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ABSTRACT: Drought is a major threat worldwide for crop production, especially due to the 
rapid climate changes. Current drought solutions involve improving irrigation system, rainwater 
harvesting, damming, cloud seeding, and changes of cultivation methods. Despite effective, 
each solution has economic, environmental, and temporal drawbacks. Among all solutions, the 
most effective, inexpensive and manageable method is the use of drought-tolerant cultivars 
via plant breeding. However, conventional plant breeding is a time-consuming and laborious 
task, especially for phenotypic data acquisition of target traits of numerous progenies. High-
throughput phenotyping (HTP) is a recently developed method and has potential to overcome 
the mentioned issues. HTP offers massive, accurate, rapid, and automatic data acquisition in 
the breeding procedure and can be a breakthrough for developing drought resistant/tolerant 
cultivars. This study introduces various methods of HTP to detect drought stress, which can 
accelerate the breeding processes of drought-tolerant cultivars to provide helpful guidelines for 
breeders and researchers to choose appropriate methods.
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Introduction

Expanding global population demands crop 
production to double by 2050, which poses a significant 
challenge (Araus and Cairns, 2014). However, recent 
variation of drought frequency and locations are 
increasing tremendously due to the global warming 
and climate change, causing severe yield loss to crops 
(Spinoni et al., 2014), which could compromise food 
security worldwide.

Numerous studies have investigated drought 
effects on crops and tolerances by identifying plant 
physiology against drought. Therefore, characterization 
of plant physiology identified that the development 
of drought-tolerant cultivars is the most effective 
method to deal with the current situation by providing 
farmers a relatively inexpensive and manageable crop 
procedure (Cattivelli et al., 2008). However, to date, only 
few drought-tolerant cultivars have been developed. 
Moreover, conventional breeding takes many years, 
despite modern breeding processes, such as marker-
assisted selection (Collard and MacKill, 2008; Tester 
and Langridge, 2010). To enable shorter breeding cycles, 
great rates of genetic gain with the sufficient number of 
samples and a reliable dataset are required. This has led 
to the advent of new field, high throughput phenotyping 
(HTP) (Rutkoski et al., 2016). HTP is based on various 
types of sensors and computing technology in order to 
accelerate the process of phenotypic data acquisition 
using accurate, fast, non-invasive, automated, and 
reliable manners. Therefore, it is important to review 
various HTP methods to evaluate drought stress in crop 
plants to allow researchers to identify drought-tolerant 
phenotypes, compare them and use them in their 
purposes.

In order to monitor plant performance and identify 
traits under drought condition, defining phenotypes 
of drought stresses is crucial. Screening, analyzing, 
comparing drought-effective phenotypes, physiological 
performance of plants, and their production can be 
helpful to determine the most appropriate traits for 
evaluating drought tolerance based on functional 
phenotyping (York, 2018). For instance, dehydration 
under drought conditions results in critical damage 
to plants by changing leaf and canopy temperature, 
transpiration rate, and biomass distribution influence 
growth rates and yields (Khodarahmpour, 2011; 
Passioura, 1983). As rates of changes of these traits have 
considerable correlations (Kimball and Bernacchi, 2006), 
the most efficient phenotypes and screening methods 
could be selected for drought studies. Thus, various 
ways to screen drought stress level with different 
types of sensors to screen each of those components 
are necessary. This article reviews HTP methods and 
platforms.

High throughput phenotyping methods for 
drought stress in plants

Red, green, and blue (RGB) image
Optical sensor is a device that applies radiometry 

as a source of detection and image acquisition (Holland 
et al., 2012). Numerous ranges of electromagnetic 
wavelengths are used on image processing, such as 
visible band (VIS), infrared (IR), and ultraviolet (UV) 
(Araus et al., 2018). Classification of electromagnetic 
wavelengths and features of applying sensors are 
shown in Figure 1 and Table 1. Multispectral sensors 
generally comprise several bands including Red, Green, 
Blue (RGB) channels and Near Infrared (NIR) channels 
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(Kelcey and Lucieer, 2012). Relatively insensitive 
accessibility of spectral imagery allowed various forms 
of its usage. RGB band sensor is the most affordable 
and accessible instrument because it takes images of 
most morphological features of plants, such as whole 
image or partial image of plant, plant structure, shoot 

biomass, leaf density, leaf area, height, and color. Due 
to its rapid measurement and affordable access, RGB 
has various applications. For example, wheat plant 
density was estimated with light platform fixed on 
an RGB camera (Liu et al., 2017), time series of plant 
phenology was monitored with an automated time-lapse 

Figure 1 – Electromagnetic spectrum scheme (nm).

Table 1 – Sensors for high throughput imaging and obtainable traits.

Sensors Wavelength Features Traits Reference

RGB (Red, green, blue) 
sensor 400~700 nm Sensing visible wavelengths. Most easily 

accessible sensor.

Vegetation indices, plant height, 
plant structure, growth rates, and 
morphological traits.

Kim et al. (2018); Crimmins and 
Crimmins (2008); Deery et al. (2014); 
Liu et al. (2017)

NIR (Near infrared) 
sensor 700~1400 nm

Sensing highest reflectance of plant green 
area in 700~1300 nm, while beyond 
1300 nm shows more absorbance by 
water than the visible spectrum.

Chlorophyll conductance, water 
status, and vegetation indices.

Bei et al. (2011); Bendig et al. 
(2015); Thiel et al. (2010); Yang et 
al. (2017)

Hyperspectral sensor -

Sensing thousands of bands per pixel. 
More detailed images can be obtained 
than the multispectral imaging if the 
requirements are set.

Vegetation and water indices, soil 
cover status, photosynthesis rates, 
and levels of phytochemicals.

Hamada et al. (2007); Stagakis et 
al. (2010); Zhao et al. (2013); El-
Hendawy et al. (2019a); El-Hendawy 
et al. (2019b)

Thermal sensor 700~106 nm

Sensing emitted radiation of object that 
increases with the object temperature 
above absolute zero. Suitable to image 
temperature changes.

Canopy temperature, transpiration 
rates, and water stress responses.

Baluja et al. (2012); Berni et al. 
(2009); Gago et al. (2015); Leinonen 
et al. (2006)

Fluorescence sensor 180~800 nm
Sensing fluorescence emitted by short 
wave light absorption of susceptible 
molecule.

Chlorophyll conductance, 
photosynthetic rates, and pigment 
composition.

Chaerle et al. (2006)

LiDAR (Light Detection 
and Ranging) 250~2,000 nm

Surface scan of target objects and 
distance measurement by analyzing the 
reflected light.

Canopy and leaves, vegetation 
cover, plant height, and nitrogen 
status.

Lin (2015); Eitel et al. (2014); Madec 
et al. (2017); Omasa et al. (2006); 
Zhang and Grift (2012);

Others
-MRI -

Feasible to screen underground structures 
of plant by 3D imaging and transport 
processes in natural porous media.

Water contents, stem structures, 
root structures, transport 
processes

Capitani et al. (2009); Gosa et al. 
(2019); Pohlmeier et al. (2008); Van 
As and Van Dusschoten (1997)

Others
-Gravimetric senor -

Capable of measuring plant physiological 
changes by non-imaging process. 
Requires other sensors for screening.

Weight, water use efficiency, 
water status, transpiration rates, 
biomass.

Halperin et al. (2017); Iyer-Pascuzzi 
et al. (2010); Negin and Moshelion 
(2017).
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photography (Crimmins and Crimmins, 2008), and leaf 
segmentation of sorghum was estimated based on the 
correlation between target traits and RGB values taken 
by camera on unmanned aerial vehicles (UAVs) (Kim et 
al., 2018). RGB images can also be applied to acquire 
sophisticated information on responses to water stress 
based on its shape, compactness, solidity, and other 
visible parameters (Deery et al., 2014).

Infrared imaging
Between 700 nm and 1300 nm near infrared 

(NIR) wavelengths, plant green area shows the highest 
rates of reflectance (Broge and Mortensen, 2002). NIR 
beyond 1300 nm is also reflected by plant tissues but 
with a relatively low rate . These processes cause the 
scattering of wavelengths within the leaf mesophyll, 
which lately are absorbed by water (Knipling, 1970). 
Such characteristics verify compatibility on meaningful 
parameters against drought stresses. Thiel et al. (2010) 
showed plant moisture measurement using NIR sensor 
attached to an automated conveyor platform and Bei et 
al. (2011) measured grapevine water potentials using 
a custom-made spectrophotometer and a handheld 
spectrometer to have significant correlation with the 
results of pressure chamber in fields and glasshouses 
by model-based estimations. Additionally, spectral 
reflectance indices (SRIs) based on NIR and RGB channel 
showed significant correlation on vegetation status. 
Bendig et al. (2015) and Yang et al. (2017) estimated the 
normalized difference vegetation index (NDVI) in order 
to monitor biomass in projected area with combination 
of RGB and NIR imagery on Unmanned Aerial Vehicles 
(UAVs). These sensors can be adapted to not only UAVs, 
but also to other platforms, such as ground vehicles 
and chambers to produce images of wide range and 
continuous images at each platform (Chapman et al., 
2014; Deery et al., 2014; Gago et al., 2015).

Hyperspectral imaging
Hyperspectral sensors consist of hundreds and 

thousands of bands per one pixel compared to the 
other multispectral sensors (Thenkabail et al., 2002). 
Due to its narrow and numerous bands, which include 
ranges of VIS, NIR, fluorescence, thermal sensors, 
and so on, band selection is relatively complicated 
for imaging. Nevertheless, it can differentiate various 
responses to stress due to its viability to acquire images 
in high resolution and narrow spatial range. Thereby, 
hyperspectral imagery is often used for indoor imaging 
and high-altitude aerial platforms, due to its high 
level of details. Soil coverage status, photosynthesis 
rates, and levels of phytochemicals, such as nitrogen, 
cellulose, lignin, and pigments can be obtained due to its 
narrow ranges of spectral reflectance and water indices 
(Hamada et al., 2007; Stagakis et al., 2010; Zhao et al., 
2013). Additionally, El-Hendawy et al. (2019b) showed 
the relationship between chlorophyll fluorescence 
parameters, grain yield, and SRIs of hyperspectral 

sensors in wheat grown under salinity. As sensitiveness 
of SRIs against plant stress reactions proved its reliability, 
assessable SRIs might be used in drought screening. 
Moreover, El-Hendawy et al. (2019a) compared dry 
weights, water contents, aboveground biomass, grain 
yield, and performance of SRIs in the VIS and NIR under 
two irrigation regimes for more precise analyses of SRIs 
by hyperspectral sensors. However, lighting issues in 
close range and inconstant imaging by environmental 
changes could be problematic for HTP (Mishra et al., 
2017). Nonetheless, hyperspectral imaging is an effective 
tool for studies on drought in crops due to its efficient 
capability of acquiring physiological and phytochemical 
parameters, such as photosynthesis rates, soil coverage 
status, nitrogen status, water indices, and other various 
SRIs for detecting drought stress (Behmann et al., 2014).

Thermal imaging
Thermography, also known as infrared 

thermography, produces images using emitted radiation 
of object that increases as the object temperature is above 
absolute zero (Shekhawat, 2016). Thermal sensor can 
detect temperature changes caused by the occurrence 
of transpiration, due to the stomatal closure, using 
visualized image data (Peñuelas et al., 1992). Thereby, 
temperature-related traits, such as water content, 
transpiration rate, and stomatal conductance could be 
measured through thermal imaging by model-based 
estimations (Prashar et al., 2013; Tattaris et al., 2016). 
For example, stomatal conductance in grapevine (Vitis 
vinifera) was estimated with a handheld thermometer 
camera (Leinonen et al., 2006) and water stress in olives 
was evaluated through correlation between soil and tree 
water status and thermal imagery (Ben-Gal et al., 2009). 
HTP methods with thermal imagery are often applied 
with other sensors to obtain comprehensive data. For 
instance, thermal and multispectral sensors on UAVs 
for vegetation monitoring (Berni et al., 2009) were used 
to assess water status in vineyard (Baluja et al., 2012; 
Gago et al., 2015). Thermal images have significant 
correlation with water stress indicators and are thus 
the most useful sensors to phenotype drought-related 
traits. However, environmental factors, such as solar 
radiation, air temperature, wind speed, and background 
temperature can easily influence field measurements, 
requiring technical expertise to overcome this limitation 
(Sugiura et al., 2007).

Fluorescence imaging
Fluorescence is luminescence of longer wavelength 

photons of fluorescence lifetime after photon absorption 
by a certain susceptible atom or molecule (Lichtman 
and Conchello, 2005). These longer wavelengths 
and lower energy photons can be measured by 
fluorescence lifetime through the sensor in picoseconds 
or nanoseconds (Berezin and Achilefu, 2010). Thus, 
plant fluorescence can be obtained through responses 
of fluorescence by irradiating chloroplasts with blue or 
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actinic light. As fluorescence and chlorophyll contents 
are strong indicators of drought tolerance to determine 
the metabolic status of plants, fluorescence imaging can 
be effective to identify drought related traits, such as 
photosynthetic rate changes and pigment proportion 
changes (Li et al., 2006; Ögren and Öquist, 1985; Zlatev 
and Yordanov, 2004). However, fluorescence imaging 
has limitations, such as impropriety for early water 
stress detection, inadequacy on broad range imagery, 
inconsistent lighting, environmental disruptions under 
field conditions for remote sensing, and requirements of 
high electric power (Jansen et al., 2009; Shakoor et al., 
2017). Nonetheless, efficiency of fluorescence imaging 
is proven under drought conditions by the combination 
with other sensors or automated facilities to screen 
photosynthetic rates (Chaerle et al., 2006).

Light Detection and Ranging (LiDAR)
LiDAR is a new remoted sensing technology 

that measures distance of target objects by analyzing 
reflected light (Lefsky et al., 2002). It acquires various 
parameters of canopy and leaves, such as vegetation 
cover, height, canopy structure, leaf area index, and 
nitrogen status (Eitel et al., 2014; Lin, 2015; Madec et 
al., 2017; Omasa et al., 2006; Zhang and Grift, 2012). 
Furthermore, LiDAR measuring via 3D structuring 
can be done in a short time. It is generally applied in 
aerial platforms, ground vehicles, and ground fixed & 
stationary platforms. UAVs show the highest potential 
and efficiency than the other platforms for 3D LiDAR 
mapping. Although LiDAR has limited application 
for studies on drought stress, some applications 
could be possible. Phenotypes that result from slow 
growth and wilting, due to drought stress, are based 
on 3D images, such as biomass and leaf area index. In 
summary, aerial platforms with LiDAR are effective for 
measuring canopy areas, while rough images might be 
unsuitable for accurate data for drought tolerance. To 
overcome this, ground based platforms are suggested 
with current image resolution of LiDAR.

Other HTP sensors 
In addition to the sensors mentioned above, 

there are various other sensors available. HTP 
methods applying magnetic resonance microscopy and 
gravimetric sensors were studied (Gosa et al., 2019; Iyer-
Pascuzzi et al., 2010). Magnetic resonance microscopy, 
also known as magnetic resonance imaging (MRI), is a 
powerful 3D-imaging tool of structures, as it transports 
processes in natural porous media (Van As and Van 
Dusschoten, 1997). Non-invasive imaging of MRI allows 
characterization of responses of the entire plant area 
against drought. Pohlmeier et al. (2008) imaged both soil 
water contents and root architectures through magnetic 
resonance microscopy and indicated that greater water 
content changes occurred where the highest root 
densities were found. Capitani et al. (2009) showed 
relationships between nuclear magnetic resonance 

(NMR) signal and relative water content on plant leaves 
exposed to dehydration or to osmotic stresses, indicating 
that the NMR signal has correlation with plant responses 
against drought (e.g. plant water status and transpiration 
rates).

Weighing lysimeter based on gravimetric sensor 
is also a useful tool for studies on drought effects. 
However, because plant physiology differs in terms of 
species and varieties, this sensor cannot be used alone 
for the HTP process. Halperin et al. (2017) installed soil 
and atmosphere sensors that can effectively estimate 
physiology of the target plant. Thereby, numerous 
phenotypes, including weight, water use efficiency, 
water status, transpiration rates, biomass, and more, 
are capable of screening and comparable through 
this functional physiological phenotyping system. 
Consequently, as this system determine appropriate 
traits in need, known to play critical roles in responses 
to environmental conditions and highly related to other 
plant physiological responses against drought stress, 
it can be a powerful HTP tool (Negin and Moshelion, 
2017).

Platforms for sensors to evaluate drought 
tolerance

As previously mentioned, various sensors can 
provide parameters for HTP. They are powerful 
imaging instruments that allow accurate and massive 
phenotyping data at a glance. However, appropriate 
platforms are needed, such as aircrafts, vehicles, ground 
fixed, and automated facilities to place sensors in order 
to obtain visualized parameters of plant response under 
drought conditions. The features and usages of platforms 
are compared in Table 2. 

Canopy traits, such as leaf area, transpiration 
rates, canopy temperature, phytochemicals, and 
photosynthetic rates are highly related to drought 
effects. Among various platforms, aerial detection is the 
most effective and efficient way in terms of phenotyping 
speed. Its rapid and accurate remote sensing allows 
imaging massive amounts of plant in a wide area 
within very short time. Visible traits of the canopy 
area, including plant height, can be easily measured by 
aerial imaging with RGB sensors (Bendig et al., 2014; 
Jin et al., 2017). Chlorophyll contents can be estimated 
by NIR and Red range by aerial imaging (Bendig et 
al., 2015; Yang et al., 2017). Thermal sensor mounted 
on aerial vehicles is capable of detecting aerial water 
status (Baluja et al., 2012; Berni et al., 2009; Gago et 
al., 2015). In addition, aerial platform with high payload 
can apply hyperspectral sensor for phytochemical and 
photosynthetic traits. However, application of thermal 
and fluorescence sensors might be more appropriate for 
ground vehicles, ground fixed & stationary platforms, 
and indoor facilities for higher resolution images due 
to the issues mentioned previously (Busemeyer et al., 
2013; Deery et al., 2014; Shafiekhani et al., 2017; Tisné 
et al., 2013).



5

Kim et al. Phenotyping drought-related traits by remote sensing

Sci. Agric. v.78, n.4, e20190300, 2021

Despite the benefits for HTP, the detectable 
area of aerial platforms is limited to the top canopy 
area. Therefore, drought-related phenotypes below 
the canopy area, such as stem structure, biomass, 
and branching need to be remotely sensed by ground 
vehicles (Salas Fernandez et al., 2017), ground fixed & 
stationary (Busemeyer et al., 2013; Shafiekhani et al., 
2017), and indoor (Hartmann et al., 2011) platforms. 
Ground vehicles are relatively less expensive than other 
two kinds of ground-based platforms, while the images 
they acquire need to undergo analyses, similar to images 
from aerial platforms (Deery et al., 2014). Ground 
vehicles are also advantageous for their capacity of 
loading heavier sensors than aerial platform. However, 
phenotyping speed is much slower than that of images 
acquired from aerial platform. Indoor platforms have 
benefits of controlling the target environment due to 
the inhibition of other uncontrollable disturbances. 
By restricting interference of extrinsic factors, almost 
all sensors are available on this platform. Proper 
posture rectified for each imaging sensor can make 
the measurement more accurate and rapid with easier 
operation. Ground fixed & stationary platforms have 
the advantage of producing time-lapsed image easily 
due to their fixed imaging angle and constant imaging 
time; however, they have to be highly durable under the 
outdoor conditions. Indoor facilities are also capable of 
phenotyping roots formed under drought conditions, 
providing important hints to drought tolerance (Wasaya 
et al., 2018). However, personnel limitations, high cost, 
and environmental settings are drawbacks. Cylinder 
growth systems, hydroponic growth systems, aeroponic 
growth systems, X-rays, nuclear magnetic resonance 
microscopy, magnetic resonance imaging, and laser 
scanning are currently available for indoor phenotyping 
(Clark et al., 2013; Marié et al., 2014; Taras et al., 2012).

Final Remarks 

Droughts are some of the main factors of food crisis 
worldwide, which can be overcome by the development 
of drought-tolerant cultivars via plant breeding. Since 
droughts occur more often in severe forms, the breeding 
cycle should be significantly shortened. To achieve 
this, massive and accurate phenotypic data are crucial. 
Given that responses to drought stress are related 
to various morphological and physiological traits, 
numerous methods could be applied using sensors, such 
as multispectral, hyperspectral, thermal, fluorescence 
sensors, and laser sensors on various platforms.

In this study, recently developed HTP methods 
and platforms were reviewed for drought screening. 
For instance, researchers searching for a cost-effective 
HTP drought screening method, RGB and NIR imaging 
with aerial platform or ground vehicle might be a proper 
selection. In order to screen in-field conditions, aerial 
platforms are more efficient in large area screening 
while having low payloads for sensors. Unlike aerial 
platforms, ground vehicles are more efficient in 
narrow areas and capable of carrying multiple sensors. 
However, for more accurate and consistent screening, 
ground fixed and stationary platforms might be a 
suitable selection. Despite its high cost, users willing 
to use in strictly controlled environmental conditions 
and various sensors, indoor platform might be a proper 
choice. In addition, remotely controlled ground vehicles 
and indoor phenotyping systems can provide below 
canopy area images with various sensors by user’s 
choices and financial constraints. Our objective was to 
help researchers who need to conduct HTP for drought 
responses. We sincerely hope that this article could 
help those who consider studying drought response or 
breeding drought-tolerant cultivars.

Table 2 – Platforms for High Throughput Phenotyping.
Platforms Categories Features Limits References

Aerial

Satellites
Sensing broad area rapidly.
Payload limits.
Screening process is possible regardless 
of plant height.
Only orthoimages can be obtained.

Relatively low resolution images 
than platforms on lower altitude.

Hamada et al. (2007); Stagakis et 
al. (2010)

Aircraft

Manual control requires expertise. Chapman et al. (2014)

Easily influenced by environmental 
factors.
Relatively low payloads.

Baluja et al. (2012); Bendig et al. 
(2014); Bendig et al. (2015); Berni et 
al. (2009); Gago et al. (2015); Jin et 
al. (2017); Yang et al. (2017)

Ground

Tractors & Buggies Manual or remote control.
High resolution images.
Sensor payload is independent.

Inappropriate to screen very tall 
crops.

Deery et al. (2014); Salas Fernandez 
et al. (2017)

Bicycles Liu et al. (2017)

Ground-Fixed & 
Stationary

Suitable to time-lapsed images.
More sensors are mountable than the 
aerial platforms.

Requires endurance against 
outdoor conditions.

Busemeyer et al. (2013); Shafiekhani 
et al. (2017)

Indoor Facilities

Environmental factors can be controlled.
Uncontrollable disturbances are inhibited.
Almost all sensors can be applied.
Capable of root phenotyping.

Personnel limitations.

Clark et al. (2013); Iyer-Pascuzzi et 
al. (2010); Hartmann et al. (2011); 
Marié et al. (2014); Taras et al. 
(2012); Tisné et al. (2013); Wasaya 
et al. (2018)
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