplasia tissue, in a process 
called splenomegaly. Lymphocyte hyperplasia has 
been found in MALT as well. The germinal center is 
the site that effectively produces the avian antibodies. 

Avian Immune System
Avian immune response is divided in two 

arms, the innate immune response and the acquired 
immune response (JEURISSEN et al., 2000; KAISER, 
2012). The former involves the quick activation of 
immune mechanisms, such as the acute inflammatory 
reaction, which includes cells and molecules such 
as macrophages and the complement system (GUO 
et al., 2008)2008. Conversely, the acquired immune 
response is delayed and characterized by antibody 

production (Figure 2) and immune memory (PEI 
& COLLISON, 2005; SINGH et al., 2010). It has 
been emphasized that the innate immunity does not 
develop an immune memory like that observed in 
acquired immunity (GUO et al., 2008)2008. Recently, 
it has been demonstrated that some differences occur 
in populations of immunocompetent cells between 
various hens breeds (BÍLKOVÁ et al., 2017).

The innate immune response starts when 
the sentinel cells, such as the dendritic cells and 
macrophages, trap non-self-compounds (antigens) 
(QURESHI et al., 2000; DE GEUS & VERVELDE, 
2013; NAGY et al., 2016). These sentinel cells 
recognize the pathogen-associated molecular 
patterns (PAMPS) by their pathogen recognition 
receptors (PRR) such as the Toll-like receptor (TLR), 
after which they trigger an acute inflammatory 
reaction (QURESHI et al., 2000; NANG et al., 
2011; GRUEBER et al., 2014). Pathogens are 
classified according to their growth environment, 
as extracellular pathogens, such as certain bacteria, 
or intracellular pathogens, like viruses. Neutrophils 
and eosinophils are absent in hens and the latter is 
replaced by heterophils in the avian immune system 
(KAISER, 2012; MUKHERJEE et al., 2016).

Following the pathogen trapping, the 
sentinel cells must process the protein antigens in 
the antigenicity determinant regions, also called the 
epitopes (Figure 2) (WANG et al., 2016). There are 
different antigen processing pathways, such as the 
lysosomal pathway for extracellular pathogens, and 
the proteasome pathway for intracellular pathogens 
(Figure 2) (BLUM et al., 2013). Although both 
antigen processing pathways produce epitopes, 
the antigen processing by the lysosome enzymes 
generate a larger peptide sequence than the 
enzymatic proteasome pathway (HASSELGREN 
& FISCHER, 1997).

In the next step, following the generation 
of epitopes, peptide binding to the major 
histocompatibility complex (MHC) molecules 
occurs, followed by antigen presentation to the 
T cells (LIVERSIDGE & FORRESTER, 1992; 
MILLER & TAYLOR, 2016). The class I MHC 
molecules bind to the generated epitopes by the 
proteasome pathway (KAUFMAN, 2015), whereas 
the class II MHC docking peptides are sourced 
from the lysosome’s antigen processing pathway 
(PARKER & KAUFMAN, 2017). Hens possess 
two class I genes and two class II genes compared 
to the 300 genes of the mammals’ MHC. This 
“minimal essential MHC” has some consequences 
for hens to mount an immune response against 



4

Ciência Rural, v.48, n.8, 2018.

Júnior et al.

certain pathogens (KAUFMAN, 2000). In this 
context, there is a higher chance for this compact 
and simple avian MHC does not present a give 
protective epitope during the antigen presentation 
to T (KAUFMAN, 2000).

Antigen presenting cells (APC), such as 
the dendritic cells (DC) and macrophages, present 
the epitope-MHC to the lymphocyte cells, such as T 
lymphocytes (Figure 2) (BECKER, 2003). The T cells, 
using their antigen receptor complex (TCR), bind 
to the epitopes and recognize the MHC molecules. 
This recognition is carried out by complementary 
receptors, such as CD8 and CD4, which recognize 
the self-class I MHC and class II MHC molecules, 
respectively. Therefore the T cells are named the 
MHC-restricted lymphocytes (Figure 2) (Xiao et 
al., 2017). Intracellular specialized T CD8 cells are 
called the cytotoxic lymphocyte cells (CTL), and 
cytokines producing T CD4 cells are called helper T 
cells (Th) (SHARMA & TIZARD, 1984; KOGUT, 
2000; MELIEF, 2003; ARUN et al., 2011). 

T-helper cells produce signaling proteins 
named cytokines (Figure 2) that orchestrate the 
acquired immunity (KOGUT, 2000; NANG et 
al., 2011; QUINTEIRO-FILHO et al., 2017). 

Produced cytokines are classified into profiles 
according to the major kind of cytokine, which 
is guided by the antigen nature, for instance, 
if they are from an extracellular pathogen 
or from an intracellular pathogen (KAISER, 
2010). In general, intracellular pathogens elicit 
higher production of interferon gamma (IFN-γ) 
(GURJAR et al., 2013) and interleukin-2 (IL-2), 
and this profile is named Th1 (SANTHAKUMAR 
et al., 2017). After an infection by an extracellular 
pathogen, the cytokine polarization is featured by 
the production of IL-4 and IL-5 cytokines, this is 
named Th2 (DEGEN et al., 2005).

The other crucial lymphocyte population is 
the B cells, which are featured as APC and antibody 
producing cell (Figure 2) (XIAO et al., 2017). The 
B cells are not MHC-restricted lymphocytes and 
hence are able to capture soluble antigens. Following 
the entrapment of the antigen, the B cells begin a 
clonal expansion. These cells are then differentiated 
into plasma cells which are the “antibody factories” 
(Figure 2) (TAEBIPOUR et al., 2017). 

Antibodies are antigen binding proteins 
that are highly specific and sensitive to the antigenic 
target (ARNOLD & CHUNG, 2018). Avian immune 

Figure 2 - General aspects of the antigen presenting cells (APC), antigen presentation to the T cells, antigen recognizing B cells, and 
antibody producing cell (Plasma cells). 
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response has been described to possess three antibody 
classes; immunoglobulin M (IgM), IgA, and IgY 
(Figure 1) (SMIALEK et al., 2011; ZHANG et al., 
2017), while the mammals’ immune system has five 
antibody classes; IgM, IgA, IgG, IgE, and IgD. 

IgY antibody shares structural similarities 
with mammalian IgG, like the antigen binding 
fragment (Fab) with complementarity determining 
regions (CDR) and crystallizable fragments (Fc). 
However, IgY antibody lacks a hinge region and 
has a longer heavy chain. Additionally, IgY does not 
binding to mammal’s Fc receptor, rheumatoid factor 
or proteins of complement (C1q and C3). Together, 
these features are able preventing the occurrence 
of false positive findings in diagnostic platforms 
and make IgY a suitable innovation as an immune-
reagent (LEE et al., 2017). 

According to the type of antigen 
(t-dependent or t-independent) that immune system 
reacts, the predominant immunocompetent cells 
and the antibody class, the immune response can 
be classified as a primary or secondary immune 
response (GURJAR et al., 2013). The primary 
immune response is characterized by predominately 
IgM producing cells rather than IgY/IgG with 
an incipient immune memory. Conversely, the 

secondary immune response has a higher production 
of IgY/IgG and the development of a solid immune 
memory (MEUNIER et al., 2017; OU et al., 2017).

Maternal IgY or IgG antibodies-
based newborn protection is crucial for avian and 
mammal species, respectively (LEANDRO et al., 
2011). However, the transference of these maternal 
antibodies has been established by different pathway 
comparing hens and mammals. Transference of IgY 
antibodies occurs by their translocation into the egg 
yolk, while mammal’s transplacental passage has 
been demonstrated for IgG antibodies (LEANDRO 
et al., 2011; MERRILL & GRINDSTAFF, 2014; 
BERNARDINI et al., 2017).

The egg yolk is concentrated daily into 
the hens’ ovarian follicle by the translocation of 
compounds from hens’ blood molecules. Among these 
are proteins such as the IgY antibodies (Figure 3). The 
egg yolk IgY deposition follows a circadian rhythm 
with five day intervals between the passage of higher 
and lower IgY concentrations (HE et al., 2014). 

The IgY antibodies are easily extracted 
from the egg yolk and the process does not require a 
bleeding procedure on hens. Also, among the many 
advantages of IgY is their antigen binding repertoire, 
which is achieved by gene conversion using the 

Figure 3 - Schematic representation of the IgY antibody translocation from the hens’ blood to egg yolk in the 
ovarian follicle, and IgM and IgA deposition into egg whites through the oviduct epithelium. 
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insertion of segments from pseudogenes (KAISER, 
2012); their avidity maturation; the propensity to 
avoid false positive results in the mammalian model 
of immunoassay platforms; enzyme and fluorescence 
antibody conjugation; immune-gold beads antibody 
labeling, and the production of monoclonal antibodies, 
such as single chain fragment variable (scFv) by 
cloning the fragment antigen binding (Fab) coding 
genes from the hen B cell (FERREIRA JÚNIOR et 
al., 2012; NIE et al., 2014; ZHANG et al., 2016; DA 
ROCHA et al., 2017; BORGES et al., 2018).  

CONCLUSION

The avian immune system has been 
demonstrated to be highly competent, with a robust 
innate and acquired immune response against different 
kinds of pathogens. In this context, IgY antibodies are a 
crucial character in the hens’ immune response due to 
their specific antigen-binding properties. Hence, it has a 
wide range application as an immunobiological reagent.
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