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INTRODUCTION

According to the Food and Agriculture 
Organization Corporate Statistical Database 
(FAOSTAT, 2019), Brazil is the world’s largest 

producer of sugarcane, with 40% of the global 
production, and has developed successful initiatives 
in the search for renewable energy sources. Finite 
natural resources and adverse effects on the 
environment and human health due to the use of non-
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ABSTRACT: Sugarcane is a good source of renewable energy and helps reduce the emission of greenhouse gases. Nitrogen has a critical 
role in plant growth; therefore,estimating nitrogen levels is essential, and remote sensing can improve fertilizer management. This field study 
selects wavelengths from hyperspectral data on a sugarcane canopy to generate models for estimating leaf nitrogen concentrations. The study 
was carried out in the municipalities of Piracicaba, Jaú, and Santa Maria da Serra, state of São Paulo, in the 2013/2014 growing season. The 
experiments were carried out using a completely randomized block design with split plots (three sugarcane varieties per plot [variety SP 81-
3250 was common to all plots] and four nitrogen concentrations [0, 50, 100, and 150 kgha-1] per subplot) and four repetitions. The wavelengths 
that best correlated with leaf nitrogen were selected usingsparse partial least square regression. The wavelength regionswere combinedby 
stepwise multiple linear regression. Spectral bands in the visible (700–705 nm), red-edge (710–720 nm), near-infrared (725, 925, 955, and 980 
nm), and short-wave infrared (1355, 1420, 1595, 1600, 1605, and 1610 nm) regions were identified. The R² and RMSE of the model were 0.50 
and 1.67 g.kg-1, respectively. The adjusted R² and RMSE of the models for Piracicaba, Jaú, and Santa Maria were 0.31 (unreliable) and 1.30 
g.kg-1, 0.53 and 1.96 g.kg-1, and 0.54 and 1.46 g.kg-1, respectively. Our results showed that canopy hyperspectral reflectance can estimate leaf 
nitrogen concentrations and manage nitrogen application in sugarcane.
Key words: remote sensing, Saccharumspp, nitrogen fertilization, reflectance, sPLS, regression model.

RESUMO: A cana-de-açúcar se destaca como uma das fontes de energia renovável frente às estratégias para reduzir a emissão de gases 
causadores do efeito estufa. O nitrogênio é um dos mais significativos devido ao seu impacto no crescimento de folhas e colmos. Portanto, 
o monitoramento eficiente do nitrogênio aplicado é essencial e o sensoriamento remoto se apresenta como uma alternativa na melhoria do 
gerenciamento da adubação. O presente trabalho teve por objetivo selecionar comprimentos de onda a partir de dados hiperespectrais de 
dossel da cana-de-açúcar para geração de modelos na predição da concentração de Nitrogênio. O estudo foi realizado em experimentos de 
campo instalados nos municípios de Piracicaba, Jaú e Santa Maria da Serra, estado São Paulo, na safra 2013/2014. Cada experimento foi 
alocado em blocos ao acaso, com parcelas subdivididas e quatro repetições, com variedades de cana-de-açúcar na parcela (três variedades 
por local, sendo a SP 81-3250 comum à todos) e doses de nitrogênio (0, 50, 100 e 150 kg.ha-1) na subparcela. Na seleção dos comprimentos 
de onda que melhor se correlacionam com o TFN foi utilizada a metodologia sPLS. Posteriormente, foi realizada a combinação linear 
dos comprimentos de onda selecionados pela metodologia sPLS, por meio de Regressão Linear Múltipla por Stepwise (SMLR). Foram 
identificadas bandas importantes nas regiões do visível (700 a 705 nm), red-edge(710 a 720 nm), infravermelho próximo (725, 925, 955 e 980 
nm) e infravermelho de ondas curtas (1355, 1420, 1595, 1600, 1605 e 1610 nm). O modelo de predição de TFN teve valores de R² de 0,50 e 
o RMSE de 1,67 g.kg-1. Os modelos gerados para Piracicaba, Jaú e Santa Maria obtiveram R² ajustados e RMSE, respectivamente, de 0,31 
considerado não confiável (1,30 g.kg-1), 0,53 (1,96 g.kg-1) e 0,54 (1,46 g.kg-1). Os sensores hiperespectrais de dossel podem ser utilizados para 
predição do TFN e monitoramento de aplicação de nitrogênio em cana-de-açúcar.
Palavras-chave: sensoriamento remoto, Saccharumspp,adubação nitrogenada, reflectância, sPLS, modelo de regressão.
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renewable energy sources have increased the global 
interest in renewable sources, including bioethanol, 
derived from energy crops. 

Sugarcane, like any other crop, depends 
on nitrogen (N) for biomass production. Nitrogen 
is the most significant limiting factor, after water 
deficit, for biomass production. Nitrogen fertilizers 
can remarkably increase sugarcanetillering and 
yield (AMARAL et al., 2015). However, because of 
climate variations, farmers seeking to achieve high 
yields often use more nitrogen than necessary in 
production fields.

ALI et al. (2016) reported that estimating 
nitrogen levels in crops is fundamental in agronomic 
studies. Both destructive and non-destructive 
techniques are used to calculate nitrogen concentration. 
The destructive technique accurately estimates leaf 
nitrogen levels under laboratory conditions; however, 
the time from the sample collection to the results 
of the analysis exceeds the ideal time to carry out 
agricultural interventions during the growth cycle. 
Furthermore, laboratory analyses involve using 
chemicals, generating toxic waste and potentially 
leading to environmental contamination (IZNAGA et 
al., 2014; ZHAO et al., 2018). 

Non-destructive methods are fast and 
cost-effective; nonetheless, their complexity varies 
because obtaining spectral data with passive sensors 
without considering important parameters (solar 
azimuth, solar elevation angle, and plant biophysical 
parameters) limits data analysis; thus,the methods 
requirethe accurate calibration of sensors (MARTINS 
et al., 2021; MOKHELE& AHMED, 2010; ZHAO et 
al., 2012; MAHAJAN et al., 2014; LISBOA et al., 
2018; MORIYA et al., 2018).

To better understand nitrogen dynamics in 
sugarcane crops, wavelengths potentially associated 
with nitrogen concentrations have been evaluated using 
hyperspectral sensors (ABDEL-RAHMAN et al., 2010; 
MIPHOKASAP et al., 2012; ABDEL-RAHMAN et 
al., 2013; MIPHOKASAP & WANNASIRI, 2018). 
However, few studies have evaluated the use of these 
sensors in sugarcane in Brazil.

Hyperspectral sensors facilitate the 
analysis of specific regions of the electromagnetic 
spectrum to accurately model the attributes of interest, 
enabling detailed analysis of crop characteristics 
(THENKABAIL et al., 2010; MULLA, 2013). Thus, 
studies based on hyperspectral data can help develop 
sensors and crop analysis methods.

However, the analysis of many dependent 
variables andfew independent variables by 
hyperspectral sensors is complex because of the 

existence of multicollinearity between variables, 
leading to overestimations of the regression coefficients 
of the adjusted models (COIMBRA et al., 2005).

This issue can be resolved by multivariate 
techniques that identify regions of the electromagnetic 
spectrum associated with the attributes of interest, 
thus avoiding overestimations (ABDEL-RAHMAN 
et al., 2014; FIORIO et al., 2018; TAVARES et al., 
2020, MARTINS et al., 2021).

This study selects wavelengths in canopy 
hyperspectral reflectance data to generate models 
for estimating leaf nitrogen concentration in 
sugarcane. We started from the premise that there is 
a strong relationship between reflectance and plant 
structures, and that alterations in these structures 
due to nutrient deficiency cause changes in canopy 
reflectance in specific spectral regions; these data 
could be used to measure the attributes of interest 
(GITELSON et al., 2005).

MATERIALS   AND   METHODS

Study area
This field study was conducted in two units 

of the São Paulo Agribusiness Technology Agency 
(Agência Paulista de Tecnologia dos Agronegócios - 
APTA) in the municipalities of Jaú and Piracicaba, 
São Paulo, Brazil, and at a Raízen unit in Santa Maria 
da Serra, São Paulo (Table 1).

According to Köppen’s classification, the 
climate of the region is humid subtropical (Cwa), 
with an average annual rainfall of less than 1400 
mm, with rainy summers and dry winters. The 
experiments were performed in March 2010 using 
completely randomized block and split-plot designs, 
with sugarcane varieties in plots and nitrogen 
concentrations in subplots. In the 2013/2014 growing 
season, the study areas were in the fourth growth 
cycle, i.e., the cropwas under nitrogen deficiency 
stress. Three sugarcane varieties were planted in 
each area, as follows: SP 81-3250, IAC SP 95-5000, 
and RB 85-5536 in Jaú; SP 81-3250, IAC 87-3396, 
and CTC 14 in Piracicaba; SP-81- 3250, RB 93579, 
and RB 86-7515 in Santa Maria da Serra. In the 
0–40 cm soil layer, the soil type was classified as 
medium, clayey, and sandy in Jaú, Piracicaba, and 
Santa Maria da Serra.

The concentrations of nitrogen and other 
nutrients for crop growth were defined according 
to the official table of fertilizer recommendations 
for sugarcane in the state of São Paulo (RAIJ & 
CANTARELLA, 1997). The nitrogen doses applied 
for ratoon cane were 0, 50, 100, and 150 kg ha-1, and 



Estimation of leaf nitrogen levels in sugarcaneusing hyperspectral models.

Ciência Rural, v.52, n.7, 2022.

3

the nitrogen fertilizer source was ammonium nitrate, 
which was applied under straw from the previous 
harvest. Additionally, P2O5 (40 kg ha-1) and K2O (150 
kg ha-1) were applied to each plot.

Meteorological data were obtained at 
station A741 (latitude, 22°28’16’’ South; longitude, 
48°33’27’’ West; and altitude, 534 m) (built in 2008) 
located at the National Institute of Meteorology 
(Instituto Nacional de Meteorologia - INMET), in 
Barra Bonita, São Paulo,and at the meteorological 
station (latitude, 22°42’30’’ South; longitude, 
47°38’00’’ West; altitude, 546m) (constructed in 
1917) located at the Higher School of Agriculture 
“Luiz de Queiroz” (Escola Superior de Agricultura 
“Luiz de Queiroz”), in Piracicaba, São Paulo.

Collection of canopy spectral data
Each subplot consisted of five sugarcane rows, 

and spectral data were collected from the three central 
rows. Four plants were randomly selected in the first and 
third rows (two in each) and one in the middle row.

Canopy spectral data were acquired using 
a FieldSpec®3 spectroradiometer (Analytical Spectral 
Device, CO, USA). This sensor records signals in 
the visible-near infrared region (350–1000 nm) and 
two short-wave infrared regions (1001–1800 nm and 
1801–2500 nm) at a sampling interval of 1.4 and 
2.0 nm and spectral resolutions (full width at half 
maximum) of 3 nm and 10 nm, respectively. 

Data were collected on sunny days between 
10:00 am and 2:00 pm. The sensor was positioned 1 
m above the average height of the plant stalks, with 
a field of view of 25°, allowing the measurement 

of an area of approximately 0.25 m2. Calibration 
was performed in each plot using a standard scale 
provided by the manufacturer, and readings were 
done in each subplot in five previously demarcated 
areas. This process was performed in all plots.

Analysis of leaf nitrogen concentration
For all subplots where canopy spectral data 

were obtained, leaves were collected to determine 
the nitrogen concentration. In each subplot, 10 + 1 
leaves (two leaves on each side of five plants) were 
collected 4 to 5 months after nitrogen fertilization. 
The denomination +1 refers to the first fully expanded 
leaf from the plant apex.

The leaves were sequentially washed in 
running water, distilled water with detergent, and 
distilled water. Subsequently, they were dried in an 
oven with forced ventilation at 65 °C and ground. 
Chemical analyses were performed using the semi-
micro Kjeldahl method in extracts obtained by 
sulfuric digestion (MALAVOLTA et al.,1997).

Statistical analysis 
Data processing

The normality of the frequency distribution 
of the nitrogen data was analyzed using the Shapiro-
Wilk test (1965). The test is based on squared values 
and is the most common in the normality test.

Regions known to produce spectral noise 
(350–399, 1355–1420 nm, and 1800–2500 nm) due to 
interference from environmental moisture (ABDEL-
RAHMAN et al., 2013) were excluded from the 
spectral curves and final analysis.

Table 1 - Experimental areas. 
 

 Area 1 Area 2 Area 3 

Location Jaú Piracicaba Santa Maria da Serra (STM) 
Description Center-west branch (APTA) Center-south branch (APTA) Itaúna Farm - Raízen 
Coordinates 22°15'08"S; 48°34'04"O 22°41'05"S; 47°38'54"O 22°33'26"S; 48°16'42"W 
Soil classification Red Latosol Red Ultisol Quartzarenic Neosol 

Soil texture 
Medium sandy (0-20 cm), 

Medium clayey (20-40 cm) 
Clayey (0-20 cm) Very 

Clayey (20-40 cm) 
Sandy (0-40 cm) 

Varieties 
SP 81-3250 

IAC 95-5000 
RB 85-5536 

SP 81-3250 
IAC 87-3396 

CTC 14 

SP 81-3250 
RB 92579 

RB 86-7515 
Days after cutting (DAC) 148 169 146 
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The characteristics of spectral curves in 
each subplot of each demarcated area were assessed 
by multivariate analysis, checking if the mean 
represented the subplot. Outliers were identified 
using a normality test (Shapiro-Wilk) and analysis 
of variance (ANOVA). This analysis was performed 
using R software.

A median filter for noise smoothing 
followed by multiplicative scatter correction (MSC) 
(ISAKSSON & NAES, 1988) was applied to the 
average spectral reflectance curves. MSC is a 
transformation method used to compensate for the 
additive and/or multiplicative effects on spectral data. 
This analysis was performed using Parles software 
version 3.1 (VISCARRA ROSSEL, 2008).

Dimension reduction and wavelength selection 
A major problem with multivariate data is 

that the number of observations is greater than that of 
the predictive wavelengths, even in cases where these 
observations are highly correlated. The sparse partial 
least square (sPLS) methodology is a multivariate 
procedure based on partial least squares (PLSs). Its 
central principle is the measurement of the wavelength 
dispersion through PLS regression, allowing the 
efficient selection of wavelengths. This methodology 
was implemented using the “sPLS” analysis package 
in R software (CHUNG et al., 2012).

The results were calculated using the 
entire calibration dataset (48 samples per area) and 
generated coefficients that indicated the importance 
of each wavelength for the nitrogen level estimation; 
the 15 most important wavelengths were selected. 
This number proved to be adequate because, in the 
later phase, none of the final models calibrated by 
stepwise multiple linear regression (SMLR) required 
more than four wavelengths.

SMLR
Models that estimated the leaf nitrogen 

concentrations in sugarcane were generatedby 
SMRL using the “MASS” analysis package in R 
(DARVISHZADEH et al., 2008). The initial dataset 
contained 48 spectral curves from each study area; 
approximately 2/3 (n = 33) were used for calibrating 
the spectral models, which were later validated using 
the remaining data (n = 15). The calibration and 
validation datasets were randomly selected from the 
initial dataset.

Calibration by SMLR began with a model 
without predictor variables. At each step, a variable 
was added beginning with the most significant 
(highest p-value). The process ended when the 

inclusion of a new predictor variable did not improve 
the accuracy of the model. This approach guarantees 
that the model has the highest performance and the 
lowest possible number of variables (MIPHOKASAP 
et al., 2012). 

Assessment of model accuracy 
The accuracy of the generated models was 

assessed based on the coefficient of determination 
(R²) (equation 1) and the root mean square error 
(RMSE) (equation 2).
      

𝑅𝑅2 =  
∑(𝑦𝑦𝑙𝑙 �−  𝑦𝑦𝑙𝑙� )2

∑(𝑦𝑦𝑖𝑖 −  𝑦𝑦�)2   

               
(1)

where 𝑦𝑦𝑙𝑙 � , 𝑦𝑦𝑙𝑙�  , and 𝑦𝑦𝑖𝑖   are the predicted, average 
measured, and measured values, respectively.
      

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑𝑖𝑖=1 
𝑛𝑛  

(𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2

𝑛𝑛
 

                          
 (2)

where Pi and Oi are the predicted and actual nitrogen 
concentrations, respectively, and n is the number of 
observations used to generate or validate the model.

RMSE is commonly used to measure the 
accuracy of numerical predictions, with excellent 
results for the overall behavior of the models. This 
indicator has been used in several areas of science, 
including spectroradiometry (SENANAYAKE et 
al., 2019). One of the advantages of this error metric 
is that the results are given in the same unit as the 
study variables. 

RESULTS   AND   DISCUSSION

Evaluation of leaf nitrogen levels and monthly rainfall 
distribution in the experimental areas

Results showed that the residuals followed 
a normal distribution, according to the Shapiro Wilk 
test (W=0.9856; P=0.00542). The regression model 
for each experimental area and a general regression 
model are shown in figure 1. 

The nitrogen levels in sugarcane leaves 
range from 18 to 25 gkg-1 (RAIJ & CANTARELLA, 
1997). The results showed that the crop was under 
nitrogen stress (Figure 1), andthe low rainfall during 
the growing season explainedthe low nitrogen levels.

Extreme environmental events are more 
common in the southeast of Brazil because of longer 
and more severe droughts; rainfall was below the 
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historical average for several months in 2014 
(Figure 2) (MONTEIRO & SENTELHAS, 2017). 
For instance, in Piracicaba, rainfall from November 
2013 to February 2014 was below historical averages 
and increased slightly in March 2014 (Figure 2B). 

The water deficit directly affects the 
crop development and causes morphophysiological 
changes, including leaf curling, changes in the leaf 
angle, and a decrease in the leaf area, depending 
on the cultivar genotype, severity of change, 
and development stage of the plant (CHAVES et 
al., 2009). These changes can affect the spectral 
characteristics of the crop.

Selection of wavelengths using the sPLS method
Although, area-specific regression models 

and a general model were generated in the calibration 
phase, the complete dataset (48 samples per 
experimental areaand a total of 144 samples) for the 
2013/2014 growing season was used for wavelength 

selection bysPLSregression. These coefficients 
indicated the contribution of each wavelength across 
the electromagnetic spectrum; no specific region can 
individually describe the variability in nitrogen levels 
in sugarcane crops (ABDEL-RAHMAN et al., 2014). 
This method is useful in conditionswith large datasets 
and many independent variables (DEMATTÊ et al., 
2015). However, few studies have used the sPLS 
methodology to select variables in hyperspectral data, 
especially in crops. 

PEERBHAY et al. (2014) compared PLS 
and sPLS to select variables for the discriminant 
analysis of pine varieties in South Africa and reported 
that the efficiency of the analysis increased from 
71.88% using PLS to 80.21% using sPLS. ABDEL-
RAHMAN et al. (2014) compared the two methods 
to select variables and generate models to predict the 
productivity of vegetables in South Africa.

Selecting wavelengths associated with 
changes in nitrogen levels is crucial because, although 

Figure 1 - Regression between nitrogen application and leaf nitrogen concentration (g.kg-1).
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a plant variety/environment is represented by specific 
wavelengths, sensors capable of detecting a few 
wavelengths can be developed for a specific crop 
using algorithms that can select different spectral 
regions; however, developing sensors for specific 
conditions is not feasible. 

Wavelengths with zero values cannot 
estimate nitrogen levels. A total of 116 wavelengths 
presented positive or negative values, reducing the 
dimensionality of hyperspectral data by more than 
91%. The 15 most significant wavelengths were 
selected to generate the models andbelonged to the 
following spectral regions: visible red (700–705 
nm), red-edge (710, 715, and 720 nm), near-infrared 
(725, 925, 955, and 980 nm), and short-wave infrared 
(1355, 1420, 1595, 1600, 1605, and 1610 nm). 

MIN & LEE (2005) evaluated five 
wavelength selection methods to determine the 

nitrogen concentration in citrus and found that the 
higher number of variables relative to the number 
of samples increased the collinearity, potentially 
creating instability in the regression model. 

MIPHOKASAP & WANNASIRI (2018) 
evaluated three methods of generating a hyperspectral 
model using the Hyperion orbital sensor to determine 
the nitrogen levels in four sugarcane varieties and 
observed that the models with the best fit required 
two to four wavelengths. MARTINS et al. (2021) 
reported that five to six wavelengths were required to 
generate area-specific models and ten wavelengths to 
develop a general model.

Calibration of SMLR models 
In the calibration phase, the performance 

of the models created using reflectance data was 
similar, with an adjusted R² ranging from 0.30 to 

Figure 2 - Monthly accumulated rainfall in Jaú and Santa Maria da Serra. Source: INMET – A741 from 
Barra Bonita, state of São Paulo (A), Monthly accumulated rainfall in Piracicaba. Source: 
ESALQ/USP weather station (B).
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0.55 for site-specific models and 0.39 for the general 
model (Table 2). MARTINS et al. (2021) used a 
hyperspectral sensor to analyze the reflectance data 
on crop leaves at 90 days after cutting (DAC) from 
three study areas and four nitrogen doses. They 
observed that R² ranged from 0.61 to 0.71 and the 
RMSE ranged from 0.80 to 1.14.

In our sample, the wavelengths most 
sensitive to variations in nitrogen (Table 2) were 
reported in the red-edge region (710, 715, and 720) 
because all models selected at least one wavelength 
in this region, and only wavelengths from this 
spectral range were selected in the Santa Maria area. 
A possible explanation is that these wavelengths are 
highly responsive to variations in nitrogen levels, 
whereas other wavelengths are influenced by other 
factors not controlled in this study, as observed by 
MUTANGA & SKIDMORE (2007) and MARTINS 
et al. (2021).The red-edge region (680–780 nm) is 
associated with chlorophyll, nitrogen, and water 
content, and crop characteristics (JENSEN, 2009; 
HENNESSY et al., 2020).

In this study, in the near-infrared region, 
only the wavelength at 980 nm, associated with 
water absorption, was used to generate the models 
(STRACHAN et al., 2002). Nitrogen affects important 
physiological processes in plants, and nitrogen stress 
can affect the plant cellular structure and thus, the 
near-infrared reflectance (CECCATO et al., 2001).

Four wavelengths (1355, 1420, 1600, 
and 1605 nm) in the short-wave infrared region 
significantly contributed to the generation of the 
models. This region is responsive to variations in 
the leaf water content (JENSEN, 2009). Although, 
several studies haveshown the importance of 
this region because water content affects the leaf 
reflectance, the effect of other factors on reflectance 
should be further evaluated.

Validation of the SMRM models
The performance of the spectral models 

by area was satisfactory, especially in Jaú and Santa 
Maria (Figure 3). In Piracicaba, the adjusted R² and 
RMSE were 0.31 and 1.30 g kg-1, respectively, and 
these values are considered unreliable (MALLEY 
et al., 2004). These values are lower than those 
of sugarcane crops in Thailand (R² of 0.73) 
(MIPHOKASAP et al., 2012). The accuracy of the 
estimates using the general model was slightly higher 
than that during the calibration phase (Table 2).

MUTANGA & SKIDMORE (2007) 
showed that the maximum change in the slope of 
the reflectance spectra in the red-edge region usually 
occurred at 720 nm and concluded that variations in 
the crop growth, plant stress, leaf area index, and 
chlorophyll and nitrogen concentrations could be 
detected at this wavelength. Similar results were 
obtained in this study, in which two calibration 
models (general and Santa Maria) used this 
wavelength, and the adjusted R² of the latter was 
higher (0.54) (Table 2).MIPHOKASAP et al. (2012) 
developed a model to explain variations in nitrogen 
levels in sugarcane and chose five wavelengths: 410, 
426, 720, 754, and 1216 nm. 

General models are more stable under 
heterogeneous conditions because they describe the 
intrinsic characteristics of crops and are less sensitive 
to local conditions. Area-specific models describe 
the crop characteristics in a particular cultivation 
environment; however, these data cannot be applied 
to other areas with different conditions.

The results obtained using our models 
may be related to the variable response of the crop to 
nitrogen fertilization and the fact that canopy spectral 
data are influenced by factors other than nitrogen; 
therefore, nitrogen concentration is estimated 
indirectly (MIPHOKASAP et al., 2012). INOUE et 

Table 2 - Calibration of stepwise multiple linear regression models for predicting leaf nitrogen concentration in sugarcane based on 
reflectance data. In the equations, the letter B represents the wavelength used in the model. 

 

Area Equation Adjusted R² RMSE (g kg-1) AIC 

Jaú 
Y = 38.26 – 107.08 * B715 – 44.67 * B1420 + 1583.08 * 

B1600 – 1549.21 * B1605 
0.39 1.64 235 

Piracicaba Y = 100.83 – 40.53 * B715 – 186.57 * B980 + 8.38 * B1355 0.30 1.32 269 
Santa Maria Y = 53.32 + 227.09 * B710 – 350.54 * B720 0.55 1.38 154 
General Y = 40.16 – 99.03 * B720 – 36.03 * B1420 0.39 1.72 168 
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al. (2016) reported that the accuracy and applicability 
of the models were highly dependent on the size and 
quality of the dataset because the number of samples 
directly affected the performance of the results during 
the modeling of plant biochemical parameters.

This limitation may be one of the reasons 
for the low adjusted R² in the study area. In this 
respect, ROSA et al. (2015) evaluated four regions of 
the state of São Paulo (two of them close to Jaú and 
Piracicaba) and reported that different plant varieties 
responded differently to the climatic factors, soil type, 
and management conditions, resulting in variability in 
the crop vigor and canopy volume in the same field.

GAVA et al. (2001) assessed the growth 
and nitrogen accumulation in sugarcane cultivated 
in straw-covered soil and observed that translocation 
occurred at 204–237 DAC, with the emission of new 
roots, allowing better use of soil volume. 

Our models were impacted by climatic 
factors, especially the water deficit during the 2013/2014 

growing season. This result indicated that hyperspectral 
data on nitrogen concentration are strongly susceptible 
to variations in environmental factors. The water deficit 
in the 2013/2014 growing season was severe, and at the 
time of data collection in Piracicaba, the accumulated 
monthly rainfall in February (Figure 2B) was only 31% 
of the historical average.

High nitrogen levels in the soil due to 
mineralization of organic matter from the previous 
season can affect the relationship between the leaf 
nitrogen and biomass and;consequently, the spectral 
readings (SANTANA et al., 2020). Critical nitrogen 
concentration in dry biomass is the minimum 
amount of nitrogen required for maximum crop 
growth. If nitrogen supply is not limited, nitrogen 
concentration generally decreases as the dry biomass 
increases during the growing season. This allometric 
relationship can be expressed using a negative 
power function designated dilution curve (TILLY & 
BARETH, 2019).

Figure 3 - Validation of stepwise multiple regression models used to estimate leaf nitrogen concentration 
in sugarcane.
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The adopted methodology efficiently 
selected wavelengths and generated models for 
estimating nitrogen concentrations from the 
hyperspectral canopy data. Results of the calibration 
and validation models showed the potential of using 
reflectance data to monitor variations in leaf nitrogen 
levels in sugarcane. 

CONCLUSION 

The sPLS methodology facilitated the 
selection of spectral regionsstrongly associated with 
the leaf nitrogen content in sugarcane crops. The most 
suitable wavelengths were reportedin the following 
spectral regions: visible (700–705 nm), red-edge (710–
720 nm) (used by all study models), near-infrared 
(725, 925, 955, and 980 nm), and short-wave infrared 
(1355, 1420, 1595, 1600, 1605, and 1610 nm).In line 
with previous studies, the number of variables needed 
to predict the leaf nitrogen concentration in sugarcane 
was small, and the calibrated models (general and site-
specific) used two to four wavelengths.

Our results demonstrated that hyperspectral 
data are strongly influenced by several factors, 
including the crop environment, cultivar genotype, 
and climatic factors.

Identifying specific spectral regions 
allows users to select and use hyperspectral data to 
monitor nitrogen levels in sugarcane.This should be 
carried out beforeusing sensors with predetermined 
wavelengths to complement laboratory data and 
improve crop management.
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