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INTRODUCTION

Precision agriculture currently plays 
a significant role in the spatial and temporal 
management of the inputs involved in agricultural 
production. This science focused on the optimization 
of water resources in irrigated areas is called 
precision irrigation (PI), whose objective is to 
develop appropriate technologies to increase water 
productivity in irrigated agriculture through the 
application of water in precise and accurate amounts 
at the right time, according to the spatial and temporal 
variability of the irrigated areas (ABIOYE et al., 
2020; BWAMBALE et al., 2023; ABAGALE & 
ANORNU, 2023; CAPRARO et al., 2018).

In addition, considering irrigation 
management, this is elaborated, according to soil, 
plant and climate information, which generate a large 
volume of data to be transformed into prescription 
maps of irrigation depths, based on the variability 
of soil attributes, landscape features and growing 
conditions (STONE et al., 2015).

In view of this, precision irrigation has 
tools capable of identifying contrasting spatial 
differences in an agricultural production area and 
establishing personalized management in a rational 
way in the field (CASANOVA et al., 2014; CORWIN, 
2013; PAN et al., 2013).

The technologies being used, including 
in an integrated way, are as follows: automatic 
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ABSTRACT: In recent decades, research on precision irrigation driven by climate change has developed a multitude of strategies, methods 
and technologies to reduce water consumption in irrigation projects and to adapt to the increasing occurrence of water scarcity, agricultural 
droughts and competition between agricultural and industrial sectors for the use of water. In this context, the adoption of water-saving and 
application practices implies a multidisciplinary approach to accurately quantify the water needs of crops under different water availability and 
management practices. Thus, this review article presented a review of technologies and new trends in the context of precision irrigation, future 
perspectives and critically analyze notions and means to maintain high levels of land and water productivity, which minimize irrational water 
consumption at the field level.
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RESUMO: Nas últimas décadas pesquisas voltadas à irrigação de precisão, impulsionadas pelas mudanças climáticas, desenvolveram uma 
infinidade de estratégias, métodos e tecnologias para reduzir o consumo de água em projetos de irrigação, para adaptação à crescente ocorrência 
de escassez de água, secas agrícolas e competição entre os setores agrícolas e industriais pelo uso da água. Nesta conjuntura, a adoção de 
práticas de economia e aplicação de água, implica em uma abordagem multidisciplinar para a quantificação precisa das necessidades de água 
das culturas, sob diversas práticas de disponibilidade e manejo da água. Dessa forma, este artigo de revisão tem como objetivo apresentar uma 
revisão sobre as tecnologias e novas tendências no contexto da irrigação de precisão, as perspectivas futuras e analisar criticamente noções e 
meios para manter altos índices de produtividade da terra e da água, que minimizem o consumo de água irracional a nível de campo.
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weather stations, remote sensing, global positioning 
system (GPS), geographic information systems 
(GIS) (BARKER et al., 2018; GIOTTO et al., 
2016; MENDES et al., 2019; MILLER et al., 2017; 
NEUPANE & GUO, 2019), multispectral cameras, 
unmanned aerial vehicles (UAVs) (GAGO et al., 
2015; MATESE & DI GENNARO, 2018), network 
of wireless sensors (WSN) (IBRAHIM et al., 2015), 
software (GOLDSTEIN et al., 2017; MCCARTHY et 
al., 2014), and plant growth and water flow simulation 
models (LIAKOS et al., 2019; LOZOYA et al., 2016; 
OLDONI & BASSOI, 2016; PEREA et al., 2017).

Therefore, in this review, we focused on 
strategies, methods, new technologies and trends 
that are available to farmers and professionals in 
the context of precision irrigation with a focus on 
optimizing water use.

Precision irrigation technologies and trends
Soil moisture sensors in agriculture

Irrigation management via soil moisture 
sensors has recently undergone several commercial 
innovations, many of which have been introduced 
by technology companies and independent research 
groups around the world (FERRAREZI et al., 2020). 
Many of these innovations are due to a significant 
decrease in the prices of monitoring equipment and 
data storage in digital agriculture. TIGLAO et al. 
(2020), who used a system of wireless sensors that cost 
half the price of commercial systems, achieved savings 
of 81% in water consumption applied in irrigation 
management.

Although, the accessibility of sensors 
has increased in recent years, their operation still 
has the same fundamentals based on physical, 
chemical and mechanical methods for the 
determination of information of interest, which 
can be obtained electrically, electromagnetically, 
optically, radiometrically, mechanically, acoustically, 
pneumatically or electrochemically, with the methods 
of electrical resistance (Boyoucus), tensiometry, 
neutron moderation and time domain reflectometry 
(TDR) being the most used to estimate the amount of 
water available in the soil (ZINKERNAGEL et al., 
2020).

The most common and simple sensors that 
use indirect (non-destructive) methods to measure 
soil moisture are resistive sensors that work by 
monitoring the variation in electrical resistance 
between two electrodes embedded in the soil. 
Advantages of their use include low acquisition cost, 
simple sensor operation and easy availability in the 
market; as a disadvantage, they do not have high 

accuracy in soil moisture readings. Models such as 
FC-28 and SEN0114 are found on the market. The 
other sensors are capacitive, such as the SHT10 
and EC-5 models; they work by measuring the 
dielectric constant of the soil by the time elapsed 
after emitting an electromagnetic pulse generated by 
metal rods embedded in the soil. These sensors have 
the advantage of high accuracy in readings; however, 
due to the construction of their sophisticated and 
expensive electronic components, their acquisition 
costs can be high (GASCH et al., 2017; GOMES 
et al., 2017; MATOS et al., 2017). Other models 
found on the market include Decagon 10HS, Meter 
TEROS-12 (also measures temperature and electrical 
conductivity), Sentek Drill & Drop (measuring 
moisture, temperature and salinity every 10 cm) and 
Watermark 200SS (measures the tension of water 
held in the soil in kPa).

Due to the wide variety of methods for 
obtaining data and the very nature of construction of 
humidity sensors, a series of usage characteristics and 
recommendations for each field condition can be specified 
in each specific situation ZINKERNAGEL et al. (2020).

One of the biggest advantages of using soil 
moisture sensors is linked to irrigation management, 
since monitoring the amount of water in the soil is a 
direct indication of the irrigation needs of an agricultural 
area (HAMAMI & NASSEREDDINE, 2020).This 
applicability can be observed in research carried out by 
O’SHAUGHNESSY et al. (2020) in the state of Texas, 
USA, studying the productivity of Sorgum bicolor L., in 
which the productivity of irrigation water was quantified 
based on three different management methodologies, 
via plant-based thermal patterns, via soil-based 
neutron probe measurements, and a hybrid method 
combining plant and soil monitoring over a period 
of three consecutive years. The researchers reported 
that in the periods of joint use of monitoring methods 
(hybrid method), there was a consistent increase in the 
accumulation of biomass, resulting in both productivity 
gains per unit of area and water savings.

EL-NAGGAR et al. (2020), in an 
experiment in New Zealand with bean and pea crops 
under two irrigation management methods, via 
climatological water balance and via capacitive soil 
moisture sensors (FDR) coupled with radiofrequency 
data transmission systems (IoT), observed a difference 
in the volume of water applied and at the beginning 
of irrigation operations, resulting in savings between 
27–44% of the volume of water used in areas managed 
with soil moisture sensors. This result was attributed 
to the imprecision of the balance methodology of 
water in predicting the effects of poor soil drainage, 
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especially resulting from the presence of a physical 
impediment in the soil profile, which underestimates 
the real volume of water available to the plants.

In addition to monitoring, the use of 
sensors also encompasses the use of automation in 
irrigation systems, as can be seen in a study carried 
out by CONESA et al. (2021), where the use of an 
automatic irrigation system based on capacitance 
sensors (FDR) showed better results in the efficiency 
of water use, resulting in a decrease in the irrigation 
depth compared to methods based on monitoring the 
evapotranspiration of the water reference (ETo) and 
in the use of crop coefficients (Kc) in the literature. 
JAISWAL & BALLAL (2020) used an automatic 
system based on soil and climate sensors operating 
with fuzzy logic to control the flow of the irrigation 
system, achieving a smaller volume of water between 
45% and 30%, respectively, as well as lower irrigation 
costs, when compared to the flood irrigation system.

According to DOMÍNGUEZ-NIÑO et al. 
(2020), the use of sensors in agriculture also allows a 
better understanding of the real situation of humidity 
in different areas with plants in different stages of 
growth, since monitoring via sensors takes place 
directly at the place of interest and not in a generalized 
way, such as in climate monitoring, which often 
considers irrigation sites based on a single stage of 
plant growth.

The automation of irrigation systems 
based on soil sensors associated with the use of IoT 
technologies can be observed in the research of 
BARKUNAN et al. (2019) in which the soil moisture 
and climate monitoring sensors were connected 
through a microcontroller capable of sending messages 
to the operator’s smartphone, providing information 
on the soil moisture conditions and the beginning of 
the irrigation period. This is possible through the use 
of wireless communication devices that allow data 
transfer between applications without cables.

The use of a wireless sensor network 
is very important in precision irrigation because, 
according to irrigation management, extension of 
the area to be irrigated and producer preferences, it 
is necessary to use spatially distributed sensor mesh 
to attend to data collection remotely from several 
irrigated sectors, for example. Cabe points out that 
the choice of type of wireless device must consider the 
range of the device. For example, a Bluetooth device, 
model HC-06, with an SPP usage profile (Serial Port 
Profile), has a maximum distance of 10 m between 
connected devices, with a point-to-point connection. 
Another model, the XBee XB24-Z7WIT-004, of 
ZigBee specification, uses radiofrequency signals 

for communication and low operating power, with a 
range limit of about 100 m, which allows point-to-
point and multipoint connections, making it possible 
to form a mesh network of wireless devices.

Challenges in the application of sensors for soil 
moisture monitoring

One of the challenges for using FDR 
or TDR sensors in soil water monitoring is the 
relationship between factory calibration and sensor 
installation orientation in the soil profile (vertical or 
horizontal), which can cause systematic variations in 
the humidity readings.

This effect was observed by CHEN et al. 
(2019a),who when comparing a capacity sensor and 
three TDR sensors in three positions on the ground, 
observed a significant variation in the readings of 
water content in the soil under irrigation, concluding 
that, in general, for sensors with factory calibration, 
the vertical orientation presents greater precision when 
compared to horizontal orientation, attributing this 
phenomenon to the greater disruption in the soil that 
the installation in the horizontal position of the sensor 
causes at the time of installation of the sensor. They 
suggested that irrigators should follow the positioning 
that manufacturers recommend for their equipment.

However, SHARMA et al. (2017) pointed 
out that, not infrequently, the calibration of sensors 
provided by manufacturers can overestimate the 
volume of water in the soil and that, although they may 
be suitable for soils of similar texture, they often do 
not consider factors such as type, amount of organic 
matter and apparent density of the soil, which influence 
the dielectric properties, making a local calibration 
necessary for better accuracy in the readings.

For the positioning of sensors in soil 
layers of different textures, KARGAS & SOULIS 
(2019) observed interesting results, concluding 
that for the correct management of irrigation in 
productive areas, it is necessary to use a different 
sensor for each soil layer or a single sensor installed 
in the middle portion of the root system that is in 
contact with both layers simultaneously.

SILVA et al. (2018), in a study on banana, 
observed that the ideal positioning of the sensors may 
not be constant throughout the development of the 
plant; that is, the most representative position for the 
sensor to read the soil moisture may vary along with 
the phenological stage of the plant.

Other factors such as salinity, soil textural 
class and temperature where the sensor is installed can 
also affect the accuracy of soil moisture monitoring, 
which may limit the use of these sensors in areas 
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with higher temperatures, such as semi-arid and 
arid regions, or the use of reused water in irrigation 
(CARDENAS-LAILHACAR & DUKES, 2015; 
INCROCCI et al., 2019; OATES et al., 2017).

Naturally, the use of soil moisture sensors 
in agriculture results in a large amount of data for 
analysis. It is possible to observe a growing trend 
in researches that use data science techniques to 
interpret the readings of these sensors based on 
artificial intelligence techniques.

Researches such as the one by 
GOLDSTEIN et al. (2017) trained several machine 
learning algorithms in the interpretation of a series 
of climatic and soil data to propose assertive 
recommendations for the management of irrigation in 
the field based on data storage in cloud computing.

Using more robust computational techniques, 
such as “neural networks” it is possible to employ a 
network of sensors for the precise determination of 
soil moisture, resulting not only in more homogeneous 
irrigation in the areas but also in water and electrical 
energy savings through the best use of the pumping 
system (DURSUN & ÖZDEN, 2016).

The use of mobile sensor systems, together 
with graphical software, to better understand the 
determination and monitoring of soil moisture 
distribution; although, in smaller quantities, also 
expands the options for new research areas and future 
applications at the field level (SHAN et al., 2019).

Finally, the development of the following 
new types of sensors demonstrate industrial 
innovations to be used in future research: mm-sized 
soil moisture sensors (ZHOU et al., 2019), which 
have the ability to perform better monitoring of water 
distribution in the soil profile; perforated coaxial 
cylinder (CHEN et al., 2019c), capable of monitoring 
both soil water volume and temperature; thick film 
conductivity sensors (SOPHOCLEOUS et al., 2020), 
capable of monitoring changes in soil structure through 
changes in conductivity and soil water content; and a 
Fiber Bragg Grating sensor (ZHANG et al., 2019), 
developed for monitoring water pressure in the field.

Use of satellites and spectral sensors for precision 
irrigation

Advances in spectroscopy have allowed 
the execution of specific analyses of different types of 
materials in a non-destructive and fast way, revealing 
valuable information through the energy reflection of 
the targets (LILLESAND & KIEFER, 1994).

Spectral sensor technology has been used 
to efficiently generate information on a large time–
space scale. Data collected in the field with point 

equipment can be, in some cases, more accurate, 
while cost, speed and practicality are advantages 
of spectral sensors coupled to satellites or UAVs to 
capture information spatially distributed over large 
areas. The remote data analyzed allow considerations 
about photosynthesis, physiological disturbances, 
phenology and water interactions in real time, which 
are fundamental for water planning and management 
(KARTHIKEYAN et al., 2020).

Satellites and sensors
There are currently several satellites in 

operation that perform this type of work remotely: 
MODIS, Landsat 7, Landsat 8 and Sentinel 2A. 
The great acceptance of this technology is because 
they are free products, with good spatiotemporal 
resolution and radiometric quality and with ease of 
data integration with APIs.

The data generated by satellites can be useful 
in several applications at the irrigation level. VANINO 
et al. (2018) combined meteorological data with data 
captured by the sensors of the Sentinel 2A satellite to 
estimate the leaf area index and surface albedo to use 
this information to calculate the evapotranspiration 
of tomato crops and validate it through comparison 
with evapotranspiration data obtained by the soil–
water balance. The results of this research showed the 
satisfactory suitability of the Sentinel 2A satellite to 
determine water demand. SHADMAN et al. (2017) 
used thermal band data from the Landsat 8 satellite 
to estimate water stress in sugarcane plants through 
the crop water stress index (CWSI). According to the 
author, the data capacity of the satellite sensors was 
positive and sufficient to carry out monitoring via 
remote sensing of the water stress of sugarcane without 
the need for auxiliary soil data.

MARINO et al. (2014) evaluated spectral 
differences in tomato leaves located in 3 irrigated 
regions, classifying them as high (H), medium (M) 
and low (L) in terms of water use and efficiency; 
NETO et al. (2017) evaluated the spectral reflectance 
in the visible (VIS) and near-infrared region (NIR) 
of sunflower leaves in water deficit to obtain 
models capable of estimating the status of water 
and chlorophyll. CHEMURA et al. (2017) used 
information from VIS and NIR to create a machine 
learning model using the random forest algorithm 
to predict the water content in the plant in the coffee 
crop. All studies were conclusive and showed 
variations in spectral identity in relation to variations 
in water content in plants.

In precision irrigation, indices generated 
from orbital satellites have been mainly used to: 
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(a) monitor irrigation systems in macro-regions; (b) 
adapt local crop coefficients for a better calculation of 
plant evapotranspiration; and (c) estimate vegetative 
metrics such as plant density, coverage fraction (fc) 
and leaf area index (FRENCH et al., 2020).

According to CHEN et al. (2018), many 
studies focus only on mapping the extent of irrigated 
areas without considering important information 
that could also be extracted with the use of remote 
sensing, such as the amount of water with drawn from 
the system and the frequency and time of irrigation.

Different levels of decision can be used in 
irrigated macro-regions using satellite systems, since 
it is possible to track the temporal growth of crops, 
deriving this information in basal coefficients that 
allow a better estimate of regional evapotranspiration. 
Thus, GONZÁLEZ-DUGO et al. (2013) developed a 
methodology called MINARET (monitoring irrigated 
agriculture ET), which uses Landsat data capable 
of constantly monitoring the water consumption of 
different irrigated crops. MASELLI et al. (2020) used 
meteorological data together with Sentinel 2A data to 
estimate evapotranspiration in monitoring irrigated 
areas in the Italian semi-arid region.

Obtaining evapotranspiration values with 
greater precision is a fundamental factor, as it is a key 
parameter in the water and energy balance equation. 
FAO bulletin 56 states that crop evapotranspiration 
(ETc) can be calculated by multiplying the reference 
evapotranspiration (ETo) and a specific crop 
coefficient (Kc) (ALLEN et al., 1998).

Although, the coefficients provided 
by the FAO are general, throughout the growing 
season, there are variations in crop characteristics, 
so the parameter is intrinsically linked to species, 
variety, plant population density, phenology, water 
availability, climate and other factors. Therefore, a 
standard Kc may not well represent some localities, 
causing less reliable estimates and directly impacting 
good water use (MOKHTARIA et al., 2018). In 
recent years, several works have contributed to more 
accurate irrigation, developing methods to estimate 
Kc or Kcb (basal crop coefficient) and considering 
vegetation indices, which are considered great 
phenological thermometers, called Kc-VI (ALAM et 
al., 2018; CAMPOS et al., 2017). Still, more recently, 
PEREIRA et al. (2021) published a newsletter 
(Updates and forward to the FAO56 crop water 
requirements method - Case studies using ground 
and remote sensing data; applications to update and 
upgrade the FAO56 method) with updates of these 
coefficients through a collection of several studies, 
with the use of new tools, such as remote sensing and 

IoT, which bring more precision to the calculation 
of the water needs of crops, which are important 
advances for precision irrigation.

FRENCH et al. (2020), using data from 
Landsat and Sentinel mission satellites, determined 
a Kc-VI used to calculate wheat evapotranspiration. 
The experiment was carried out in the American 
southwest, and it was concluded that the best values 
of Kc and ETc were obtained in the middle of the 
season until the end of senescence, while at a time 
point sooner than 60 days after planting, a high and 
overestimated ETc was observed due to the low 
coverage canopy at the time, which contributed to the 
low reflectivity of the plants.

Electromagnetic approach applied to the 
determination of the spatial variability of the water 
status of plants in the field based on UAVs

Four components must be considered 
before selecting the appropriate UAV for IP (GAGO 
et al., 2015): experimental design, type of data to be 
obtained, data acquisition, and data processing and 
results. In addition to UAVs, sensors are essential for 
the quality of the images obtained. Decision-making 
regarding the type of camera to be used depends 
directly on the project objective. The cameras 
embedded in UAVs most used in the IP concept 
aiming intelligent management of water are thermal, 
multispectral, hyperspectral, RGB and near infrared 
(NIR) cameras.

To monitor biotic and abiotic stress, 
thermal (1 band) and hyperspectral (100–250 bands) 
cameras are recommended, while multispectral (6–12 
bands) and RGB cameras (3 bands) are indicated for 
growth and biomass assessment (ADÃO et al., 2017). 
High-resolution RGB cameras are traditionally used 
in agroforestry applications; however, they lack the 
precision and spectral range to trace the material 
characteristics that hyperspectral and multispectral 
cameras can provide.

SUSIČ et al. (2018) demonstrated the 
potential of using hyperspectral images ranging from 
400 to 2500 nm to assess the water deficit status in tomato 
plants. ZARCO-TEJADA et al. (2012) used UAV-based 
hyperspectral and thermal cameras to assess water stress 
levels in citrus crops and confirmed a link between PRI 
and canopy temperature. Recently, LOGGENBERG 
et al. (2018) used hyperspectral technology combined 
with machine learning to discriminate between water-
stressed and non-stressed vines.

Hyperspectral imaging cameras generally 
capture more detail in spatial and spectral ranges 
compared to other cameras. LOGGENBERG et al. 
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(2018) observed that the main limiting factor in the 
application of hyperspectral data is the inherent issue 
of dimensionality, which results in reduced precision. 
In addition, hyperspectral cameras are very expensive 
and complex (ELVANIDI et al., 2018), which limits 
their expeditious and wide application, especially in 
commercial agriculture.

Multispectral cameras are composed 
of multiple sensors with high-quality filters that 
can simultaneously capture images using different 
wave frequencies. They can record both the light 
spectrum that is visible to the human eye and the 
non-visible spectrum; thus, these cameras allow for 
much more accurate measurements of plant health 
and phenological status than conventional cameras 
(RGB) (KHANAL et al., 2017).

Multispectral and hyperspectral cameras 
do not have a resolution comparable to traditional 
RGB cameras, which causes some initial frustration 
for users new to the spectral area accustomed to 
traditional high-resolution images. The resolution of 
RGB cameras is in the range of 20–120 MB, while 
multispectral and hyperspectral cameras have a 
resolution between 0.2–3 MB.

According to POBLETE et al. (2017), 
plant water status is not accurately predicted using 
multispectral imaging between the 500 and 800 nm 
spectral bands due to the lack of sensitivity to water 
content; however, wavelengths greater than 800 nm 
are best for this purpose.

RALLO et al. (2014) observed that 
satisfactory estimation of leaf water potential at leaf 
and canopy levels can be obtained using vegetation 
indices based on the NIR shortwave infrared domain, 
with specific optimization of the “central bands.”

Recently, some researchers have developed 
artificial neural network (ANN) models derived from 
multispectral images to predict the spatial variability 
of water potential in agricultural crops. ROMERO et 
al. (2018) classified the water status of the vine based 
on 10 vegetation indices (VI) using bands of Red, 
Green, Red-Edge, and NIR wavelengths and found 
that there were no significant relationships between 
individual VIs, with values of correlation lower than 
0.3 for almost all the studied indices.

There is a very specific spectral band 
called RedEdge, which lies between red and 
infrared, has excellent correlation with chlorophyll 
fluorescence and effectively differentiates between 
healthy and senescent vegetation (MATESE & DI 
GENNARO, 2018). There is already a range of 
specific multispectral cameras for use embedded in 
UAVs (MATESE & DI GENNARO, 2018). Among 

them, Tetracam, Airinov and Micasense camera 
manufacturers can be highlighted.

Tetracam’s modular cameras can be 
mounted in different arrangements, depending 
on which bands you want to capture and which 
bandwidths. Airinov’sagro Sensor has 4 bands and 
has been used by the famous eBee AG, the version of 
the fixed-wing UAV for agricultural applications in 
Switzerland Sensefly (MATESE & DI GENNARO, 
2018). The American Micasense manufactures 
the RedEdge sensor, a multispectral camera that 
simultaneously captures 5 different narrow-width 
bands and a more recent dual camera that captures 10 
spectral bands. In addition to the RGB bands of the 
visible spectrum, the camera also captures the NIR in 
the non-visible spectrum and the RedEdge, a spectral 
band that is positioned exactly on the threshold 
between the visible and the non-visible. In addition to 
increasing the sensitivity of certain indices, it is with 
this spectral band that certain diseases and crop pests 
can be identified (DEVIA et al., 2019).

DEVIA et al. (2019) studied biomass 
production in rice crops using multispectral imaging. 
The authors presented a method for biomass 
estimation using near-infrared (NIR) images captured 
at different crop scales. The approach estimated the 
biomass of large areas of the crop with an average 
correlation of 0.76 in relation to the traditional manual 
destructive method.

KITIĆ et al. (2019) proposed a low-
cost portable active multispectral optical device 
for accurate detection of plant stress and to 
perform field mapping called Plant-O-Meter. The 
device has an integrated multispectral source 
that comprises light in four more indicative 
wavelengths (850, 630, 535 and 465 nm) and allows 
the simultaneous illumination of the entire plant. 
Sequential illumination and detection provide fast 
reflectance measurements, which are transmitted 
by wireless to Android-powered devices for data 
processing and storage. The device was tested under 
laboratory conditions by comparing Plant-O-Meter 
measurements with imaging results from a SPECIM 
hyperspectral camera and a GreenSeeker handheld 
device under field conditions. The comparison 
revealed comparable performance, showing a strong 
correlation in both the hyperspectral (R2 = 0.997) 
and portable GreenSeeker (R2 = 0.954) from the 
laboratory measurements and R2 = 0.886 for the field 
experiments), indicating that the device exhibited 
strong potential for accurate stress measurements.

The scientific articles reviewed in this 
research, referring to the use of different spectral 
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technologies in agriculture, indicate the types of 
multispectral and thermal cameras used by the 
scientific community for the rapid detection of water 
stress in culture.

Artificial intelligence in precision agriculture
Due to climatic uncertainties, the growing 

demand for food and the rapid expansion of the 
population, the agricultural sector is increasingly 
dependent on the use of new technologies to obtain 
higher yields in a sustainable way with each harvest. In 
this context, artificial intelligence (AI) is increasingly 
developing applications in agriculture aiming 
productivity gains in a precise and effective way, 
avoiding the waste of resources (SHAIKH et al., 2022).

In recent decades, researchers have strived 
to allow computers to extract enough information 
from raw data to model the real world. To achieve 
this, many have turned to machine learning 
algorithms to capture a large amount of information 
and automatically discover the representations 
needed to detect or classify input patterns and solve 
the various problems and needs of the agricultural 
sector (KHALIL & ABDULLAEV, 2021). Machine 
learning algorithms are computation models with 
particular properties such as learning, generalizing, 
grouping or organizing data. They consist of 
distributed structures formed by a large number 
of very simplified processing units connected to 
each other. Intelligent behavior occurs through the 
interactions of the neural network processing units 
(CANZIANI et al., 2016). The first neural networks 
to achieve widespread repercussions were based 
on unsupervised pre-training. However, it was the 
rediscovery of convolutional neural networks (CNN) 
(LECUN et al., 1998) that made this topic one of the 
main topics in machine learning, parallel processing 
technologies in GPUs (Graphal Processor Unit) and 
large databases that allowed these networks to be used 
fully. With the good performance being demonstrated 
by such models, other areas of knowledge besides 
the area of computing have been using these models 
for different purposes, as in the area of agricultural 
sciences since the 1990s with the pioneering work 
of MCQUEEN et al. (1995), in which the authors 
investigated the use of machine learning techniques 
existing at the time for some problems in agriculture 
and horticulture and presented a case study to infer 
management rules for some invasive plants. Recent 
research has used PCN-type networks (pulse-coupled 
networks) for the separation of wheat grains and to 
evaluate the physical characteristics of the soil and 
the growth of the cultures, concluding after field 

experiments that the developed model assisted in 
choosing the crop that best suited the evaluated soil 
(SHAIKH et al., 2022).

Works that involve not only agronomic data 
but also other technologies, such as satellite images, 
have been developed, such as the classification of 
management areas using satellite images (KHALIL 
& ABDULLAEV, 2021). In the context of the use of 
neural networks for agriculture and with the advent 
of cheaper computing resources combined with the 
new sensors that are being developed, proposals that 
increasingly use cutting-edge technological resources 
are noted (SOBAYO et al., 2018).

As a tool to aid strategic decision making, 
smart agriculture has emerged as a new scientific 
area that employs, among other technologies, 
machine learning algorithms to assess and monitor 
the conditions of growing areas, such as soil and 
weather conditions, leading to more accurate results 
(LIAKOS et al., 2018).

BACHOUR et al. (2015) used a 
methodology that combines wavelet mult-iresolution 
analysis with the MVRVM algorithm (multivariate 
relevance vector machine) to predict 16 days of 
ETo. More recently, deep learning (DL) is a machine 
learning technique that has shown good results in 
solving agricultural problems. KAMILARIS & 
PRENAFETA-BOLDÚ (2018) presented a review 
of 40 relevant studies in the area and found that, in 
addition to improvements in the performance of 
classification/prediction problems, DL also reduced 
resource engineering in many of the works.

For crop management, for example, yield 
predictions can be made from satellite images, as 
presented by KHALIL & ABDULLAEV (2021). In 
this research, the authors concluded that it is possible 
to predict wheat yield from image processing with 
supervised Kohonen networks. Another beneficial 
activity is pest and disease control, where the 
spraying of pesticides is now directed only to the 
affected plants, reducing financial and environmental 
costs (JIAO et al., 2022).

In water and soil management, important 
practices have been developed not only to increase crop 
productivity but also to use these resources efficiently. 
PATIL & DEKA (2016) used the extreme learning 
algorithm to estimate the weekly evapotranspiration 
of a crop in India. In soil management, GU et al. 
(2021) presented a new method for estimating 
soil moisture based on ANN models. ANN shave 
also been the subject of scientific investigations in 
the field of irrigation engineering to estimate the 
localized pressure drop caused by connectors and 
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special parts present in irrigation systems. According 
to ELNESR & ALAZBA (2017), the use of neural 
networks presents a powerful tool for estimating the 
load loss caused by initial connectors when compared 
to the use of empirical models. KADHEM et al. 
(2017) used a neural network to predict wind speed 
data with chronological and seasonal characteristics. 
The authors concluded that the neural network 
was able to portray variations in wind speed with 
good performance during the different seasons 
of the year. LIU et al. (2018) developed a wind 
speed prediction model based on WPD (wavelet 
packet decomposition), CNN (convolutional neural 
network) and CNNLSTM (convolutional long short-
term memory network). To verify the prediction 
performance of the proposed model, it was compared 
with 8 neural models widely used by the scientific 
community. The authors concluded that the proposed 
model is robust and effective in predicting wind speed 
time series.

Definition of management zones in precision 
irrigation

One way to manage physical, chemical 
and/or biological variations within a growing area is 
through the delineation of management zones (ZM). 
Management zones are sub-areas within a cultivation 
area that have similar characteristics but differ to a 
certain degree from the others in such a way that a 
particular agronomic management is justified to be 
adopted in each of them (KITCHEN et al., 2005).

For management zones to be determined, 
it is necessary to obtain data from the area of 
interest, which can be of various types, such as crop 
productivity, soil physical and chemical properties, 
topography, vegetation indices, and aerial images. 
From these individual or combined data, thematic 
maps are created, and this spatial information is then 
interpreted. In this context, BAZZI et al. (2018) used 
soil property data to define management zones, such as 
soil texture and apparent electrical conductivity. YAO 
et al. (2014) used soil physicochemical properties and 
crop yield data and determined management zones.

Generally, irrigation is carried out 
uniformly in a cultivated area, regardless of the 
spatial characteristics of that area. In the field, the 
water content in the soil is not homogeneous due 
to its spatial variability, which ranges from crop 
development, difference in relief and variation of soil 
hydraulic properties and rainfall distribution. Thus, 
the proper use of irrigation in each management zone 
reduces the volume of water used in the irrigation 
system, as there is an increase in efficiency that 

provides growth in productivity, reducing nutrient 
leaching and water waste. Management zones are used 
to optimize irrigated areas, where a heterogeneous area 
is separated into homogeneous zones and irrigation 
management will be the same in these regions (LIANG 
et al., 2016; PEREA et al., 2017).

For XIANG et al. (2007), cluster analyses 
and empirical analyses are the categories in which 
most of the methods used to define management 
zones are inserted. Since the empirical methods are 
simpler, based on specialized knowledge and on the 
distribution of productivity in the production areas, 
in this way, it is possible to divide a heterogeneous 
area into homogeneous sub-areas. However, cluster 
analysis is a more complex, less subjective method 
that uses multiple variables during the establishment 
of management zones. In cluster analysis methods, 
data points in a cropping area are divided into 
different classes, where the similarities between the 
points are evaluated to define the classes, and with 
that, the management zones are defined (GAVIOLI et 
al., 2019; LI et al., 2007).

To define management zones, several 
factors and data are often used; in this case, a 
multivariate analysis was used to define the zones. 
OLDONI et al. (2019) also used geostatistical and 
multivariate analyses to determine management 
zones in a peach orchard, with a clustering approach 
on both soil (soil texture, water content, organic 
matter content) and plant (amount of fruit per tree, 
average fruit weight, total soluble solute content) for 
differentiated management.

Another form of multivariate geospatial 
analysis is kriging factor analysis, a data interpolation 
method that identifies variability and was used in 
the study by BEVINGTON et al. (2019), where soil 
properties and hydraulic parameters were measured 
to define management zones using kriging factor 
analysis and the fuzzy-c means algorithm. CHEN et 
al. (2019b) used an RGB camera attached to a UAV 
to determine the plant cover and vigor of the peanut 
and cotton canopy through the green–red vegetation 
index to determine management zones in Italy, used 
as indicators of irrigation uniformity, which they also 
served as an indication for the application of variable 
rate irrigation (VRI) in a pivot system. In the research 
by SCHENATTO et al. (2017), management zones 
were also created using the fuzzy-c means algorithm, 
focusing on soil characteristics, such as elevation, 
slope, density, organic matter, clay and sand contents, 
and plant attributes, such as yield.

In the study by ANASTASIOU et al. 
(2019), multivariate geostatistical techniques were 
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also used to unite the multitemporal data from a 
multiband radiometer and a geophysical sensor and 
thus delimit the management zones of a vineyard, 
considering the electrical conductivity of the soil 
and canopy area. OHANA-LEVI et al. (2019) used 
a weighted multivariate spatial clustering model 
to determine irrigation management zones in a 
vineyard. Management zones were determined using 
a multivariate k-means cluster, and machine learning 
and spatial statistics were also used to analyze the 
variables, which comprised soil properties, terrain 
characteristics and environmental impact.

Another tool used to collect data and define 
management zones is the proximal sensing of the 
soil, based on electromagnetic induction techniques, 
radiometry and fluorimetry (CASTANEDO, 2013). 
In the research by CASTRIGNANÒ et al. (2017), 
proximal and remote sensors were used in a tomato 
growing area, and there was integration with 
multivariate geostatistical data to define management 
zones based on the electrical conductivity of the soil, 
which was measured at different frequencies, sensor 
polarizations and depths. Likewise, MOUAZEN et 
al. (2014) used a soil sensor to measure electrical 
conductivity, soil water holding capacity, available 
water, organic matter, density, clay content and 
organic carbon, establishing a multi-sensor and data 
fusion approach to delineating management zones for 
site-specific irrigation, best addressed in section 1 of 
this review.

To define management zones, low-cost 
remote sensing data are viable options (section 2 of 
this review), where spatiotemporal information on 
the biological and physical parameters of vegetation 
are used (FONTANET et al., 2018). FONTANET et 
al. (2020) used remote sensing to define management 
zones in a corn planting area, analyzing normalized 
difference vegetation index (NDVI) time series by 
remote sensing, soil moisture sensors, and root zone 
simulation predictions. GOBBO et al. (2019) also 
used NDVI in defining management zones in corn 
plantations and combined it with soil texture data to 
create irrigation management zones.

In the research by GEORGI et al. (2017), 
remote sensing was used together with an automatic 
delineation algorithm. An automatic segmentation 
algorithm was developed using multispectral 
satellite data, which is a cheaper method for defining 
management zones.

We emphasized that the creation of 
management zones for irrigation is not strictly 
associated with the application of water at a varied rate 
but rather in specific fields or areas and not exclusively 

on a lateral line of an irrigation system. The creation of 
these zones can help in the sizing of localized irrigation 
systems, enabling the differentiation of water needs by 
sector, such as ZM, which differs from SS-VRI (site-
specific variable rate sprinkler).

Another point to consider is the limitations 
of the use of remote sensing to create ZM. 
FONTANET et al. (2020) suggested the integration 
of spatial and temporal information, since there are 
soil and/or plant attributes with spatial differences 
that also change over time; that is, they are not static. 
For example, the NDVI must be combined with a 
measurement of available soil water to dynamically 
delineate both space and time ZM for irrigation.

Irrigation systems with variable water application rates
Irrigated agriculture is one of the 

agricultural activities with the highest consumption 
of fresh water in the world. In this sense, precision 
irrigation is an important tool for the development 
of profitable and sustainable agriculture (DU et al., 
2015; MATEOS & ARAUS, 2016).	

Thus, as discussed in the previous section, 
the creation of irrigation management zones is 
essential to increase the efficiency of the application 
and use of water in the field. Within this tool, Site-
specific Variable Rate Irrigation (SS-VRI) is a 
management method that consists of applying water 
according to spatial variability due to characteristics, 
such as soil and culture; and therefore, through 
rational application, it is possible to increase water 
conservation and productivity, in addition to reducing 
the leaching rate of nutrients and agrochemicals and 
optimizing inputs (DU et al., 2015; MATEOS & 
ARAUS, 2016).

SS-VRI differs from conventional sprinkler 
systems and requires variable rate sprinklers, which 
are based mainly on pulse modulation, angle of 
departure and arrival points, and sprinkler head 
(SADLER et al., 2005).The main research covers 
linear and center pivot sprinkler systems due to the 
level of automation and coverage of the cultivation 
area through a single side tube (ADEYEMI et al., 
2017). However, this type of management has 
already been studied for other types of irrigation 
methods, such as drip, considering the challenges of 
directionality and the invariable rate of lateral lines 
(LINKER, 2020). Therefore, the main commercial 
equipment developed thus far is linked to central 
pivot and linear mechanized sprinkler irrigation.

The greatest success of implementing VRI 
in center pivot systems, and the focus of this review, 
is that it allows: first, the control of the travel speed 
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of the center pivot, allowing the variation of water 
application/infiltration depth by sector, and second, 
controlling the variation of water application by zone; 
that is, it allows the differentiation of irrigation rates 
along the lateral pipeline (ANDRADE et al., 2020; 
O’SHAUGHNESSY et al., 2019; SUI & YAN, 2017).

SOBENKO et al. (2018) developed a 
sprinkler with flow adjustment through the cross 
section based on an iris mechanism controlled by 
a stepper motor using a deterministic model for 
flow prediction, but the idealized nozzle discharge 
coefficient (0.60) was below the average values 
(0.90–0.92) observed in conventional fixed nozzles.

The management of SS-VRI can be carried 
out efficiently in several ways, such as monitoring the 
soil moisture content, a subject discussed in greater 
depth in sections 1 and 4. For this, the positioning 
and number of sensors should be chosen with care so 
that the generated data are representative of the area 
under cultivation. Through analyses of variance and 
temporal stability of soil water content monitored by a 
neutron probe, BARKER et al. (2017) concluded that 
for management zones divided to minimize variations 
within the zones, the number of sensors may be 
more important than their position in the area. In 
addition, due to the high cost of a number of sensors, 
a partnership between modeling and monitoring soil 
water is proposed. In a similar study focusing on the 
placement of soil sensors, ZHAO et al. (2017) stated 
that the clay percentile of management zones should 
be considered for the placement of sensors.

The use of spectral images obtained 
via satellite or unmanned aerial vehicles (UAVs) 
has been used in the management of variable-rate 
irrigation systems. The principle of this use is based on 
understanding the spectral response of the leaf, which 
is applied at the canopy level and is used to establish 
management zones (HANK et al., 2018). MENDES et 
al. (2019), using images obtained from satellites, carried 
out the mapping of areas considering the variability for 
the application of variable-rate irrigation depths via the 
central pivot system. With the same objective, SHI et 
al. (2019), with the help of unmanned aerial vehicles 
(UAVs), obtained multispectral images of the vegetation 
and used vegetation indices to determine the spatial 
variability and constitution of homogeneous areas. 
Similar work was developed by BHATTI et al. (2020), in 
which the comparison of multispectral images obtained 
by UAV and satellites was performed to evaluate the 
response of crops to variable irrigation based on canopy 
temperature and surface energy balance modeling. More 
examples of the use of images in precision irrigation are 
mentioned in sections 2 and 3.

Despite all the benefits, the uptake of 
SS-VRI systems has grown slowly. The main 
justifications for this are that this type of management 
requires qualified technical assistance, and the 
acquisition of the necessary equipment still has a high 
cost, requiring a careful analysis of the economic 
viability of production (ABIOYE et al., 2020). To 
assist in these matters, simulation models are viable 
options for assessing the response of crops to different 
irrigation management methods.

MCCARTHY et al. (2014) used a model 
called VARIwise based on the predictive control 
model methodology to evaluate the performance of 
cotton cultures grown on a center pivot with variable 
application rate irrigation compared to conventional 
systems. In most results, simulations of precision 
irrigation performance had superior results. In a 
similar research, THORP (2019) carried out a long-
term evaluation through simulations using the same 
crop under soil variability parameters to analyze the 
advantages of the system. However, modeling applied 
to precision irrigation can be complex because it deals 
with the dynamics of water in soil. The following 
topic discusses in-depth examples of models and 
applications of modeling in irrigated agriculture. 

Modeling agricultural crops and their interaction 
with the prescription of variable water depths in 
precision irrigation

Extreme drought events have increased 
in intensity in recent decades and predictions from 
agrometeorological modeling indicate that climate 
extremes of drought will become more frequent and 
prolonged due to a set of factors, among which global 
warming stands out (IPCC, 2018).

Agriculture is one of the human activities 
most dependent on climatic conditions, especially 
traditional rainfed crops, so the development 
of studies to evaluate the effects of these on 
agricultural production is important. However, 
carrying out field experiments becomes limiting due 
to a series of factors, such as manpower, available 
time and financial resources. An alternative or 
complementary solution is the use of agricultural 
modeling to forecast the development of agricultural 
crops in new climate scenarios.

Crop simulation models are based on 
biophysical processes to make estimates such as 
growth, development and production, based on 
physiological characteristics of the crop in question 
and environmental variables (MONTEITH, 1996). 
Understanding these models becomes the conceptual 
basis for modeling agricultural crops.
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Mechanistic models, based on the physics 
and physiological processes of plants, become allies 
in the development of teaching, research and crop 
management. Among them, the DSSAT (Decision 
Support System for Agrotechnology Transfer) presents 
a set of models developed for several important crops, 
such as corn and soybean (JONES et al., 2003).

In a review of the opportunities and 
approaches for modeling spatial variations of water 
at the field level, TENREIRO et al. (2020) pointed 
out that, among the irrigation methods, there are 
three ways to simulate irrigation applications in crop 
models: a) determination of a calendar by the user; 
b) an irrigation program based on the water capacity 
of the soil, applying constant or variable rates; and c) 
through a schedule based on multiple criteria, such as 
the phenological stage of the crop, water content in the 
soil, restrictions on the availability of water and type 
of cultural management. These methodologies have 
the potential to calculate the varied rate of irrigation 
to be provided to plants, “when,” “where” and “how 
much” they need, resulting in the optimization of 
the use of this water resource (HAGHVERDI et al., 
2016), thus validating the three ways to simulate 
field-level irrigation applications in the models.

In the literature, the prescription of 
variable irrigation depths follows two methodologies: 
a) make individual use of crop simulation models or 
hydrological models, which focus on the movement 
of water in the soil and b) make combined use of 
these two models.

The DSSAT model, because it is a 
simulation of cultivation, is advantageous in the study 
of irrigation management scenarios, as presented by 
MALIK & DECHMI (2019) in a study carried out 
in Spain with different cultures. They evaluated 
two scenarios, one based on irrigation applied by 
producers and another on irrigation adjusted to 
the water demand of the crop, with crop and soil 
data collected for model calibration and validation. 
The authors reported up to a 27% reduction in the 
application of irrigation depths. Similar researches are 
presented by CAMARGO & KEMANIAN (2016), 
PEREZ-ORTOLA et al. (2015) and XIANGXIANG 
et al. (2013).

Another well-established model is APSIM, 
which also focuses on modeling agricultural crops and 
assesses the impacts of different crop management 
practices, including irrigation (AMARASINGHA et 
al., 2015; DUTTA et al., 2020).

PEREA et al. (2017), for example, carried 
out an integrative modeling coupling a deterministic 
model of water application with the Aquacrop model, 

simulating the impacts of heterogeneous irrigation 
caused by wind drift and pressure variation in the 
irrigation system. They concluded that variable-rate 
irrigation was the best method in all scenarios of 
pressure variation in the system to save water and 
increase onion yield.

ROY et al. (2019) also proposed the 
integration of crop and hydrological models using 
HYDRUS-2D software and DSSAT to identify the 
most appropriate irrigation management to maximize 
water use efficiency through precision irrigation using 
retention technology of subsurface water, together 
with a computational procedure of evolutionary multi-
objective optimization to link the two models. The 
authors concluded that the optimization procedure 
reduced water use and increased corn yield prediction 
by 6-fold compared to non-optimized and randomized 
irrigation management without subsurface water 
retention membrane. For the combination of models, 
another proposal developed by GARCÍA-VILA 
& FERERES (2012), in which they combined the 
AquaCrop model with an economic optimization 
model, identified irrigation strategies and predicted 
their impact on income. in which the simulated 
results indicated that the best strategy under water 
restrictions combined the planting of crops with low 
water use in part of the area as a way of making more 
water available for the most profitable crops and with 
the greatest water need.

In this review, several premises involving 
precision irrigation were addressed, from the use of 
soil sensors, remote sensing, artificial intelligence, 
management zones for irrigation, and variable-
rate irrigation to agricultural modeling in view of 
optimizing the use of water resources. However, there 
are other techniques and technologies used in RI that 
help in the efficient use of both water and energy 
resources, such as the use of wastewater (IBEKWE 
et al., 2018; SHANNAG et al., 2021; VERGINE et 
al., 2016), solar panels to reduce energy costs with 
water pumping and automation in irrigation systems 
(GRANT et al., 2022; SINGH et al., 2021) and 
the use of microorganisms (fungi and bacteria) to 
mitigate damage caused by water deficit (ASHWIN 
et al., 2022).

CONCLUSION

This review of trends and prospects for 
precision irrigation for irrigation monitoring and 
management is based on relevant past and current 
research work that has contributed to achieving 
greater water savings in agriculture. It is hoped that 
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this review article has given a broad overview of 
research trends and generated new ideas for readers 
on implementation and execution approaches 
to choosing the best smart irrigation strategy, 
paying attention to the fact that the combination of 
monitoring methods via soil, plant and climate is 
the most assertive strategy to increase the energy 
efficiency of water use in irrigated fields. However, 
it results in a large volume of data to be analyzed, 
making it necessary to use algorithms based on 
artificial intelligence, which promotes a fast and 
efficient monitoring system of the collected data, 
aiming the assertive recommendation of irrigation at 
a variable rate in the area irrigated to save water and 
energy so as not to overload the irrigating farmer with 
the daily decision in determining the irrigation dose.
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