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ABSTRACT: The estimation of soil physical and chemical properties at non-sampled areas is 
valuable information for land management, sustainability and water yield. This work aimed to 
model and map soil physical-chemical properties by means of knowledge-based digital soil map-
ping approach as a study case in two watersheds representative of different physiographical 
regions in Brazil. Two watersheds with contrasting soil-landscape features were studied regard-
ing the spatial modeling and prediction of physical and chemical properties. Since the method 
uses only one value of soil property for each soil type, the way of choosing typical values as well 
the role of land use as a covariate in the prediction were tested. Mean prediction error (MPE) and 
root mean square prediction error (RMSPE) were used to assess the accuracy of the prediction 
methods. The knowledge-based digital soil mapping by means of fuzzy logics is an accurate 
option for spatial prediction of soil properties considering: 1) lesser intense sampling scheme; 
2) scarce financial resources for intensive sampling in Brazil; 3) adequacy to properties with 
non-linearity distribution, such as saturated hydraulic conductivity. Land use seems to influence 
spatial distribution of soil properties thus, it was applied in the soil modeling and prediction. The 
way of choosing typical values for each condition varied not only according to the prediction 
method, but also with the nature of spatial distribution of each soil property. 
Keywords: ANOVA test, spatial variability, fuzzy logic, typical values
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Introduction

The estimation of soil physical and chemical prop-
erties at non-sampled areas is valuable information for 
land management, sustainability and water yield. Differ-
ent interpolation techniques have been used with varying 
degrees of success in order to create more accurate soil 
property maps (McBratney et al., 2003). From the pedo-
metric approach, most techniques have high sampling 
density as the main driver for interpolation. In Brazil, 
where areas with intensive field observations are scarce, 
another quantitative procedure for spatial prediction 
should be considered. One approach with the advantage 
of low density of sampling (Shi et al., 2009) is the knowl-
edge-based digital soil mapping technique, based on simi-
larity vectors and parameters of fuzzy logic in an expert 
system (Zhu and Band, 1994; Zhu et al., 1997). 

Similar to conventional soil survey, the knowledge 
of soil-landscape relationships is crucial for the accuracy 
of prediction of soil types and properties (Menezes et 
al., 2013), which is stablished and formalized by means 
of fuzzy membership curves (Shi et al., 2009). Spatially 
continuous soil property maps (Zhu et al., 1997), from 
only one representative value per soil type, can be gen-
erated. Besides its low cost, it overcomes a conventional 
soil survey limitation, in which each soil-mapping unit 
assumes a unique value based on a soil profile described, 
which does not necessarily reflect the variability and 
continuous nature of soil properties within and between 
polygon mapping units (Menezes et al., 2014). 

Two watersheds were chosen for this study, ac-
cording to their representativeness in two different 

representative watersheds

physiographical regions of Southern Minas Gerais: Man-
tiqueira Range and Vertentes Fields physiographical re-
gions. Both study sites are located in the Rio Grande 
watershed, which is an important water source for hy-
droelectric energy production, where environmental is-
sue is associated with the native forest that has been 
replaced by extensive pasture or crops with degraded 
lands (Viola et al., 2014; Beskow et al., 2013). 

This work aimed to model and map soil physical 
and chemical properties from knowledge-based digital 
soil mapping, as a study case in two watersheds in con-
trasting physiographical regions. The role of land use on 
organisms as a factor to form soils and their influence 
on predictions of soil physical and chemical properties 
was also tested. The way of choosing typical values to 
spatialize each condition and the role that land use plays 
as an environmental covariate were assessed into the 
spatial prediction.

Materials and Methods

Study sites
This study was conducted at Lavrinha Creek Wa-

tershed (LCW) and Marcela Creek Watershed (MCW) 
located in the state of Minas Gerais, southeastern Brazil. 
Both watersheds are representative of the Rio Grande 
watershed, but they are located in different physio-
graphical regions: Mantiqueira Range region (LCW) 
and Vertentes Fields region (MCW). LCW is located be-
tween latitudes S 22º6’53” and 22º8’28” and longitudes 
W 44º26’21” and 44º28’39”, with area of 676 ha, with 
altitudes varying from 1,156 to 1,697. The average an-
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nual temperature is 15 °C and precipitation is 2,000 
mm, with the native vegetation of the Atlantic Forest 
(Tropical Forest) and geology of gneiss. MCW is located 
between latitudes S 21º14’27” and 21º15’51” and longi-
tudes W 44º30’58” and 44º29’29”, with area of 470 ha 
and altitudes varying from 958 m to 1,059. The average 
annual temperature is 19.7 °C and annual precipitation 
is 1.300 mm, with native vegetation of Cerrado (Brazil-
ian savanna) and geology of mica schist. Both areas are 
located in Cwb domain, according to Koppen classifica-
tion (Alvares et al., 2013), where the winter is cold and 
dry and summer is hot and humid.

Soil-landscape relationship 
Considering the soil-landscape relationships at 

LCW, the alteration of gneiss resulted in predominance 
of Inceptisols (moderately developed and well-drained 
soils). The relief is steep with concave-convex hillsides 
and predominance of linear landforms and narrow 
floodplains. Endoaquents occupy the toeslope position, 
where the water table is near the surface in most part of 
the year (Menezes et al., 2014).

MCW has gentle undulated relief with extreme soil 
development. Oxisol is the most geographically expres-
sive soil type, formed on stable and very old surfaces con-
ductive to intense weathering-leaching under warm and 
moist climate, where organisms are very active (Motta et 
al., 2002). Inceptisols occupy the more dissected positions 
and more linear portions inside a convex macrolandform 
(Pelegrino et al., 2016). Endoaquents occupy the youngest 
surface on the toeslope (Silva et al., 2014).

Acrudox (hue 2.5YR or redder) occupies flatter 
and convex summit positions. Hapludox (hue 5YR) and 
Hapludox (hue 7.5YR or 10YR) occur from summit to 
footslope in the landscape. These colors show a preterit 
hydrological influence, where the type of orientation of 
parent material layers, by conditioning a different mois-
ture regime in the two systems, exerted influence on the 
pedogenesis of the Acrudox and Hapludox. The hori-
zontal orientation of the layers conditioned the genesis 
of Hapludox, with higher goethite/hematite ratio and 
consequently, yellowish colors, as the result of former 
soil moisture conditions that were different from that 
in redder soils. The inclined orientation of the layers 
conditioned, under similar topographic conditions, the 
formation of Acrudox, with better drainage and higher 
weathering-leaching intensity, higher hematite/goethite 
ratio and, consequently, reddish colors. Nowadays, due 
to the current climate conditions, both soils are well 
drained.

Soil property analyses
The physical and chemical properties analyzed 

were bulk density, by the volumetric ring method; soil 
organic matter, according to Walkley and Black (1934); 
drainable porosity, calculated by the difference between 
saturation moisture and soil moisture at field capacity; 
saturated hydraulic conductivity (Ksat) determined in 

situ by constant flow permeameter; and total porosity, 
calculated according to the equation:

Total porosity
bulkdensity

particledensity
% *( ) = −







100 1




in which particle density was determined by the volu-
metric flask method (Embrapa, 1997). 

Knowledge-based digital soil mapping technique
All steps accomplished since the creation of 

base maps until the soil property maps are presented 
in Figures 1A, B, C and D, which show the different 
function types or curve shapes. The knowledge on the 
soil-landscape relationships was qualitatively modeled 
using ArcSIE (Soil Inference Engine, version 9.2.402) 
(Shi et al., 2009). The Rule-Based Reasoning (RBR) in-
ference method was used to define the relationship be-
tween values of environmental variables (soil forming 
factors) and a given soil type. Considering the scale of 
variations of the studied sites, relief and organisms are 
the main drivers of soil variability, and the other soil 
forming factors are considered a constant. Additionally, 
terrain derivatives are strongly related to soil properties 

Figure 1 – Flowchart showing all the steps accomplished to 
generate soil property maps. DTMs = digital terrain models; RBR 
= rule-based reasoning. Function types: A) bell shape curve, B) S 
shape curve, C) Z shape curve, D) nominal or categorical.
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and have been useful in digital soil mapping for this rea-
son (Akumu et al., 2015). Digital elevation models with 
pixels of 20 m resolution were generated from contour 
lines at 1:50,000 (IBGE) scale. DEM derivatives (digital 
terrain models – DTMs) (slope, altitude above the chan-
nel network, plan curvature, profile curvature, and wet-
ness index) were calculated using ArcGIS (ESRI, version 
10) and SAGA GIS (System for Automated Geoscientific 
Analysis, version 2.1.0). DTMs have been frequently 
used as a proxy of current relief conditions (Heuvelink 
and Webster, 2001). DEM and DTMs, as well as land 
use raster maps, are presented in Figure 2 (A – altitude, 
B – slope, C – wetness index, D – plan curvature, E – 
profile curvature and F – land use) and Figure 3 (A – 
altitude above the channel network, B – slope, C – wet-
ness index, D – plan curvature, E – profile curvature and 
F – land use). DTMs and ranges associated with each 
soil type in the maps were used to define membership 
or optimality functions (curves), which, in turn, define 

the relationship between the values of an environmen-
tal feature and soil type. The curve shapes bell, S, and 
Z were used for soil-landscape modelling, presented in 
Figures 1A, B, and C respectively. The Y axis shows the 
optimality value varying from 0 to 1, and the X axis the 
variation of DTMs values. The initial output from the in-
ference process is a series of fuzzy membership maps in 
raster format, one for each soil type under consideration 
(Shi et al., 2009), representing similarities of each pixel 
in the landscape to the soil types. From those maps, the 
spatially continuous soil property maps derived from 
similarity vectors are generated, according to the for-
mula (Zhu et al., 1997):	
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where Vij is the estimated physical or chemical prop-
erty at location (i,j), Vk is a typical value of soil type k 

Figure 2 – Digital terrain models and land use map of Lavrinha Creek Watershed. A) digital elevation model; B) slope; C) wetness index; D) plan 
curvature; E) profile curvature; F) land use.

Figure 3 – Digital terrain models and land use map of Marcela Creek Watershed. A) AACHN (altitude above the channel network); B) slope; C) 
wetness index; D) plan curvature; E) profile curvature; F) land use.
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(e.g. Udepts1), and n is the total number of prescribed 
soil types for the area. The typical value consists of the 
central concept of soil property value for each soil type, 
which is generally obtained at a soil profile in a polygon 
from conventional soil survey.

Different land uses were considered in the predic-
tion, since they represent organisms as a soil-forming 
factor, which in turn, can influence the soil physical 
and chemical properties distribution. In order to assess 
whether soil properties are significantly influenced by 
different land uses, analyses of variance (ANOVA) were 
made by the F test (p < 0.01 or p < 0.05). Land uses at 
LCW are native forest (Atlantic Forest), natural regen-
eration forest, pasture and wetland (Figure 2F), while 
land uses at MCW are Cerrado (Brazilian savanna), pas-
ture, maize and eucalyptus crops (Figure 3F). The box-
cox procedure was carried out to determine the suit-
able type of transformation for ANOVA. Ksat was log 
transformed. The statistical analyses were performed in 
SAS (Statistical Analysis System Institute, version 9.2). 
If ANOVA test pointed out the influence of land use, 
in such cases, the typical value Vk came from the com-
bination of soil (modelled using S-, Z-, and bell-shaped 
optimality curves) and land use k to form soil type, e.g. 
Udepts1 under pasture. In ArcSIE, land use raster map 
was used as categorical data (data do not have quantita-
tive meaning, values are only for labeling or categorizing 
different land uses) and overlaid with all soil types, us-
ing the function type Nominal (Shi et al., 2009), and the 
shape of the optimality curve is presented in Figure 1D. 
The maximum fuzzy membership value specified for 
each land use is 1. Since there are four different types of 
land uses at each watershed, the maps were reclassified 
in integer values that represent land use types.

In this study, except for organic matter, most of 
the studied soil properties (bulk density, total porosity, 
drainable porosity, and hydraulic saturated conductiv-
ity) are not frequently analyzed in soil profiles of soil 
surveys. Thus, the sampling scheme started from a 
dense grid design, but only a few points were used in 
the prediction in which different ways of choosing rep-
resentative values for spatial prediction were tested. The 
sampling scheme is a current discussion in digital soil 
mapping community, since it is one of the main driv-
ers of costs and prediction accuracy (Silva et al., 2015). 
The full data set comprehend the pre-defined topsoil 
sampling (0-15 cm) at both watersheds. A total of 198 
points were sampled at LCW, following the 300 × 300 
m regular grids as well as a refined scale of 60 × 60 
m and 20 × 20 m, and two transects with the distance 
of 20 m between points (comprising 54 and 14 sampled 
points per transect). A total of 165 points were sampled 
at MCW, following the 240 × 240 m regular grids and a 
refined scale of 60 × 60 m. This sampling scheme with 
high density was required to test the way of choosing 
typical values in this study. Figures 4A, B, C, D, E, F, G 
and H show the different ways of choosing typical val-
ues tested according to the sampled points, as follows: a) 
mean soil property value into each polygon of a soil type 
from the hardened map (Figures 4A and B). The data set 
for prediction was plotted into the soil type hardened 
map, the mean value was calculated for each soil type, 
and then used as Vk. In this study, we called this method 
generically as mean. In Figure 4A, the example of mean 
value shows the hardened or defuzzified map,

V
x x x xk

1
1 2 3 4

4
= = + + +µ , V

y y y yk
2

1 2 3 4

4
= = + + +µ , 

Figure 4 – Schematic representation of sampled points distribution and the way of choosing typical values (Vk). A) mean value sampling points, 
B) mean typical values, C) mean and land use sampling points, D) mean and land use typical values, E) landscape sampling points, F) landscape 
typical values, G) landscape and land use sampling points, H) landscape and land use typical values. 
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where xn and yn are sampled soil property values, whose 
mean within the polygon was used as Vk; b) mean soil 
property value in each polygon that results from the soil 
type hardened map overlaid on land use raster map, 
if the ANOVA test shows that land use influences soil 
properties (Figures 4C and D). It was generically re-
ferred to in this study as mean and the land use method 
in comparison with the mean method aforementioned, 
this one promotes more stratification and more typical 
values were used to generate prediction soil property 
maps. Thus, according to Figure 4B,

V
y yk

3
1 2

2
= = +µ ,

 

V
x x

V
y yk k

4
1 2

5
3 4

2 2
= = + = = +

,µ µ , V
x xk

6
3 4

2
= = +µ

c) point geographically located on the pixel with high-
est membership value for the correspondent soil type, 
referred to in this study as the landscape method (Fig-
ures 4E and F). The fuzzy membership value for a given 
soil type shows that V xk

7 1= , since this sampled point is 
located at the pixel with the highest membership among 
all points; d) point geographically located on the pixel 
with highest membership value for the correspondent 
soil type, but overlaid on land use raster map, if the 
ANOVA test showed that land use influenced soil prop-
erties (Figures 4G and H). It was referred to in this study 
as landscape and land use method. Thus, membership 
maps were obtained from the soil-landscape modelling, 
but is this case, land use was also considered for each 
soil type, as showed by the black line in Figures 4G and 
H. The typical value in this case V yk

8 3= : the highest 
membership value among all sampled points.

Comparison of methods
In order to create one independent validation data 

set to evaluate the performance of prediction methods, 
the total data set was divided into interpolation and vali-
dation sets. Of the total number of places sampled, 25 
points were used for validation at LCW and 20 points at 
MCW, both randomly chosen. The validation data set 
was not used in the models to develop predictions. Two 
indices were calculated from the observed and predicted 
values: the mean prediction error (MPE) and the root 
mean square prediction error (RMSPE). The MPE was 
calculated by comparing estimated values ( ( ))z s j

 with 
the validation points ( ( ))z s j

∗ of Ksat:

MPE
l

z s z s
j

l

j j= ( ) − ( ) 
=

∑1

1

ˆ *

and the root mean square prediction error (RMSPE):

RMSPE
l

z s z s
j

l

j j= ( ) − ( ) 
=

∑1

1

2
ˆ *

where l is the number of validation points. The MPE 
measures the bias of prediction, and the RMSPE mea-
sures the prediction accuracy. 

Results and Discussion

The descriptive statistics of full, interpolation and 
validation data set (mean, media, skewness, coefficient 
of variation, minimum and maximum) of soil proper-
ties can be viewed at Menezes et al. (2016). Validation 
and interpolation data sets showed quite similar sta-
tistical characteristics. Among the soil properties, Ksat 
showed higher coefficient of variation and skewness. 
Skewness  quantifies how symmetrical the distribution 
is in which values far from zero indicate long tails (left 
or right) and asymmetrical distribution. Thus, Ksat has 
non-normal distribution at both watersheds (Menezes et 
al., 2016).

Knowledge formalization by means of optimality 
curves

The soil-landscape relationship above described in 
the Materials and Methods section were quantified and 
formalized by a set of rules that relates to raster maps. 
The processes of knowledge formalization in ArcSIE 
Rule-Based Reasoning method means the establishment 
of optimality or membership curves, setting the param-
eters to build S-, Z-, and bell-shaped curves. Threshold 
values related with DTMs were identified and assigned 
to each soil-mapping unit, according to soil scientists’ 
knowledge, and to a soil map from previous soil sur-
vey (Menezes et al., 2014). It is the basis for establishing 
the membership maps for each soil type. Details on the 
shape of optimality curves as well as the parameters to 
stablish them from DTMs are presented in the Table 1.

At LCW, higher values of WI and lower values of 
slope were used to map Fluvents in flat alluvial areas 
(footslope). Inceptisols occupy the well-drained portions 

Table 1 – Ranges of optimality curves of soil types at Lavrinha Creek 
Watershed.

Soil type1
Full membership

Altitude Slope WI Plan curvature Profile curvature
Fluvents 1156 1 15; 21 - -
Udepts1 - 32; 5 7 1 2.3
Udepts2 - 15 7 -1 0
Udepts3 - 32; 5 7 -1 0
Udepts4 - 51 7 -1 0

50 % membership
Fluvents 1200 10 14; 22 - -
Udepts1 - 19.5; 45.5 0; 14 0.11; 3 1.56; 9.5
Udepts2 - 10; 20 0; 14 -11; 0 -1.5; 1.5
Udepts3 - 19.5; 45.5 0; 14 -11; 0 -1.5; 1.5
Udepts4 - 45; 95 0; 14 -11; 0 -1.5; 1.5

Curve shape
Fluvents Z Z Bell - -
Udepts1 - Bell Bell Bell Bell
Udepts2 - Bell Bell Bell Bell
Udepts3 - Bell Bell Bell Bell
Udepts4 - Bell Bell Bell Bell
Source: Menezes et al. (2014); WI = wetness index.
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of the landscape with lower values of WI (wetness in-
dex) (summit, shoulder, and backslope) formed by dif-
ferent combinations and ranges of slope, plan and pro-
file curvatures. 

In MCW, Acrudox usually occupies flat summit 
positions in a more convex landform, expressed by 
higher values of Altitude Above the Channel Network 
(AACHN), lower values of slope and negative values of 
plan curvature. AACHN describes the vertical distance 
between each cell of a raster grid and the elevation of 
the nearest drainage channel cell connected with the 
respective grid cell of a DEM. The Hapludox is pres-
ent on shoulder, backslope, and footslope positions (in-
termediate values of AACHN and gentle slopes). Two 
instances were applied to Inceptisols: one considering 
steeper slopes, and another for plan and profile curva-
tures. Two instances were necessary in order to formal-
ize the knowledge on Inceptisols in this watershed: they 
occupy the more dissected positions and more linear 
portions inside a convex macrolandform. ArcSIE shows 
a general inference equation that allows integrating 
optimality values and then, the optimality values are 
generated for the whole instance, based on individual 
features (Shi, 2013). In this case, this integration is nec-
essary through the multiplication function, since there 
are two different soil-landscape relationships for the 
Inceptisol instance. Endoaquents are located in lower 
AACHN and higher WI values. The ranges of DTMs are 
presented in Table 2. These instances are only related 
to terrain and soil types and have been frequently used 
to map soil properties (Brown et al., 2012; Adhikari et 
al., 2013; Vaysse and Lagacherie, 2015). Thus, whether 
land use maps could improve the accuracy of mapping 
is further discussed.

ANOVA test
The ANOVA test was used to support the de-

cision to apply land use as categorical information to 
map soil property. In other words, the test was run to 
verify whether there were differences between the dif-
ferent types of land use (categorical map) according to 
soil physical properties. Abrupt changes in boundaries 
provided valuable categorical information to interpret 
soil property variation, and the variation between and 
within polygons are frequently assessed by the ANO-
VA test (Oberthür et al., 1996; Liu et al., 2006; Molin 
and Castro, 2008). Except for Ksat in MCW, the vari-
ance between land uses was statistically significant in 
both watersheds, meaning that land use affected physi-
cal properties. Soils in MCW are mainly Oxisols, whose 
structure helps to explain the pattern variability. The 
adequate physical properties of Oxisols for soil manage-
ment and intensive uses are mainly influenced by their 
high aggregate stability (Ajayi et al., 2009). For other soil 
properties, not only was the soil type modelling consid-
ered, but also land use as a categorical optimality curve.

Summary statistics of soil physical properties for 
the data stratified into four land uses are listed in Table 
3. These results guided the way of using maps of land 
use in ArcSIE in which different types of land use were 
joined or treated separately, based on the mean test for 
separation. For example, the soil organic matter mean 
test in LCW showed that native vegetation is statistical-
ly different from other land uses. Thus, the raster map 
was reclassified into two different nominal categories 
for each soil type with crisp boundaries: one nominal 
value for native vegetation and another nominal value 
for natural regeneration, pasture and wetland. Thus, a 
soil unit was created by the combination of soil type and 
land use. However, the issue here is whether the cat-
egorical maps of land use can indeed improve accuracy 
to predict physical properties.

Assessment of prediction methods
Table 4 presents the statistical accuracy indexes 

for predictions, considering different ways to choose 
typical values at LCW and MCW. For each of soil prop-
erty, a method with suitable accuracy was found, with 
MPE and RMSPE closer to zero. However, making com-
parisons within same soil property, the methods per-
formed in contrast, with extreme high values of MPE 
and RMSPE in some cases. Considering results from 
the literature related with soil physical properties, 
most results showed suitable accuracy indexes, similar 
to those presented in this work, but they are mostly 
related to soil texture mapping (Akumu et al., 2015; Qi 
et al., 2006; Zhu et al., 2010). Thus, it is not possible to 
make any specific comparison between MPE and RM-
SPE values.

The use of similarity vectors and fuzzy logics for 
mapping soil texture in a work developed by Ashtekar 
et al. (2014) resulted in model and validation sets rath-
er biased, and failed to capture the spatial variability 

Table 2 – Ranges of optimality curves of soil types at Marcela Creek 
Watershed.

Soil type
Full membership

AACHN Slope WI Plan curvature Profile curvature
Endoaquent 0; 1 - 15; 5 - -
Acrudox 23.53 2.7 - -0.9 -
Dystrudept 4 30 - -1 -1.75
Hapludox1 5 5.5 - - -
Hapludox2 5 14 - - -

50 % membership
Endoaquent 1.5 - 14.5; 19 - -
Acrudox 20; 56 0; 10 - -4.3; 0 -
Dystrudept 2; 23 20 - -2.3; -1.1 -4.35; -0.75
Hapludox1 2; 15 3; 8 - - -
Hapludox2 2; 23 8; 20 - - -

Curve shape
Endoaquent Z - Bell Bell -
Acrudox Bell Bell - - -
Dystrudept Bell S - - Bell
Hapludox1 Bell Bell - - -
Hapludox2 Bell Bell - - -
1Hue 7.5YR or 10YR; 2hue 5YR; AACHN = altitude above the channel network; 
WI = wetness index.
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of properties. Such results highlight the importance of 
choosing a representative data set, contrary to this case 
in which sampling was constrained to places nearby 
roads due to the access limitation throughout the study 
site. A weighted average of the fuzzy membership val-
ues and the typical soil property values of the soil types 
is done pixel by pixel. This fact highlights the impor-
tance of choosing sampling places that represent the 
central and representative value of the soil type, in or-
der to avoid the pixel population of each instance with 
unreal values. The representative values obtained from 
a mean value of sampled point data outlying prop-
erty values may cause over (positive MPE) or under 
(negative MPE) estimation of predicted soil properties 
(Ashtekar et al., 2014). 

Fuzzy membership maps represent the uncer-
tainty of prediction. The higher the value, the closer 
the central concept used for modeling soil type in the 
landscape. In this sense, if knowledge-based method 
postulates that a representative value should be cho-
sen, membership maps have a potential for guiding 
sampling in the field campaign. For that, deep knowl-
edge of the area is necessary to create accurate models 
and consequently membership maps. 

Not only the way of choosing typical values 
should be considered to compare accuracy of predic-
tions, but also the variation nature of each soil prop-

erty. Bulk density showed low coefficient of variation 
and lower values of RMSPE and MPE at both water-
sheds (Menezes et al., 2016). In this case, the lesser 
variation might result in better agreement between pre-
dicted and observed (validation) values for all the pre-
diction methods tested. The opposite trend was found 
for drainable porosity.

LCW shows a general trend that maps of land 
use applied to modelling promoted better accuracy. 
This could be related with the number of points used in 
the modelling, which are higher in models that use soil 
type and land use information, improving representa-
tiveness of spatial variability. In this case, one typical 
value is required for each combination of soil type and 
land use, whose number of combinations is dictated by 
ANOVA, whereas those models developed only consid-
ering soil types, required only 5 points for the spatial 
prediction (one typical value per each soil type). The 
types of land use are very contrasting when compar-
ing pasture to tropical Atlantic Forest, which has a 
dense canopy and higher soil organic matter content. 
At MCW, where the relief is gentle with predominance 
of Oxisols under pasture, the prediction accuracy is 
overall better in which the use of mean typical values 
showed some of the best accurate predictions. 

Ksat values at LCW and MCW (Menezes et al., 
2016), as well as in other studies (Moustafa, 2000), 

Table 3 – Statistics of soil properties at Lavrinha Creek Watershed (LCW) and Marcela Creek Watershed (MCW).

Land use1
SOM (%) Bulk density (g dm–3) Total porosity (%) Drainable porosity (%) K sat (m d–1)

Mean STD Mean STD Mean STD Mean STD Mean STD
LCW

NF 5.96 a 2.13 0.86 b 0.20 64.59 a 0.06 33.11 a 1.52 2.53 a 4.15
NR 4.33 b 1.86 1.06 a 0.15 54.54 b 0.04 24.48 b 1.38 0.98 b 0.94
P 4.14 b 2.19 1.12 a 0.17 57.47 c 0.05 18.33 c 1.51 1.20 b 2.32
WL 3.77 b 1.98 0.99 a 0.14 58.86 b 0.03 17.70 bc 1.36 0.76 ab 0.76

MCW
C 2.68 a 0.87 1.14 b 0.10 54.76 b 4.80 13.36 b 7.51 0.31 a 2.87
P 2.74 a 0.88 1.13 b 0.09 55.12 b 4.01 14.44 b 6.31 0.41 a 3.33
M 2.96 a 0.99 1.08 a 0.12 57.75 a 4.92 18.75 a 6.19 0.48 a 3.47
E 3.65 b 0.82 1.10 b 0.10 56.65 b 3.51 14.10 b 6.71 0.64 a 2.81
1Land use: NF = native forest; NR = natural regeneration; P = pasture; WL = wetland; M = maize; C = Cerrado; E = eucalyptus; STD = standard deviation; SOM = soil 
organic matter; Ksat = saturated hydraulic conductivity. Means followed by the same letter do not differ significantly (p < 0.05) within columns.

Table 4 – Comparison of interpolation methods at Lavrinha Creek Watershed (LCW) and Marcela Creek Watershed (MCW).
SOM Bulk density Total porosity Drainable porosity Ksat SOM Bulk density Total porosity Drainable porosity Ksat

LCW MCW

Mean
MPE -2.00 -0.11 1.87 1.61 0.39 0.63 0.00 0.50 0.54 -0.01

RMSPE 10.01 0.56 9.34 8.05 1.93 2.80 0.01 2.24 2.43 0.06

Mean and land use
MPE -1.95 0.02 1.07 2.40 0.39 0.53 -0.02 0.46 1.26 -

RMSPE 9.75 0.12 5.35 12.01 1.93 2.38 0.08 2.02 5.62 -

Landscape
MPE -1.81 0.13 -1.81 -5.84 0.26 0.28 -0.01 0.45 -3.59 0.44

RMSPE 9.04 0.62 9.07 29.17 1.28 1.24 0.02 2.06 16.07 1.88

Landscape and land use
MPE -1.11 0.06 -1.55 -0.40 0.30 0.14 -0.02 0.66 -1.35 -

RMSPE 5.57 0.29 7.75 1.99 1.15 0.65 0.07 2.94 6.03 -
MPE = mean prediction of error; RMSPE = root mean square of prediction error; SOM = soil organic matter; Ksat = saturated hydraulic conductivity.
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Figure 5 – The best prediction maps of soil physical and chemical 
properties. SOM = soil organic matter; Ksat = saturated hydraulic 
conductivity; A) landscape and land use used for SOM, C) mean and 
land use for bulk density, E) mean and land use for total porosity, 
G) landscape and land use for drainable porosity, and I) landscape 
for Ksat prediction at Lavrinha Creek Watershed; B) landscape and 
land use for SOM, D) mean for bulk density , F) mean and land use 
for total porosity, H) mean for drainable porosity, J) mean for Ksat 
at Marcela Creek Watershed.

have been recognized for their high spatial variability, 
skewed frequency and non-normality of distribution. 
Data normality can influence the estimation of certain 
spatial interpolation methods that assume input data 
are normally distributed around the mean (Li and Heap, 
2011), e.g., kriging or linear regression. In these cases, 
data transformation is required and back-transformation 
brings back the predictions to the original scale. How-
ever, back-transforming the estimated values can be 
problematic because exponentiation tends to exaggerate 
any interpolation-related error (Goovaerts, 1999). In this 
study, as already pointed out by Zhu et al. (2010), simi-
larity vectors have an inherent non-linearity and can be 
used to describe and model non-linear variation of Ksat, 
overcoming the limitation of some interpolation meth-
ods. The MPE and RMSPE values closer to zero show 
high accuracy of the presented method to map Ksat in 
both watersheds.

Prediction maps
The best prediction maps of each soil property 

are presented in Figures 5A, B, C, D, E, F, G, H, I and J. 
Figures 5A, C, E, G, and I show respectively landscape 
and land use used in prediction of soil organic matter, 
mean and land use for bulk density and total porosity, 
landscape and land use for drainable porosity predic-
tion and landscape for Ksat prediction at LCW. Figures 
5B, D, F, H, and J show respectively landscape and land 
use for soil organic matter prediction, mean for bulk 
density, mean and land use for total porosity, and mean 
for drainable porosity and Ksat at MCW.

Since the knowledge-based technique incorpored 
the pedologist knowledge into the modelling, it is pos-
sible to observe the continous nature of spatial distri-
bution in each soil type (Tables 1 and 2) and/or land use 
(when it was used in the prediction), providing a real-
istic portrayal of variation without a smoothing effect. 
This continuous variation is an advantage to capture 
spatial prediction, since soil property maps generated 
from conventional soil survey maps (polygon-based) 
are not sufficient due to general low level of detail (Zhu 
et al., 2010; Menezes et al., 2014). 

There is a tendency for predicted soil property 
values to be stratified by soil type, especially those 
where a polygon raster map is used. In some cases, 
this artefact of polygon in spatial prediction is clear, as 
in Figure 5A, due to the use of polygon of eucalyptus 
land use (Figure 3F). Because knowledge-based digital 
soil mapping technique uses only one typical value per 
soil type for spatial prediction, the range of predicted 
properties are rather different from the interpolation 
data set range (Menezes et al., 2016), which can com-
promise prediction accuracy. 

At LCW, the relief seems to influence the veg-
etation cover indirectly, since pasture is preferably 
implanted in flatter and lower areas. In addition, the 
higher soil organic matter content detected at higher 
altitudes (Figure 2A) was probably due to lower tem-

peratures. Soil organic matter has been identified as a 
major controlling factor in aggregate stability (Angers 
et al., 1997). Vegetation distribution influences soil or-
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ganic matter (Gessler et al., 2000), which, in turn, may 
explain the lower bulk density, higher total porosity, 
higher drainable porosity and Ksat in the same portions 
of the landscape, where the land use is native forest or 
natural regeneration (Figure 2F). The opposite situation 
happens in pasture areas.

At MCW, the soil organic matter prediction might 
be influenced by land use, revealing higher values in 
Cerrado and eucalyptus areas in the eastern side of 
the watershed (Figure 3F). Lower values of soil organic 
matter were found under pasture areas, which is the 
predominant land use in this watershed. Water distri-
bution in landscapes stricly controls soil carbon dynam-
ics (Gessler et al., 2000), even though the floodplain did 
not show higher values of soil organic matter, which 
may be due to the very high vertical and lateral spatial 
variability of characteristics, typical of these lowland 
environments. Soil organic matter maps showed higher 
values in the convex summit. Gessler et al. (2000) high-
light the combination of higher weathering-leaching, 
very low natural fertility, low temperatures in the past, 
and limited activity of microorganisms might have con-
tributed for the organic matter accumulation in this 
landscape position.

Differently from the other physical properties 
studied, the Ksat values are also influenced by soil 
properties at depth. Therefore, the spatial variability 
of this soil property may be related to properties better 
expressed in the B horizon of soils. Higher values of 
Ksat were found in Oxisols, where the adequate physi-
cal properties are mainly influenced by aggregate sta-
bility, as mentioned before. This trend was not followed 
by the total porosity and drainable porosity (topsoil). 
In the topsoil, even for Oxisols, the frequent wetting 
and drying cycles could be responsible for the decrease 
in aggregate stability (Caron et al., 1992), where the 
granular structure behaves as a blocky structure (Ajayi 
et al., 2009). Lower values of bulk density and higher 
values of total porosity were found in areas with rela-
tively higher values of soil organic matter, as well as 
in the Cerrado area. Total porosity seems to be related 
with land use as well, as observed in areas under maize 
crops.

Conclusions

The knowledge-based digital soil mapping is an 
accurate option for spatial prediction of soil properties 
considering: 1) a less intense sampling scheme; and 2) 
scarce resources for high density samplings in Brazil; 3) 
adequacy to properties with non-linearity distribution, 
as Ksat.

Land use influences the spatial distribution of soil 
properties thus it was applied in the soil modelling and 
prediction. The way of choosing typical values varied 
not only according to the prediction method, but also 
with the nature of spatial distribution of each soil prop-
erty. 
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