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ABSTRACT: Among the multi-trait models selected to study several traits and environments 
jointly, the Bayesian framework has been a preferred tool when constructing a more complex 
and biologically realistic model. In most cases, non-informative prior distributions are adopted in 
studies using the Bayesian approach. However, the Bayesian approach presents more accurate 
estimates when informative prior distributions are used. The present study was developed to 
evaluate the efficiency and applicability of multi-trait multi-environment (MTME) models within a 
Bayesian framework utilizing a strategy for eliciting informative prior distribution using previous 
data on rice. The study involved data pertaining to rice (Oryza sativa L.) genotypes in three 
environments and five crop seasons (2010/2011 until 2014/2015) for the following traits: grain 
yield (GY), flowering in days (FLOR) and plant height (PH). Variance components, genetic and 
non-genetic parameters were estimated using the Bayesian method. In general, the informative 
prior distribution in Bayesian MTME models provided higher estimates of individual narrow-sense 
heritability and variance components, as well as minor lengths for the highest probability density 
interval (HPD), compared to their respective non-informative prior distribution analyses. More 
informative prior distributions make it possible to detect genetic correlations between traits, 
which cannot be achieved with non-informative prior distributions. Therefore, this mechanism 
presented to update knowledge for an elicitation of an informative prior distribution can be 
efficiently applied in rice breeding programs.
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Introduction

Rice (Oryza sativa L.) is one of the most important 
sources of the global population’s daily caloric and 
nutritional requirement (FAO, 2020). Across the world, 
the population is increasing while, at the same time 
the available area of suitable wetlands is decreasing 
(Ray et al., 2013). It is estimated that by 2050 the 
agricultural production of rice should increase by 
between 60 and 110 % (Hunter et al., 2017; Juliana 
et al., 2019). Thus, the evaluation of multiple traits in 
rice cultivation aims to maximize grain yield potential 
(Liang et al., 2021). In general, in a plant breeding 
program aimed at identifying the most genetically 
superior genotypes, the selection is based on one trait 
only (Suela et al., 2019; Sabri et al., 2020). However, 
this approach can cause problems if its performance 
in another desirable trait is not evaluated (Cruz et al., 
2014). Genetic evaluation of multiple traits is relevant 
since superior varieties combine optimal attributes for 
several traits simultaneously in plant breeding (Torres 
et al., 2018). In these cases, selection can be made 
indirectly, based on easy to measure secondary traits 
of low environmental influence genetically correlated 
with the target trait, which is an exciting alternative for 
maximizing accuracy (Santos et al., 2018).

Among the multi-trait models used for modeling 
several traits and environment jointly, the Bayesian 
framework has been the preferred tool when using a 

more complex and biologically realistic model (Dunson, 
2001). Several studies have demonstrated the potential 
of the Bayesian approach to genetic evaluation in 
plant breeding by considering multi-trait evaluation 
(Torres et al., 2018; Peixoto et al., 2021). However, in 
the majority of these studies, non-informative prior 
distributions are used. The Bayesian approach tends 
to be less biased and presents more accurate estimates 
than classical analysis when it uses informative prior 
distributions (van de Schoot et al., 2021) that should be 
preferable for breeding purposes aimed at improving 
selection accuracy.

Systems for updating knowledge of the 
hyperparameters and building informative prior 
distributions were proposed by Silva et al. (2013) and 
Azevedo et al. (2022). The first study used the scaled 
inverse chi-square prior distributions for the parameters 
in univariate analysis in maize breeding, drawing on the 
previous phenotypic data in two selection cycles. The 
second study used inverse gamma prior distributions 
considering ten crop seasons in white oat (Avena sativa 
L.). However, these procedures for eliciting informative 
prior distributions have not yet been presented with 
multi-trait analysis. Thus, the present study aimed 
to evaluate a strategy for eliciting informative prior 
distribution using previous data from rice. For such, 
phenotypic data of three traits associated with eighteen 
genotypes of rice evaluated in five crop seasons were 
used.
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Materials and Methods

Experimental data

The field experiment was carried out in the experimental 
area in the municipalities of Janaúba (15°48’77” S, 
43°17’59.09” W, altitude 516 m), Lambari (21°58’11.24” 
S, 45°20’59.6” W, altitude 887 m) and Leopoldina 
(21°31’55” S, 42°38’35” W, altitude 225 m), in the state 
of Minas Gerais in Brazil. This experiment evaluated 
eighteen rice genotypes lines for a flood irrigated 
rice breeding program. Among these genotypes, five 
cultivars were used as experimental controls (Rubelita, 
Seleta, Ourominas, Predileta, and Rio Grande). Grain 
yield (kg ha–1 - GY), flowering in days (FLOR) and plant 
height (cm - PH) were also evaluated for the crop seasons 
2010/2011 to 2014/2015. All experiments were arranged 
in a randomized block design with three replications. 

The useful area consisted of four meters of three 
internal rows (4 m × 0.9 m, 3.60 m2). The experiments 
were conducted on floodplain soils with continuous 
flood irrigation. The cultural treatments were carried 
out following the recommendations for irrigated rice 
cultivation in the evaluated regions (Soares et al., 2005).

Model and Bayesian inference

The traits (GY, FLOR and PH) were analyzed using 
multi-trait models featured in the Markov Chain Monte 
Carlo (MCMC) Bayesian approach. The first idea was 
to compare the full model (considering the interaction 
between the genotypes and environments) with the null 
model (not considering the interaction). The full fitted 
multi-trait statistical model was given by:   
 
y = Xb + Z1r + Z2u + e

which can be rewritten as:
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where yij is the vector of phenotypic values of the i-th 
trait (i = 1,2,3) in the j-th environment (j = 1,2,3); bij 
the vector of effect of the j-th environment in the i-th 
trait; rij i the vector of the block effects of the i-th trait 
in the j-th environment; uij the genetic values vector of 

the i-th trait in the j-th environment, and eij the residual 
vector of the i-th trait in the j-th environment. X is the 
incidence matrix of systematic effects, Z1 the incidence 
matrix of block effects and Z2 the incidence matrix of 
genetic effects.

The prior distributions for the parameters of the 
model were given by:

b~N(0,I⊗∑b)

r~N(0,I⊗∑r)

u~N(0,I⊗∑u)

e~N(0,I⊗∑e)

where I is the identity matrix, ∑b, ∑r, ∑u and ∑e are the 
(co)variance matrix with prior distributions given by:

∑b~IW(Vb , hb)

∑r~IW(Vr , hr)

∑u~IW(Vu , hu)

∑e~IW(Ve , he)

where IW is the inverted Wishart distribution; Vb, Vr, Vu 
and Ve the matrices with known values, and hb, hr, hu and 
he the known constants known as hyperparameters. The 
(co)variance matrix estimates are given by:
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where sri j( )
2 , sui j( )

2 , sei j( )
2  are, respectively, the block, 
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genetic and residual variance of the i-th trait in the j-th 
environment; srii’(j), suii’(j), seii’(j) the block, genetic and 
residual covariance between the i-th trait and the i’-trait 
in the j-th environment, and srii’(j,j’), suii’(j,j’), seii’(j,j’) the block, 
genetic and residual covariance between the i-th trait of j-th 
environment and i’-trait of j’-th environment respectively. 
∑b is a diagonal matrix with values equal to 108.

The Bayesian estimation of the parameters 
(b,r,u,∑r,∑u,∑e) is based on their posterior marginal 
distributions, which are indirectly generated through 
the MCMC algorithms and create a chain of values for 
each parameter. The w-th value of the chain of individual 
narrow-sense heritability associated with the i-th trait 
and the j-th environment hi

w2( ), is given by:

hi j
w ui j

w

ri j
w

ui j
w

ei j
w( )
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where sri j
w
( )
( )2 , sui j

w
( )

( )2  and sei j
w
( )
( )2  are, respectively, block, 

genetic and residual variances of w-th iteration and the 
i-th trait in the j-th environment. The relative variation 
coefficient is the ratio of the coefficient of genotypic 
variation to the coefficient of residual variation, i.e. 
CV
CV

g

e
. The w-th value of the chain of genetic correlation 

between traits i and i’ in the j-th enviroment, rii j
w
′( )

( ) , is 
given by:

rii j
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where �uii j�( )
(w)

 is the genetic covariance between traits 
i and i’; sui j( )

(w)2  is the genetic variance of the i-th trait, 
and �ui j�( )

(w)2  i the genetic variance of the i’-th trait in the 
j-th environment and the w-th iteration of the MCMC 
algorithm. The w-th value of the chain of genetic 
correlation of the i-th trait between environments j and 
j’, ri j j( , )

(w)
′ ′ is given by:
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where �uii j j
w

( , )
( )

�  is the genetic covariance between 
environments; j and j’sui j

w
( )

( )2  the genetic variance of the 
j-th environment, and �ui j

w
( )

( )
�

2  i the genetic variance of the 
j’-th environment of the i-th trait in the w-th iteration 
of the MCMC algorithm. The efficiency of indirect 
selection of the i-th trait in the j’-th environment relative 
to direct selection in the targeted the j-th environment 
EISj(j’) proposed by Windhausen et al. (2012) is given 
by:

EIS r
h

h
j i j j
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where ri(j,j’) is the posterior mean of genetic correlation of 
the i-th trait between environments j and j’, hi(j )′

2  is the 
posterior mean of individual narrow-sense heritability 
associated with the i-th trait and the j’-th environment, 
and hi(j)

2  is the posterior mean of individual narrow-sense 

heritability associated with the i-th trait and the j-th 
environment.

The informative worth of prior distribution is 
associated with the values of the hyperparameters and, 
consequently, in this study, with the (co)variance matrices 
of the normal distribution (van de Schoot et al., 2021). 
Based on phenotypic databases containing several years 
of collection, it is possible to update the hyperparameters 
and increase our knowledge of the (co)variance matrices 
and thus create informative prior distributions. In 
univariate analyses with ten seasons of data, the updating 
knowledge for the p-th season should be carried out 
using information from the (p – 1)-th season only and not 
the previous seasons (Azevedo et al., 2022). Therefore, 
in this study, we used two prior distributions, one non-
informative and one informative prior distribution created 
according to Azevedo et al. (2022) though in our case the 
multivariate approach was adopted. Thus, in this study, 
two analyses were performed: i) five multi-trait and multi-
environment models which considered each crop season 
separately and used non-informative prior distributions 
in all seasons; ii) five multi-trait and multi-environment 
models which considered informative prior distributions, 
where the (p – 1)-th crop season contributed to the p-th 
crop season. In the first season, non-informative prior 
distribution was used.

In non-informative prior distribution, we consider 
the hyperparameter to be equal to V

r = Vu = Ve = I and 
hr = hu = he = 0.02 (Hadfield, 2010). For the construction 
of the informative prior distributions, we know that if 
the (co)variance matrix is Σ~IW(V, h) (in this study, the 
dimension of ∑ is 9 × 9), then the expected value of ∑ is 
given by V�

� �10 (h ≥ 10) and the mode of ∑ is given by V�

� �10
. 

Thus, the posterior mean of (co)variance components (Σ) 
obtained in the analysis of (p – 1)-th season and its 
respective posterior mode (Mo) were equalized to the 
expected value and mode of the ∑~IW(V, h) distribution. 
Through these expressions, it was possible to find the 
following equality

� �
� �� �
� �� �

10 11 11

11 11

MO

MO
 and , V � �

�� ��
�
10

and these values were used as hyperparameters of the 
prior distribution of the p-th crop season. 

The following parameters were calculated in order 
to assess the impact of prior knowledge insertion : i) the 
posterior coefficient of variation (CV) of the estimates 
of the components of variance, individual narrow-sense 
heritability, genetic correlation and additive genetic 
values; ii) length of the Highest Posterior Density 
intervals (HPD) of the parameter estimates; iii) the 
deviance information criterion (DIC), when possible, 
since the quality of the fit can only be compared using the 
DIC when the model uses the same data; iv) agreement 
between genetic estimates by both non-informative and 
informative prior distribution, considering 30 % of the 
selection differential (a total of six genotypes).
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All computational implementations of the analysis 
were performed using MCMCglmm (Hadfield, 2010) in R 
(R software, version 4.1.0). A total of 3,000,000 samples 
were generated, assuming a burn-in period and sampling 
interval of 100,000 and ten iterations, respectively, 
which resulted in 290,000 samples. The convergence 
of MCMC chains was assessed by Geweke’s diagnostic 
(Geweke, 1992), which was performed using the CODA 
R package (Plummer et al., 2006). The computational 
routine is available at https://github.com/licaeufv/Multi-
trait-Multi-Environment-Rice.

Results and Discussion

Model selection and convergence of parameters 

Overall, except for the 2012-2013 crop season, the entire 
model (model with the interaction effect) presented 
lower DIC values compared with those obtained from the 
null model (model without the interaction effect) (Table 
1). The lower values of DIC indicate better goodness-of-
fit of the full model (Spiegelhalter et al., 2014), except 
for the 2012-2013 crop season analysis using non-
informative prior distributions. For all parameters, the 
p of Geweke’s Z statistics were more significant than 
1 % (Tables 2 and 3), indicating that convergence was 
achieved, and the inferences could then be made.

Comparison between informative and non-
informative prior distributions

The lower posterior coefficient of variation (CV) values 
of the genetic variance and individual narrow-sense 
heritability (Table 2) and genetic correlation (Table 3) 
were observed by considering the informative prior 
to the estimation process. Using this approach, the 
hyperparameters from the prior distributions were 
obtained by analyzing the previous year. Therefore, 
the length of the HPD interval is also shorter due to 
the higher precision provided by this informative prior 
(Tables 2 and 3). The same results were found by Silva 

et al. (2013) when considering univariate analyses in 
maize. However, the same was not observed in the 
genetic values. In most analyses, the CV of genetic value 
presented increased amplitude in the informative priors. 
Despite these amplitude values, considering a selection 
differential of 30 %, the agreement between the selected 
genotypes in both prior distributions is more than 50 % 
(Table 4).

Individual narrow-sense heritability of traits

Considering the results obtained by the informative 
prior distributions, the estimates of individual narrow-
sense heritability for GY, FLOR and PH were low to 
high, respectively, with 0.27 [0.25; 0.29], 0.47 [0.21; 
0.74] and 0.79 [0.77; 0.80] for the locality of Janaúba, 
0.21 [0.20; 0.23], 0.62 [0.60; 0.64] and 0.43 [0.40; 0.45] 
for the locality of Lambari and 0.14 [0.13; 0.15], 0.77 
[0.76; 0.79] and 0.58 [0.56; 0.60] for the locality of 
Leopoldina (Table 2). It is worth emphasizing that the 
low heritability values observed did not depend on the 
number of evaluated genotypes, since the Bayesian 
approach is recommended essentially for small sample 
sizes (Torres et al., 2018). In addition, GY is quantitative 
and highly affected by the environment (Rao et al., 2017; 
Li et al., 2018; Kumar et al., 2019; Zhang et al., 2020).

Studies using the Bayesian approach for estimating 
genetic parameters are rare in rice. Using multi-trait 
and multi-environment Bayesian analysis but with non-
informative prior distributions and only the one crop 
season, Silva Junior et al. (2022) found heritabilities of 
0.28 and 3.32e-6 for GY also in the localities of Lambari 
and Janaúba, respectively. As for FLOR, Silva Junior et 
al. (2022), in this same study, found heritabilities of 0.31 
and 0.27 in Lambari and Janaúba, respectively. Using 
rice genotypes in assays performed at the Dale Bumpers 
National Rice Research Center (DBNRRC), Sharma et 
al. (2021) found heritabilities of 0.60 and 0.93 for GY 
and PH, respectively. The heritabilities observed by 
Bhandari et al. (2019) in three managed environments 
in the Philippines ranged from 0.75 to 0.84, 0.54 to 
0.91, and 0.71 to 0.96 for the FLOR, GY, and PH traits, 
respectively.

We observed increased additive genetic variance 
and heritability in the use of informative prior on the 
results of the non-informative prior distribution for 
all traits, except for PH, in the locality of Lambari, 
and FLOR, in the locality of Janaúba (Table 2). Using 
informative prior distribution based on the data can be 
conducted on biased variance component estimates (over 
and underestimated) (Silva et al., 2013). Furthermore, 
the posterior mean of heritability can increase using an 
informative prior. However, the Bayesian approach is 
more often recommended using interval estimates, such 
as HPD intervals than point estimates. Among the 18 
rice genotypes evaluated, the GY trait in the Janaúba 
locality showed the highest additive genetic variance, 
while the lowest value was found for PH in the Lambari 

Table 1 – Deviance information criteria (DIC) for the full (considering 
G × E interaction) and null (not considering the interaction).

Prior distribution Crop season
DIC

Full model Null model

Non-informative

2010-2011 4257.48 4482.73
2011-2012 4770.29 4862.28
2012-2013 4790.47 4788.56
2013-2014 4553.67 4653.66
2014-2015 4610.33 4676.94

Informative

2010-2011 4257.48 4482.73
2011-2012 4953.24 4972.15
2012-2013 5126.80 5134.15
2013-2014 4668.30 4724.78
2014-2015 4720.88 4774.18

The smaller DIC is identified marked in bold.
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Table 2 – Mean, 95 % highest probability density interval (HPD) and coefficient of variation (CV) of the posterior densities of the genetic 
parameters for traits relative to 2014-2015, considering non-informative and informative prior distributions, the statistics of convergence and 
DIC (Deviance information criterion).

Trait Env. Prior Par. Mean CV (%) HPD HPD length Z-Geweke
p-value

GY

Janaúba

Non-
informative

su
2 73,490.27 215.93 [0.65, 360,190.57] 360,189.92 0.02

h2 0.05 173.92 [0.01, 0.25] 0.24 0.02
uϯ –157.90, 146.26 –4,289.26, 3,217.16 0.02, 0.73

Informative
su

2 344,808.35 4.04 [317,919.21, 372,412.33] 54,493.12 0.42
h2 0.27 3.25 [0.25, 0.29] 0.04 0.43
uϯ –633.45, 554.98 –1,558.94, 7,797.58 0.05, 0.97

Lambari

Non-
informative

su
2 35,268.97 254.67 [0.61, 177,287.83] 177,287.21 0.21

h2 0.03 211.09 [0.01, 0.14] 0.13 0.17
uϯ –84.49, 67.25 –4,798.25, 1,335.09 0.04, 0.70

Informative
su

2 252,771.77 4.06 [232,867.49, 272,951.33] 40,083.84 0.41
h2 0.21 3.52 [0.20, 0.23] 0.03 0.50
uϯ –672.79, 676.69 –531.31, 660.67 0.13, 0.99

Leopoldina

Non-
informative

su
2 17,281.16 253.05 [0.75, 82,190.60] 82,189.86 0.18

h2 0.01 218.95 [0.00, 0.07] 0.06 0.13
uϯ –13.13, 13.68 –16,649.59, 4632.50 0.05, 0.98

Informative
su

2 151,921.97 4.06 [140,198.12, 164347.37] 24,149.25 0.68
h2 0.14 3.84 [0.13, 0.15] 0.02 0.66
uϯ –247.54, 368.66 –744.00, 6,979.67 0.02, 1.00

FLOR

Janaúba

Non-
informative

su
2 25.36 66.46 [3.84, 56.74] 52.89 0.25

h2 0.47 29.61 [0.21, 0.74] 0.54 0.09
uϯ –4.50, 5.32 –1,364.57, 408.16 0.02, 0.92

Informative
su

2 18.89 4.04 [17.42, 20.40] 2.99 0.24
h2 0.47 2.48 [0.44, 0.49] 0.05 0.11
uϯ –4.53, 4.99 –13,476.08, 4,827.68 0.02, 0.85

Lambari

Non-
informative

su
2 13.43 74.10 [1.30, 31.83] 30.53 0.67

h2 0.33 41.81 [0.08, 0.59] 0.51 0.78
uϯ –2.69, 4.46 –7,116.56, 346.96 0.11, 0.90

Informative
su

2 35.20 4.04 [32.45, 38.01] 5.56 0.03
h2 0.62 1.77 [0.60, 0.64] 0.04 0.01
uϯ –4.26, 3.94 –4,207.17, 409.63 0.02, 0.82

Leopoldina

Non-
informative

su
2 63.88 58.72 [15.85, 133.92] 118.07 0.43

h2 0.69 15.49 [0.48, 0.89] 0.41 0.64
uϯ –8.58, 8.35 –453.60, 242.41 0.02, 0.95

Informative
su

2 73.38 4.03 [67.70, 79.28] 11.57 0.92
h2 0.77 1.06 [0.76, 0.79] 0.03 0.48
uϯ –9.46, 8.67 –98.02, 640.33 0.12, 1.00

PH

Janaúba

Non-
informative

su
2 3.79 80.67 [0.38, 9.33] 8.95 0.36

h2 0.19 54.91 [0.03, 0.39] 0.36 0.29
uϯ –1.32, 0.90 –3,587.57, 1,197.57 0.07, 0.97

Informative
su

2 37.07 7.24 [31.87, 42.38] 10.52 0.53
h2 0.79 0.95 [0.77, 0.80] 0.03 0.71
uϯ –4.10, 2.84 –1,774.26, 10,040.04 0.05, 0.96

Lambari

Non-
informative

su
2 19.58 65.94 [3.28, 43.58] 40.30 0.95

h2 0.52 26.40 [0.26, 0.79] 0.53 0.96
uϯ –4.44, 3.60 –1,125.65, 152.34 0.15, 1.00

Informative
su

2 18.29 6.64 [15.93, 20.68] 4.75 0.79
h2 0.43 2.58 [0.40, 0.45] 0.05 0.50
uϯ –3.66, 3.84 –160.88, 5,894.24 0.02, 0.91

Leopoldina

Non-
informative

su
2 17.01 66.49 [2.58, 38.05] 35.48 0.78

h2 0.49 28.65 [0.22, 0.76] 0.54 0.82
uϯ –5.74, 3.58 –422.70, 666.13 0.06, 0.95

Informative
su

2 52.72 4.04 [48.63, 56.96] 8.33 0.57
h2 0.58 1.88 [0.56, 0.60] 0.04 0.29
u –7.00, 3.42 –5,999.53, 2,215.48 0.13, 1.00

su
2 is the additive genetic variance, h2 is the individual narrow-sense heritability and u is the additive genetic value. ϯMinimum and maximum of the additive value and 

CV. Grain yield (GY), in kg ha–1; Flowering (FLOR) in days and Plant Height (PH), in cm.
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locality. We also observed the highest heritability 
value of 0.79 in the Janaúba locality for PH and the 
lowest heritability for GY, with a value of 0.14 in the 
Leopoldina locality.

The GY, FLOR and PH traits presented 
coefficients of variation (CVg) from 0.95 % to 2.58 %, 
3.25 % to 3.84 % and 1.06 % to 2.48 %, respectively, for 
informative prior distributions for each place studied. 
These can be considered adequate when compared 
to the method for the classification of coefficients of 

variation for rice cultivation, proposed by Costa et 
al. (2002), which determined that the coefficients of 
variation should be below 51.36 %, 7.62 %, and 17.27 
% for grain yield, flowering in days and plant height, 
respectively. The relative variation coefficients (CVg/
CVe) that are greater than the unit suggest that genetic 
variation is more influential than residual variation 
(Torres et al., 2018). This was observed in this study 
for FLOR, in Lambari and Leopoldina, and for PH, in 
Janaúba and Leopoldina.

Genetic correlation between environments

The genetic correlations between environments for all 
traits ranged from 0.14 to 0.47 for GY; 0.14 to 0.36 for 
FLOR; and 0.34 to 0.47 for PH, which indicates the 
existence of interaction between environments (Table 
5). The genetic correlations between environments were 
positive for all traits. Leopoldina was the environment 
that presented the highest correlation with other 
locations. Considering the genetic correlations below 
0.30 as low and above 0.60 as high, Oliveira et al. (2020) 
suggest the occurrence of high (0.14-0.22) and moderate 
(0.34-0.47) G × E, i.e., the performance of genotypes 
varied between environments.

The efficiency of indirect selection compared to 
direct selection is presented in Table 6. For all evaluated 
traits, direct selection proved to be more efficient. 
However, as expected, indirect selection was more 
efficient in more correlated environments where the 
heritability of the indirect selection environment was 
greater than in the direct selection environment, which 
varied according to the traits under study. For GY, the 
highest efficiency of indirect selection was observed in 

Table 3 – Mean, 95 % highest probability density interval (HPD) and coefficient of variation (CV) of the posterior densities of the genetic correlation 
(rg) for traits relative to 2014-2015, considering non-informative and informative prior distributions and the statistics of convergence.

Prior Environment Pair of traits Mean CV (%) HPD HPD length Z-Geweke p-value

Non-Informative

Janaúba
GY, FLOR –0.14 –366.96 [–0.96, 0.80] 1.77 0.58
GY, PH –0.04 –1068.84 [–0.85, 0.78] 1.63 0.50

FLOR, PH 0.10 424.58 [–0.69, 0.86] 1.56 0.24

Lambari
GY, FLOR –0.13 –416.44 [–0.95, 0.82] 1.76 0.28
GY, PH –0.10 –521.43 [–0.94, 0.80] 1.73 0.39

FLOR, PH 0.15 249.10 [–0.57, 0.84] 1.41 0.83

Leopoldina
GY, FLOR 0.06 1259.01 [–0.95, 0.98] 1.93 0.45
GY, PH 0.01 6134.78 [–0.89, 0.91] 1.79 0.69

FLOR, PH –0.43 –70.93 [–0.92, 0.17] 1.09 0.85

Informative

Janaúba
GY, FLOR –0.03 –110.32 [–0.08, 0.03] 0.11 0.17
GY, PH –0.50 –4.31 [–0.54, –0.46] 0.08 0.56

FLOR, PH 0.04 76.50 [–0.02, 0.09] 0.11 0.77

Lambari
GY, FLOR 0.11 25.79 [0.05, 0.16] 0.11 0.15
GY, PH 0.14 19.35 [0.09, 0.20] 0.11 0.28

FLOR, PH 0.03 91.47 [–0.02, 0.09] 0.11 0.23

Leopoldina
GY, FLOR 0.13 22.01 [0.07, 0.18] 0.11 0.87
GY, PH 0.15 18.17 [0.10, 0.21] 0.11 0.03

FLOR, PH 0.03 87.38 [–0.02, 0.09] 0.11 0.15
Grain yield (GY), in kg ha–1; Flowering (FLOR) in days and Plant Height (PH), in cm.

Table 4 – Agreement between genetic breeding values estimated 
via Bayesian approach with non-informative and informative prior 
distribution, considering each crop season, environment and trait.

Trait Crop season
Rank agreement (%)

Janaúba Lambari Leopoldina

GY

2010-2011 100.00 100.00 100.00
2011-2012 83.33 66.67 50.00
2012-2013 66.67 66.67 50.00
2013-2014 66.67 50.00 83.33
2014-2015 66.67 50.00 83.33

FLOR

2010-2011 100.00 100.00 100.00
2011-2012 66.67 100.00 83.33
2012-2013 66.67 83.33 66.67
2013-2014 100.00 83.33 100.00
2014-2015 83.33 83.33 100.00

PH

2010-2011 100.00 100.00 100.00
2011-2012 83.33 66.67 83.33
2012-2013 83.33 66.67 66.67
2013-2014 83.33 83.33 83.33
2014-2015 83.33 83.33 100.00

Grain yield (GY), in kg ha–1; Flowering (FLOR) in days and Plant Height (PH), 
in cm.
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direct selection in Leopoldina and indirect in Lambari 
(0.58). In contrast, for FLOR, the highest efficiency was 
observed in direct selection in Janaúba and indirect 
selection in Leopoldina (0.46). For PH, the highest 
efficiency was observed in direct selection in Lambari 
and indirect in Leopoldina (0.55).

The percentage of agreement considering 
a selection differential of 30 % was calculated to 
compare the ranking of genotypes between the three 
environments for each trait, as described above (Table 
5). For the GY trait, 83.33 %, 0.00 % and 16.67 % of 
coincidence between the environments were observed. 
For the FLOR trait, 83.33 %, 50 % and 66.67 % of 
coincidence between the environments were observed. 
For the PH trait, all coincidences observed were 
16.67 %. This result suggests that the PH and GY traits 
are more influenced by the environment than FLOR.

The difference between the genotype rankings in 
this study indicates that if breeders selected genotypes 
using only individual trial results, their selection would 
change between trials. In addition, there is still the 
possibility that high-yield genotypes are discarded and 
low-yield genotypes are chosen for other environments. 

This low correlation between the rankings for GY and 
PH also indicates that the rice genotypes carry many 
alleles that are differentially adapted to the evaluated 
environments, highlighting the importance of multi-
environmental trials for this data set to address and 
deal with the genotype by environment interaction.

Genetic correlation between the traits

We verified that the HPD lengths of genetic correlation, 
using the informative prior distribution, decreased 
over the years (Figures 1, 2 and 3). In addition, four 
pairs of traits and environment (GY × FLOR in the 
Lambari and Leopoldina locality and GY × PH) were 
not significant in the first years. With the accumulation 
of information over the years, these correlations were 
significant. In contrast, all the correlations obtained 
using the non-informative model were not significant.

The correlations obtained, using the informative 
model, for the GY and PH traits were significant for all 
locations. For the localities of Lambari and Leopoldina, 
the correlations were 0.14 [0.09, 0.20] and 0.15 [0.10, 
0.21], respectively, while for Janaúba, the correlation 
was –0.50 [–0.54, –0.46]. Similar results were 
observed by Lakshmi et al. (2014) and Oladosu et al. 
(2018) in their study on rice genotypes under tropical 
conditions, which found correlations of 0.18 and 
–0.34, respectively. This divergence can be explained 
by the effect of the environment on the expression of 
these traits, as observed in the results of Table 5. The 
estimated correlation values for GY and FLOR were 
0.11 [0.05, 0.16] for Lambari and 0.13 [0.07, 0.18] for 
Leopoldina, which corroborates the correlation of 0.11 
estimated by Lakshmi et al. (2014). 

The Bayesian estimation of parameters such as 
genetic correlation is advantageous compared to the 
classical estimation using the maximum likelihood 
method (Nustad et al., 2018). In classical statistics, 
confidence intervals are only possible through 
Bootstrap and delta method procedures (Manichaikul 
et al., 2006). These intervals generally have great 

Table 5 – Mean and 95 % highest probability density (HPD) interval of the genetic correlation (rg) between environment (upper diagonal), relative 
variation coefficient (diagonal) and agreement between genetic breeding values estimated for each pair of environments relative to 2014-2015 
(under diagonal).

Trait Environment
Correlation genetic

Janaúba Lambari Leopoldina

GY
Janaúba 0.61 [0.58; 0.63] 0.35 [0.30; 0.40] 0.14 [0.09; 0.20]
Lambari 83.33 0.52 [0.50; 0.54] 0.47 [0.43; 0.52]

Leopoldina 0.00 16.67 0.40 [0.39; 0.52]

FLOR
Janaúba 0.96 [0.92; 1.01] 0.14 [0.09; 0.20] 0.36 [0.31; 0.41]
Lambari 83.33 1.31 [1.26; 1.37] 0.22 [0.16; 0.27]

Leopoldina 50.00 66.67 1.90 [1.82; 1.98]

PH
Janaúba 1.96 [1.86; 2.04] 0.34 [0.29; 0.39] 0.43 [0.38; 0.47]
Lambari 16.67 0.87 [0.84; 0.91] 0.47 [0.43; 0.52]

Leopoldina 16.67 16.67 1.20 [1.15; 1.25]
Grain yield (GY), in kg ha–1; Flowering (FLOR) in days and Plant Height (PH), in cm.

Table 6 – The efficiency of indirect selection of the i-th trait in 
the j’-th environment (columns) relative to direct selection in the 
targeted j-th environment.

Trait Environment (j’)
Environment (j)

Janaúba Lambari Leopoldina

GY
Janaúba - 0.40 0.19
Lambari 0.31 - 0.58

Leopoldina 0.10 0.38 -

FLOR
Janaúba - 0.12 0.28
Lambari 0.16 - 0.20

Leopoldina 0.46 0.25 -

PH
Janaúba - 0.46 0.50
Lambari 0.25 - 0.40

Leopoldina 0.37 0.55 -
Grain yield (GY), in kg ha–1; Flowering (FLOR) in days and Plant Height (PH), 
in cm.
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Figure 1 – (A) Mean posterior (in bars) and highest posterior density (in arrows) of genetic correlation (GC) between GY and FLOR traits, (B) 
absolute value of coefficient of variation (CV) of genetic correlation (GY × FLOR), using the non-informative and informative prior distribution the 
five years. Grain yield (GY), in kg ha–1 and Flowering (FLOR) in days.

Figure 2 – (A) Mean posterior (in bars) and highest posterior density (in arrows) of genetic correlation (GC) between GY and PH traits, (B) absolute 
value of coefficient of variation (CV) of genetic correlation (GY × PH) using the non-informative and informative prior distribution over the five 
years. Grain yield (GY), in kg ha–1 and Plant Height (PH), in cm.
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Figure 3 – (A) Mean posterior (in bars) and highest posterior density (in arrows) of genetic correlation (GC) between FLOR and PH, (B) absolute 
value of coefficient of variation (CV) of genetic correlation (FLOR × PH) using the non-informative and informative prior distribution over the five 
years. Flowering (FLOR) in days and Plant Height (PH), in cm.

amplitudes (Beyene and Moineddin, 2005). The 
Bayesian approach makes it possible to estimate 
credibility intervals (in general, they are shorter than 
the confidence intervals). Thus, shorter intervals make 
it easier to detect correlations between traits and even 
between environments.

Conclusions

We demonstrated the feasibility of the proposed 
multi-trait multi-environment Bayesian model for 
plant breeding involving a low number of genotypes 
that are evaluated for multiple traits across a range of 
environments. In addition, we presented a knowledge-
updating mechanism for eliciting an informative prior 
distribution. More informative prior distributions make 
it possible to detect genetic correlations between traits. 
This was not feasible with the use of non-informative 
prior distributions.
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