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INTRODUCTION

Brazil consumes about 12 million tons 
of wheat annually; however, it produces only about 
50% of this total, requiring imports to meet domestic 
demand (CONAB, 2021). The country is dependent 
on the production of exporting countries such as 
Argentina, the European Union, and the United 
States. Thus, the country is constantly affected by 
protectionist policies in these exporting countries and 
by occasional weather events that reduce yield in these 
agricultural areas. In this context, wheat breeding 
programs should focus on selecting genotypes with 
high grain yield, especially for areas in which wheat 
cultivation is secondary in importance despite its 

exploration potential, such as the Brazilian Cerrado 
(PASINATO et al., 2018).

The development of new cultivars starts 
with the identification of segregating populations 
with the potential to derive lines with superior 
genetic value, which depends on parents with 
a high concentration of trait-favorable alleles 
(FASAHAT et al., 2016). The definition of the best 
strategies both for identifying superior populations 
and for conducting them through breeding 
programs requires high accuracy prediction of 
breeding values, as well as the estimation of 
variance components and genetic parameters. 
Studies usually apply frequentist approaches 
such as the Restricted Maximum Likelihood/
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ABSTRACT: The development process of a new wheat cultivar requires time between obtaining the base population and selecting the most 
promising line. Estimating genetic parameters more accurately in early generations with a view to anticipating selection means important 
advances for wheat breeding programs. Thus, the present study estimated the genetic parameters of F2 populations of tropical wheat and the 
genetic gain from selection via the Bayesian approach. To this end, the authors assessed the grain yield per plot of 34 F2 populations of tropical 
wheat. The Bayesian approach provided an adequate fit to the model, estimating genetic parameters within the parametric space. Heritability 
(h2) was 0.51. Among those selected, 11 F2 populations performed better than the control cultivars, with genetic gain of 7.80%. The following 
populations were the most promising: Tbio Sossego/CD 1303, CD 1303/Tbio Ponteiro, BRS 254/CD 1303, Tbio Duque/Tbio Aton, and Tbio 
Aton/CD 1303. Bayesian inference can be used to significantly improve tropical wheat breeding programs.
Key words: deviance information criterion, early selection, Triticum aestivum L., wheat breeding.

RESUMO: O processo de desenvolvimento de uma nova cultivar de trigo requer tempo entre a obtenção da população base e a seleção da 
linhagem mais promissora. Estimar parâmetros genéticos com mais precisão nas primeiras gerações com vistas a antecipar a seleção significa 
avanços importantes para os programas de melhoramento de trigo. Assim, o presente estudo estima os parâmetros genéticos de populações F2 
de trigo tropical e o ganho genético da seleção via abordagem Bayesiana. Para tanto, os autores avaliaram a produtividade de grãos por parcela 
de 34 populações F2 de trigo tropical. A abordagem Bayesiana proporcionou um ajuste adequado ao modelo, estimando parâmetros genéticos 
dentro do espaço paramétrico. A herdabilidade (h2) foi de 0,51. Dentre as selecionadas, 11 populações F2 obtiveram desempenho superior às 
cultivares controle, com ganho genético de seleção de 7,80%. As seguintes populações foram as mais promissoras: Tbio Sossego/CD 1303, CD 
1303/Tbio Ponteiro, BRS 254/CD 1303, Tbio Duque/Tbio Aton e Tbio Aton/CD 1303. A inferência Bayesiana pode ser usada para melhorar 
significativamente programas de melhoramento de trigo tropical.
Palavras-chave: critério de informação de desvio, seleção precoce, Triticum aestivum L., melhoramento de trigo.
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Best Linear Unbiased Prediction (REML/BLUP) 
to this end. This type of approach was used by 
PIMENTEL et al. (2014) in F3 wheat populations, 
by THORWARTH et al. (2019) in wheat hybrids, 
and by MAHJOURIMAJD et al. (2016) in double 
haploid wheat. Although, the frequentist approach 
has several useful properties such as estimators with 
minimal and unbiased variance, it has limitations 
such as providing only approximate standard errors 
for heritability (RESENDE, 2002).

As an alternative to the frequentist 
approach, the Bayesian approach combines 
subjective information contained in a priori 
probability distributions with sample information, 
through a posteriori distribution of parameters. 
As a central feature in the Bayesian approach, 
probability distribution correlates with uncertainty 
regarding unknown parameters. In the frequentist 
approach, the parameters consist of fixed and 
constant values, not associated with any probability 
distribution (BOX & TIAO, 1992).

The Bayesian approach provides more 
complete results, allowing the selection of the 
best segregating populations to continue breeding 
programs. In this process, the selection of 
progenies occurs from a performance evaluation 
according to the breeder’s criteria (SILVA et al., 
2019). The literature reports different successful 
cases involving Bayesian inference, such as the 
selection of guava (Psidium guajava L.) (SILVA 
et al., 2020), kale (Brassica oleracea L. var 
acephala DC) (AZEVEDO et al., 2017), and 
eucalyptus populations (Eucalyptus globulus) 
(MORA et al., 2019).

The definition of selection strategies in 
a breeding program requires information on the 
populations under study, the estimation of variance 
components and breeding values, as well as the 
achievement of heritability (SEARLE et al., 1992; 
GONÇALVES-VIDIGAL et al., 2008). Bayesian 
inference can be used with advantages in these 
cases, since it allows to obtain posterior densities 
of the marginal distributions and credibility 
intervals for the variance components, breeding 
values, and genetic parameters such as heritability 
(WALDMANN & ERICSSON, 2006).

Bayesian approaches have many practical 
applications in breeding programs, including the 
study of adaptability and stability in genotypes of 
Gossypium L. (NASCIMENTO et al., 2020) and 
Zea mays (OLIVEIRA et al., 2018), repeatability 
analysis in Jatropha curcas (PEIXOTO et al., 
2021), and parameter estimates and population 

selection in Brassica oleracea L. (AZEVEDO et al., 
2017). Moreover, the Bayesian approach produces 
information regarding distributions and credibility 
intervals; however, wheat breeding programs do not 
often report its use. There is a lack of information 
on wheat improvement regarding the obtaining 
of population parameters, the selection of F2 
populations, and the estimates of genetic gain from 
selection. In this sense, the present study analyzes 
34 F2 populations for grain yield using a Bayesian 
approach, assessing heritability, breeding values, and 
genetic gain from selection.

MATERIALS  AND  METHODS

Genetic material and experimental design
This study included 34 F2 segregating 

populations belonging to the Wheat Breeding 
Program of the Federal University of Viçosa 
(UFV), Brazil, and eight commercial cultivars 
used as parents (Table 1). The F2 populations 
come from crosses conducted in 2019 (winter) 
in a greenhouse, involving eight parents selected 
for presenting genetic variability for cycle, 
health, and agronomic performance. The F1 seeds 
harvested from the crosses were sown under 
greenhouse conditions in the summer season 
of 2020 for generation advancement. Then, 
physiologically mature ears were harvested and 
threshed manually, and F2 seeds and parents 
were separated and arranged according to the 
experimental design.

The experiment was conducted in the winter 
season of 2020, in a randomized block design with two 
replications. The plots consisted of two 1.5 m rows, 
spaced 0.2 m apart. Sowing density was 350 seeds m-2. 
Cultural treatments followed technical indications for 
wheat cultivation in central Brazil (EMBRAPA, 2020). 
The plot was harvested manually, with manual cutting 
of plants, followed by mechanical threshing and 
cleaning and drying of grains up to 13% to determine 
yield per plot, in grams (g).

Statistical analysis
The Bayesian approach was used to 

analyze plot production data. Parameter estimates 
via Bayesian inference were obtained using Monte 
Carlo Markov Chain (MCMC) algorithms. The 
analysis was performed using the MCMCglmm 
package (HADFIELD, 2010) in the R software (R 
CORE TEAM, 2020). A total of 1,000,000 iterations 
(nitt) were determined, discarding the first 50,000 
(burn-in). After each set of five iterations (thin) 
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were performed, a sample was retained, totaling a 
chain with 190,000 iterations, from which posterior 
estimates were obtained. Convergence analysis 
was performed according to Geweke’s criteria 
(GEWEKE, 1991), and graphical analysis was 
performed using the BOA package (SMITH, 2007) 
of the R software (R CORE TEAM, 2020).

The posterior means and medians, credibility 
intervals, and standard deviation of estimates were 
obtained according to the linear model presented below:
y = Xb + Zg + e                                                       (1)
Where y is the vector of phenotypic values (with 
dimension nm × 1, where n = 42, which is the 
number of populations, and m = 2, which is the 
number of blocks), g  is the vector of breeding 
values of populations, and e is the vector of random 
errors, with Equação A, where  is the residual 
variance, and I is an identity matrix. X and Z are 
incidence matrices, respectively, of effects b and g.

Joint data distribution is normal, with 
mean and variance given by:

                         (2)
where  is the genetic variance.

The a priori distributions of the parameters are:

                                                           (3)
                                                          (4)

                                                  (5)
                                                    (6)

Where b assumes a non-informative distribution 
(the normal distribution with a large variance value), 
G1 represents the inverse gamma distribution with 
hyperparameters given by , , 
and Ve = Vg = 1

   (7)
Statistical inference about the 

parameters  relies on the posterior 
marginal distributions. In summary, random 
samples of the posterior marginal distributions 
are indirectly generated from the full conditional 
posterior distributions (f.c.p.d) (likelihood 
function × prior distribution of each parameter) 
by means of the MCMC algorithms. Thus, after a 
sufficiently large number of iterations, the values 

Table 1 - Description of the cultivars used in the crossings as maternal (♀) and paternal (♂) parents regarding the breeding institution, 
commercial class, cycle and weight of 1000 seeds (W1000S, g) and F2  populations obtained by artificial crossings. 

 
Parent -------------------------------------------------------------------Description------------------------------------------------------------------ 

♀ ♂ Cultivar Breeder1 Class Cycle W1000S 

A 1 Tbio Aton Biotrigo Bread Medium 34 
B 2 BRS 254 Embrapa Breeder Early 40 
C 3 BRS 264 Embrapa Bread Early 40 
D 4 BRS 394 Embrapa Breeder Early 40 
E 5 CD 1303 Coodetec Bread/Breeder Early 35 
F 6 Tbio Duque Biotrigo Bread/ Breeder Early 33 
G 7 Tbio Ponteiro Biotrigo Bread Medium/Late 33 
H 8 Tbio Sossego Biotrigo Bread Medium 33 
 1 2 3 4 5 6 7 8 
A  ×   × × ×  
B ×   × × × ×  
C × ×  × ×   × 
D × ×   × ×  × 
E ×     × × × 
F × × ×  × ×   
G   ×  × ×   
H    × ×  ×  
 

1Embrapa: Empresa Brasileira de Pesquisa Agropecuária, Coodetec: Cooperativa Central de Pesquisa Agrícola de Cascavel, Biotrigo 
Genética. 
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generated from the f.c.p.d. are samples of the 
posterior marginal distributions.

Two models were defined, the first with 
the presence of genetic effects (complete model) 
and the second without them (reduced models). The 
goodness of fit of these models was compared using 
the deviance information criteria (DIC) proposed by 
SPIEGELHALTER et al. (2002). The DIC is given 
by:

                                                (8)
where  is the deviance estimate applied to the 
posterior mean of the parameters of the evaluated 
model, and  is the effective number of parameters 
in the model.

The density of the components of genetic 
and environmental variance was calculated to obtain 
the density and the heritability estimate (h2), as 
follows:

where  is the genetic variance;  is the residual 
variance.
The selection differential (SD) was obtained as 
follows:
SD = x̄s -x̄0 
where x̄s is the posterior mean of the selected 
populations (with the standardized value of 30% of 
selection intensity of the populations, corresponding 
to 12 populations), and x̄0 is the posterior mean of all 
populations and parents in the experiment. With the 
information on heritability and selection differential, 
the expected genetic gain from selection was 
estimated, according to Falconer and Mackay (1996); 
ST MARTIN & FUTI (2000), by the expression:

GS = (x̄s - x̄0) × h2

and the expected genetic gain in percentage was 
calculated according to the expression:

RESULTS

The chains reached convergence by the 
Geweke criterion after 1,000,000 iterations at 5% 
significance level (Table 2). The DIC value was 
895.48 for the complete model, and 933.73 for the 
reduced model (without the presence of genetic 
effects). Consequently, the best-fit model contained 
the population genetic effects, and the a posteriori 

inference will be based on it. Thus, a posteriori 
estimates and densities for the sources of variation, 
populations (pop) and error (units) were obtained. 
The Bayesian density distribution for heritability 
estimation is given in figure 1. This allows a clear 
graphical representation of the degree of uncertainty 
around the average heritability estimates; and are 
therefore, intuitive ways to present the results. The 
evaluation of the best model fit was performed 
using DIC, in which the model with the lowest 
DIC value has the best fit. In the present study, the 
complete model showed the best fit, with DIC equal 
to 895.48, to the detriment of the reduced model. 
This value indicated the significance of the breeding 
effects of the populations under study. The deviance 
information criterion (DIC) is widely applied to assess 
the goodness of fit of models in Bayesian inference 
(RESENDE et al., 2014). Bayesian inference has 
advantages over the commonly used frequentist 
inference, including the incorporation of a priori 
knowledge and more accurate credibility intervals 
(0.025 and 0.975 quantile), increasing the reliability 
of components and estimated effects (PEIXOTO et 
al., 2021).

When using noninformative a priori 
information, the estimates of genetic parameters 
obtained by Bayesian inference present values similar 
to those obtained by frequentist inference by restricted 
maximum likelihood (REML) (BEAUMONT & 
RANNALA, 2004). Nonetheless, SILVA et al. 
(2020) obtained different results when testing three 
approaches in segregating populations of Psidum 
guajava. Two of these approaches were Bayesian 
approaches (one with informative and the other with 
noninformative a priori distribution) and the other 
was a mixed model. The authors reported greater 
accuracy through Bayesian analysis with informative 
a priori information, followed by Bayesian analysis 
with noninformative a priori information and, finally, 
REML/BLUP analysis.

The a posteriori mean of broad-sense 
heritability (h²) for grain production in the plot was 
0.51, the credibility intervals were HPD (0.025) 0.01 
and HPD (0.975) 0.73, and the a posteriori standard 
deviation was 0.15 (Table 2). Figure 2 shows the results 
for the estimates of heritability density. According 
to RESENDE (2002), the heritability of the present 
study (0.51) is high (h2 > 0.50). This estimate is 
within the expected range for grain yield, considering 
that this characteristic is controlled by a large number 
of genes and is highly influenced by the environment. 
Previous studies on segregating wheat populations 
estimate heritability using frequentist approaches. 
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For instance, AKEL et al. (2018) analyzed separately 
F1 hybrids of Triticum durum and reported an h2 of 
0.67 for grain yield (t ha-1) and 0.40 analyzing the 

parents. In turn, PIMENTEL et al. (2014) observed 
heritability at an average level for grain yield equal 
to 39.15% in F3 populations of Triticum aestivum. 

 

Table 2 - Mean, standard deviation (STD), credibility (0.025, 0.500 and 0.975), Geweke test (Z) and probability for the Geweke test 
(prob.) of 34 F2 populations and eight tropical wheat cultivars obtained by Bayesian approach for the yield per plot trait. 
Viçosa, MG, 2020. 

 

Code Cross Mean STD 0.025 0.500 0.975 Z prob.* 

- Tbio Aton -34.28 25.90 -85.54 -34.28 14.34 0.41 0.68 
- BRS 254 -56.44 28.22 -109.96 -57.36 0.43 0.20 0.84 
- BRS 264 6.32 24.43 -41.95 5.57 54.82 -0.85 0.39 
- BRS 394 -27.00 25.35 -77.16 -26.80 21.17 -0.08 0.93 
- CD 1303 -41.18 26.53 -92.71 -41.48 7.98 0.22 0.82 
- Tbio Duque 11.31 24.53 -36.65 10.62 60.26 -0.22 0.82 
- Tbio Ponteiro -42.89 26.63 -94.49 -42.88 6.66 0.48 0.63 
- Tbio Sossego 24.34 25.21 -23.65 24.04 74.74 -0.69 0.49 
F2_A2 Tbio Aton/BRS 254 6.74 24.51 -41.71 6.04 55.49 0.59 0.55 
F2_A5 Tbio Aton/CD 1303 63.66 29.12 0.14 64.94 118.01 -0.24 0.81 
F2_A6 Tbio Aton/Tbio Duque 3.80 24.46 -44.42 3.01 52.52 1.36 0.17 
F2_A7 Tbio Aton/Tbio Ponteiro -12.77 24.70 -62.14 -12.06 35.32 -0.40 0.69 
F2_B1 BRS 254/Tbio Aton -19.00 24.90 -68.64 -18.53 29.12 -0.34 0.74 
F2_B4 BRS 254/BRS 394 8.94 24.48 -38.93 8.17 58.01 -1.80 0.07 
F2_B5 BRS 254/CD 1303 76.61 31.03 0.81 78.45 132.86 -0.41 0.68 
F2_B6 BRS 254/Tbio Duque 0.11 24.47 -48.57 0.10 48.44 -0.56 0.58 
F2_B7 BRS 254/Tbio Ponteiro 8.09 24.53 -40.10 7.38 57.06 -0.56 0.56 
F2_C1 BRS 264/Tbio Aton 7.78 24.50 -40.49 7.05 56.60 1.00 0.32 
F2_C2 BRS 264/BRS 254 1.74 24.51 -46.62 1.18 50.40 0.27 0.79 
F2_C4 BRS 264/BRS 394 -0.19 24.41 -48.71 -0.11 48.07 -1.31 0.19 
F2_C5 BRS 264/CD 1303 14.92 24.69 -33.13 14.34 64.05 -1.17 0.24 
F2_C8 BRS 264/Tbio Sossego -74.91 24.69 -131.07 -76.69 -0.76 -1.17 0.24 
F2_D1 BRS 394/Tbio Aton 15.00 24.78 -33.44 14.41 64.40 -1.41 0.16 
F2_D2 BRS 394/BRS 254 -33.66 25.85 -85.85 -33.67 14.76 0.77 0.44 
F2_D5 BRS 394/CD 1303 -19.62 25.83 -69.36 -19.17 28.34 0.19 0.85 
F2_D6 BRS 394/Tbio Duque 11.84 24.59 -36.19 11.17 60.96 1.29 0.20 
F2_D8 BRS 394/Tbio Sossego 14.98 24.73 -33.13 14.37 64.50 0.40 0.69 
F2_E1 CD 1303/Tbio Aton 3.45 24.50 -44.95 2.68 52.45 -0.07 0.95 
F2_E6 CD 1303/Tbio Duque 9.36 24.50 -38.70 8.66 58.32 -1.08 0.28 
F2_E7 CD 1303/Tbio Ponteiro 77.72 31.18 0.87 79.60 134.01 -0.29 0.77 
F2_E8 CD 1303/Tbio Sossego -3.67 24.38 -52.22 -2.95 44.43 1.82 0.07 
F2_F1 Tbio Duque/Tbio Aton 68.80 29.86 0.47 70.21 124.01 -0.30 0.77 
F2_F2 Tbio Duque/BRS 254 -27.46 25.34 -77.91 -27.15 20.47 1.03 0.30 
F2_F3 Tbio Duque/BRS 264 -10.50 24.61 -59.53 -9.80 37.64 0.37 0.71 
F2_F5 Tbio Duque/CD 1303 -16.91 24.80 -66.37 -16.33 31.07 0.42 0.67 
F2_F6 Tbio Duque/Tbio Ponteiro 4.03 24.41 -44.21 3.27 52.41 -0.46 0.65 
F2_G3 Tbio Ponteiro/BRS 264 -18.43 24.89 -68.20 -18.01 29.74 0.58 0.56 
F2_G5 Tbio Ponteiro/CD 1303 -37.23 26.17 -88.57 -37.37 11.42 0.65 0.52 
F2_G6 Tbio Ponteiro/Tbio Duque -23.27 25.12 -73.35 -22.82 24.66 -0.21 0.83 
F2_H4 Tbio Sossego/BRS 394 -39.17 26.29 -90.67 -39.41 9.55 0.58 0.56 
F2_H5 Tbio Sossego/CD 1303 92.23 33.47 1.24 94.98 150.57 -0.10 0.92 
F2_H7 Tbio Sossego/Tbio Ponteiro 6.67 24.52 -41.60 5.96 55.57 0.78 0.44 
Intercept - 244.61 9.50 225.92 244.61 263.30 0.61 0.55 

h2+ - 0.51 0.15 0.01 0.53 0.73 -0.27 0.79 
 

*prob: p-value > 0.01 – not significant; +h2: heritability. 
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The heritability value of the present study is in an 
intermediate position in relation to previous literature. 
However, it is noteworthy that estimates of genetic 
parameters from Bayesian analyses tend to be more 
accurate (SILVA et al., 2020).

The grain yield intercept of the 34 
populations and eight parents was 244.61 grams, 
with credibility intervals HPD (0.025) 225.92 g and 
HPD (0.975) 263.3 g, and with a posteriori standard 
deviation of 9.50 g. Significant breeding values (with 
credibility intervals that do not pass through zero) 
occurred for the populations: Tbio Aton/CD 1303, 
BRS 254/CD 1303, CD 1303/Tbio Ponteiro, Tbio 
Duque/Tbio Aton, and Tbio Sossego/Tbio Aton, being 
of 63.66, 76.61, 77.72, 68.8, and 92.23, respectively. 
All presented credibility intervals of 5% with values 
above zero, except for BRS 264/Tbio Sossego, which 
presented negative values (Table 2). 

Bayesian models are more robust, 
generating more accurate estimates (JUNQUEIRA et 
al., 2016). This fact collaborates with the perspective 
of selection of superior populations with improved 

accuracy. In this context, the best F2 populations were 
selected for generation advancement and for deriving 
promising lines for the breeding program, capable of 
meeting the demand of agricultural producers in the 
Brazilian Cerrado. Since the objective is to increase 
average grain yield, 13 populations were selected 
among those with estimates higher than the overall 
average of the experiment.

Regarding the a posteriori standard 
deviation, the populations with the highest values 
were Tbio Sossego/CD 1303 (33.47 g), CD 1303/Tbio 
Ponteiro (31.18 g), and BRS 254/CD 1303 (31.03 g). 
Conversely, the populations with the lowest values 
for the a posteriori standard deviation were: BRS 
264/BRS 394 (24.41 g), Tbio Duque/Tbio Ponteiro 
(24.41 g), and CD 1303/Tbio Sossego (24.38 g). The 
range between the population with the highest (Tbio 
Sossego/CD 1303) and lowest (CD 1303/Tbio Sossego) 
a posteriori standard deviation was 9.09 grams (Table 2).

Figure 3A shows that among parents and 
F2 populations, 23 crosses and genotypes had positive 
breeding value, ranging from 0.11 to 92.23. Figure 3B 

Figure 1 - Distribution chain of mean estimates of 190,000 estimates for the 
sources of variation population (pop) and error (units) of the model 
using noninformative prior, on the left. On the right, the distribution 
density function corresponding to the chain.
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shows the populations selected based on the positive 
breeding value intercept. When considering the group 
with the 13 selected populations, its mean was 282.28 
g plot-1, with a selection differential of 37.67 g plot-

1 in relation to the intercept of all populations and 
parents, of 244.61 g plot-1. The expected genetic gain 
from selection was 19.2 g plot-1, equivalent to 7.8%, 
for a selection intensity of 30%. The smallest positive 
breeding value intercept within the selected group 
belongs to population F2_B4 (BRS 254/BRS 394), 
with 253.55 g plot-1. The population with the highest 
average was F2_H5 (Tbio Sossego/CD 1303), with 
average plot production of 336.84 g plot-1.

The populations F2_H5 (Tbio Sossego/CD 
1303), F2_E7 (CD 1303/Tbio Ponteiro), F2_B5 (BRS 
254/CD 1303), F2_F1 (Tbio Duque/Tbio Aton), and 
F2_A5 (Tbio Aton/CD 1303) showed average grain 
yield per plot superior to all parents used in the 
crosses and in the experiment as controls. This shows 
the potential for selection of superior transgressive 
individuals within the wheat populations developed 
by the UFV Wheat Breeding Program, with a view to 
meeting the demand of the agricultural market in the 
Brazilian Cerrado. Another six F2 populations of tropical 
wheat were selected together with two commercial 
control cultivars, Tbio Duque and Tbio Sossego.

The five populations that showed significant 
genetic effects, mentioned in the previous paragraph, 
presented an average estimate of 320.41 g plot-1. 

The intercept of all hybrid and parent combinations 
was 244.61 g plot-1. For the selection differential 
(SD) between populations with significant genetic 
effects and all combinations, SD was 75.80 g plot-1. 
Considering only the parents used, the differences are 
even greater, since the average of the parents was of 
234.29 g plot-1, then the SD was 86.12 g plot-1.

Of the five F2 populations with significant 
effects, the three populations with the highest breeding 
values were Tbio Sossego/ CD 1303 (F2_H5), CD 
1303/Tbio Ponteiro (F2_E7), and BRS 254/CD 1303 
(F2_B5). For the three most promising populations 
among all 34 combinations, crosses involving wheat 
parents from different breeders (Biotrigo Genética, 
Coodetec, and Embrapa Trigo) resulted in F2 
populations with high average grain yield plot-1, and 
with greater probability of extracting wheat progenies 
with satisfactory agronomic performance.

Strategies aimed launching cultivars with 
high yield potential are desirable, as they allow 
the intensification of wheat agricultural areas and 
enable satisfactory gains in production per unit of 
area. However, the intensification of annual gain in 
wheat yield is limited, with indications of stagnation. 
BECHE et al. (2014) reported gains of 0.92% year-1 
when evaluating wheat cultivars released in the last 
60 years in Brazil. In turn, WOYANN et al. (2019) 
observed gains of up to 1.28% year-1 in cultivars 
released between 1985 and 2014. Therefore, the 

Figure 2 - Distribution chain of heritability estimates of 190,000 estimates of the model using 
noninformative priori, on the left. On the right, the distribution density function 
corresponding to the chain.



8

Ciência Rural, v.53, n.7, 2023.

Mezzomo et al.

significant selection gains obtained are noteworthy, 
especially when considering the gain of selected 
F2 populations in relation to the parents, which are 
commercial cultivars.

The results of the gains are expressive 
and point to the possibility of extracting lines with 
high yield. It is noteworthy that the F2 populations 
come from crosses involving parents from different 

Figure 3 - Estimates of genetic value (A) and genetic value plus intercept (B) of 34 F2 populations 
and eight tropical wheat cultivars obtained by Bayesian approach for the yield per plot 
trait (g). Viçosa, MG, 2020.
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breeders. This is because the maintenance of existing 
variability in groups of segregating populations 
allows for the improvement of selection, with a 
consequent increase in gains. The alleles fixed for a 
certain variable of a germplasm are usually different 
from those fixed for the same variable of another 
germplasm, thus leading to gene complementarity, 
which increases the possibility of identifying superior 
transgressive individuals.

CONCLUSION

Considering F2 populations of tropical wheat, 
Bayesian inference provided an adequate model fit for 
the dataset. This approach can be used in tropical wheat 
breeding programs in early generation populations. 
Finally, 11 F2 populations showed superior performance 
and were selected for generation advancement.
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