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ABSTRACT: The single degree of freedom of orthogonal contrasts is a useful technique for the analysis of
experimental data and helpful in obtaining estimates of main, nested and interaction effects, for mean
comparisons between groups of data and in obtaining specific residuals. Furthermore, the application of
orthogonal contrasts is an alternative way of doing statistical analysis on data from non-conventional
experiments, whithout a definite structure. To justify its application, an extensive review is made on the
definitions and concepts involving contrasts.
Key words: analysis of variance, partition of sum of squares, experiments with additional treatments

CONTRASTES ORTOGONAIS: DEFINIÇÕES E CONCEITOS

RESUMO: A técnica de contrastes ortogonais com um grau de liberdade é simples e bastante eficiente na
análise de dados experimentais, como por exemplo, na obtenção de efeitos principais, de efeito de interação
e de efeitos aninhados, nas comparações entre grupos de médias e na obtenção dos resíduos específicos.
Além disso, sua aplicação tem revelado ser uma forma alternativa para análise de dados obtidos de um
experimento que não segue uma estrutura definida. Com o objetivo de justificar a sua aplicação, foi realizada
uma revisão sobre as definições e os conceitos envolvendo contrastes.
Palavras-chave: análise da variância, partição da soma de quadrados, experimentos com tratamentos adicionais

INTRODUCTION

The orthogonal contrast technique is a simple and
efficient way of analysing experimental data to obtain, for
instance, the main effects, interaction effects and nested
effects, for comparisons between groups of means and/
or to obtain specific residuals. Additionally, the applica-
tion of orthogonal contrasts is an alternative way of do-
ing statistical analysis on data from experiments without
a definite structure, like the experiments with additional
treatments. The objective of this paper review was to jus-
tify the application of the single degree of freedom or-
thogonal contrasts in the analysis of experimental data
from non-conventional experiments, recently published
by Nogueira & Corrente (2000) and Corrente et al.
(2001).

Definitions and concepts for mean contrasts with equal
number of replications

Scheffé (1959), Winer (1971), Steel & Torrie
(1981), Mead (1988) and Hinkelmann & Kempthorne
(1994), among others, define a contrast between treatment
means, represented by Y, as a linear function that can be
estimated, considering an equal number of replications for
all treatments, as follows:

i

I

1i
i  c  Y µ=∑

=

where c
i 
are values of coefficients associated to µ

i
, and

µ
i
 the mean attributed to the treatment i, so that

0  c 
I

1i
i =∑

=

.

Supposing the mathematical model Y
ij
 = µ + t

i
 + e

ij
,

when i = 1,..., I and  j = 1, ..., r,  and µ being a constant,

t
i
 the treatment effect i, so that: ∑

=
=

I

1i
i 0t , and e

ij
 the ex-

perimental error, so that e
ij
 ~ N(0, σ2) and independent

of each other.
Supposing that µ

i
 = µ + t

i
, then

 tc tc c   ) t(c  Y i

I

1i
i  i

I

1i
i

I

1i
ii

I

1i
i ∑∑∑∑

====
=+µ=+µ=

Two contrasts i

I

1i
hih  c   Y µ=∑

=
 and i

I

1i
i hh  c   Y µ=∑

=
′′ ,

since h ≠ h’ and h = 1, ..., (I-1), are orthogonal, if
Cov(Y

h 
, Y

h’
) = 0. Thus, for the adopted model

Cov (Y
h 
, Y

h’
) =   c c 

r ih'

I

1i
hi

2

∑
=

σ
, occurs when 0  c , c i hhi =′ ,

that is  0  c c ih'

I

1i
hi =∑

=
.

Supposing hŶ  is
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A special characteristic of orthogonal contrasts is
that they may easily be included in the analysis of vari-
ance, in such way that they originate sums of squares with
one degree of freedom which correspond, each of them,
to the (I-1) subdivisions of the sum of squares due to the
treatments with (I-1) degrees of freedom. That is, the sum
of squares due to the treatments can be decomposed in
(I-1) sums of squares due to the contrasts with one de-
gree of freedom.

Mead (1988) demonstrated this characteristic of
the orthogonal contrasts and defined that the sum of
squares due to Y

h
 is given by:
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  SSY  with one degree of freedom

and consequently, the sum of squares due to treatments
is given by:
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where )g , ... , g , g (  g hIh2h1h =′ , for h =1, ... ,

(I-1); )  t, ... ,  t,  t(   ' I21=τ  is the vector of the estimates
of the treatment effects. Thus, the vector z will be a group
of (I-1) estimates of the considered orthogonal contrasts,
and that, due to the contrast orthogonality, the contrast
estimates are independent, that is, the z

h 
are independent

of each other. Thus,    ˆ g  z hh τ′= ,  for h =1, 2, ... , (I-1).
If the variable observations follow a normal distribution,
then the vector z is a normal aleatory variable vector and
independently distributed, and each element has mean =
zero and variance = 1.
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where the data matrix G*’ is an orthogonal matrix, hav-
ing G*’G* = I, and for this reason G* = (G*')-1 , result-
ing G* G*’ = I .
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Substituting equation (2) into equation (1) the fol-
lowing expression is obtained:
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with (I-1) degrees of freedom.
This result can be included into the analysis of

variance table, originating a more detailed table, as the
example in table 1.
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may also be written as H
0
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is not considered significantly different from zero, this
implies that Y

h
 = 0 is included in the interval (10). Thus,

when H
0
 is rejected by F test, the author infers that at least

one contrast should be significantly different from zero.
In other words, if (and only if) under the significance level
a it is concluded by the F test that the contrasts are not
all nulls, then the Scheffé method will show contrast esti-
mates that are significantly different from zero.

The level of significance α is the probability of
the global type I error or experimentwise, that is, the prob-
ability of at least one contrast be significantly different
from zero, from a group of (I-1) contrasts, which means:

α = 1 − (1−α')(I−1)

where  α’  is the probability of type I error for a particu-
lar contrast (or comparisonwise) applied when the null
hypothesis is rejected  H

0
 : Y
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= 0, for h = 1, ..., (I-1) .

According to Kuehl (1994), the formula
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expresses the probability of type I error for a particular
contrast (comparisonwise) as a function of the global type
I error (experimentwise). For ordinary calculations a’ is
considered closely α/(I-1).

However, it may occur that none of these contrasts
significantly different from zero are of practical interest.
An example of a non-practical contrast is the normalized
maximal contrast maxŶ  estimate.

Definition and estimation of maxŶ
Scheffé (1959) demonstrated that  SST = SSY
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= 2
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Adding (11) in ∑
=

=
I

1i
i   0  c , thus
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∑ ∑
= =

=
λ
λ+

=
I

1i

I

1i 2

1.i
i 0  

2

)y(r
 -  c

resulting

..1
..

I

1i

i.

1I

1i

.i

I

1i
11

I

1i
i. y -          

Ir

y
  -  

Ir

r

y
r 

 -      

r

y r

 -         0  ) y ( r =λ⇒==λ⇒=λ⇒=λ+
∑

∑

∑
∑ =

=

=

=
  (12)

Hence, placing (12) in (11) , leads to

 
2

)y  - y (r 
 -  c 

2

..i.
i λ
= ,                                                  (13)

and placing (13) in ∑
=

=
I

1i

2
i 1 
r

c
 , leads to

2
..

I

1i
i.

2
2

I

1i
2
2

2
..i.

I

1i

2

2

...i )y y (r   4   1  
4

)y  - y ( r
    1  

r

1

2

)y - y(r
−=λ⇒=

λ
⇒=








λ

− ∑∑∑
===

  (14)

Finally, placing the result obtained in (13) in the
formula

       
4

])y - y(r  [

        

]y 
2

)y - y (r 
 - [        

]yc [  Ŷ

2
2

I

1i

22
...i

I

1i

2
i.

2

..i.

2
.i

I

1i
imax

λ
=

λ
=

=

∑

∑

∑

=

=
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                  (15)

substituting into (15) the result of (14) ,

2
..

I

1i
i.

2
2 )y y (r   4 −=λ ∑

=
,

  )y y (r   Ŷ 2
..

1i
i.

2
max =−= ∑

=

I

 SST .

Thus, it is concluded that   SQY  Ŷ max
2
max ==  SST.

If the interest is to test the null hypothesis
H

0
: Y

max
 = 0, the rejection area for this test is given by

,

or by

where α is the significance level that gives the quantity
of the F distribution with (I-1) and I(r-1) degrees of free-
dom.

It is noticed that the way the test was applied to
check the null hypothesis H

0 
: Y

max
 = 0 is identical to the

test applied to verify the hypothesis of no variation due
to treatments. If the tested hypothesis in terms of com-
parisons is not rejected, the resulted implication is in the
correspondent comparison in populational terms that it is
not significantly different from zero. Then, if the null hy-
pothesis, H

0 
: Y

max
 = 0, is not rejected, that is, if Y

max
 is

not significantly different from zero, then no other com-
parison to be tested will be significantly different from
zero, when the Scheffé method is used. If the null hypoth-
esis H

0 
: Y

max
 = 0 is rejected, this impplies that the corre-

spondent comparison is significantly different from zero.
For the group of tests used in the considered compari-
sons, the Scheffé method is referred to the a level of sig-
nificance, which means that the a level of significance is
the probability of the global type I error (or
experimentwise), correspondent to the totality of tests
used.

Definitions and Concepts for mean contrasts with un-
equal number of replications

In the case of treatments with unequal number of
replications, that is, for j = 1, ..., r

i 
, (Steel & Torrie, 1981,

cited in Nogueira, 1997), consider that for a given con-
trast

∑∑
==

==
I

1i
i.hii

I

1i
i.hih y c r y c   Ŷ ,

where  
i

i.

i

r

1j
ij

.i r

y
  

r

y

  y

i

==
∑
=  ~ N (µ

i 
, 

i

2

r

σ
)  and independent

of each other, and, r
i
 is the number of replications of treat-

ment i; c
hi
 is the coefficient to be attributed to .iy  ; and

.iy  is the mean estimate of treatment i,  so that

 0  c r hi

I

1i
i =∑

=

 .

Moreover, h

I

1i
ihiih Y  c r  )Ŷ(E =µ=∑

=
 and

∑
=

σ=
I

1i

22
hiih  c r )Ŷ(Var . Thus, hŶ  is defined as the con-

trast between treatment means obtained from data with
unequal number of replications.

Supposing that µ
i
 = µ + t

i
, where  µ  is a con-

stant and T
i
 is the effect of treatment i, the following ex-

pression is written:

  tcr  tcr c r   ) t( c r   Y ihi

I

1i
i  ihi

I

1i
i  hi

I

1i
iihi

I

1i
ih ∑∑∑∑

====
=+µ=+µ=
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Two contrasts i

I

1i
hiih  c r   Y µ=∑

=
 and

i

I

1i
i hih  c r   Y µ=∑

=
′′  where h ≠ h’ and h = 1, ..., (I-1), are

orthogonal when 0  c r , c r i hihii =′ , that is,

 0  c c r ih'hi

I

1i
i =∑

=

.

Hence, the null hypothesis

0 c r  Y  : H
I

1i
ihiih0 =µ=∑

=

 can be tested by
means of

where 

∑
=

=
I

1i

2
hii

2
h

h

c r

Ŷ
 SSY  and v = ∑

=
−

I

1i
i )1r( = n-I,  where

n is the total number of observations, that is,  n = ∑
=

I

1i
ir .

Kirk (1968), for average data from unequal num-
ber of replications, considers that

∑
=

=
I

1i
i.hih y c    Ŷ ,

so that ∑
=

=
I

1i
hi  0  c  and the orthogonal condition is as fol-

lows:

∑
=

′ =
I

1i i

i hhi 0  
r

c c

Thus, the null hypothesis

0 c   Y  : H
I

1i
ihih0 =µ=∑

=

can be tested by means of

where 

∑
=

=
I

1i i

2
hi

2
h

h

r

c

Ŷ
 SSY  and v = ∑

=
−

I

1i
i )1r(  = n-I.

Winer (1971) and Kirk (1968) showed that the
sum of squares due to Y

h
 , for the case of unequal num-

ber of replications, is given by the following expression:

∑
=

=
I

1i i

2
hi

2
h

h

r

c

Ŷ
 SSY   when  

∑
=

=
I

1i

2
..i.i

..i.i
i

)y - y( r

)y -y ( r
  c

and, suggested that the  SSY
max

  is obtained when and this
leads

SSY
max 

= ∑
=

−=
I

1i

2
...ii

2
max )yy(r  Y =SST

to according to Scheffé (1959).
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