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It is shown how the closure condition for the set of kinetic equations in Zubarev's Nonequilib-
rium Statistical Operator Method introduces a series of 
uxes of a reference set of densities.
These 
uxes are the average values, over a Gibbs-like nonequilibrium generalized grand-
canonical ensemble, of Hermitian operators for 
uxes de�ned at the microscopic-mechanical
level. The equations of evolution for these 
uxes (or equivalently for their conjugated La-
grange multipliers) are described.

I Introduction

Nowadays nonlinear physics is a frontier area of re-

serch [1], a situation Werner Heisenberg foresought

decades ago [2]. Nonlinearity in the equations of mo-

tion which govern the evolution of many-body dynam-

ical systems is well known to be the source of novel

and unexpected phenomena which characterize com-

plex behavior in physical systems [3]. This is mani-

fested in the relevant areas of deterministic chaos and

selforganization in dissipative systems far from equilib-

rium [3, 4]. Thermodynamics has a unique role in the

question of evolution and eventual selforganization in

open systems arbitrarily away from equilibrium. The

traditional thermodynamic approach (classical or On-

sagerian Thermodynamics) has limitations in dealing

with the nonlinear range of irreversible phenomena. To

arrive at a satisfactory characterization of nonequilib-

rium states an enlarged formulation of thermodynam-

ics, incorporating tools and concepts from nonlinear

dynamics and stochastic processes, is necessary, lead-

ing to what may be termed as thermodynamics of com-

plex systems [5]. Thermodynamics admits several lev-

els of description, as noticed by L. Tisza [6], and one

of them, namely, Statistical Thermodynamics is con-

sidered as being by itseft richer and the point of depar-

ture for a whole array of generalizations. This so-called

Gibbs-style Thermodynamics is, of course, based on

statistical-mechanical foundations, that is, on the mi-

croscopic substrate provided by the many-body dynam-

ics accompanied with theory of probability. This ther-

modynamics is in a rigorous process of development,

its forefront consisting in the so-called Informational

Statistical Thermodynamics (IST for short, sometimes

referred-to as Information-theoretic Thermodynamics),

seemingly initiated by Hobson [7] after the publication

of Jaynes' seminal papers on the foundation of statis-

tical mechanics on information theory [8] (see for ex-

ample [9, 10]). IST is presently based on a statistical

nonequilibrium ensemble formalism, or, more precisely,

a seemingly powerful, concise and elegant method, es-

tablished on sound basic principles, consisting in the

Nonequilibrium Statistical Operator method (NESOM

for short) [11-16]. NESOM may be considered as in-

cluded within the framework of Jaynes' Predictive Sta-

tistical Physics [17], which is based on an approach re-

lated to inference from incomplete information. Jaynes'

approach has its roots in information theory together

with a Bayesian point of view at the probabilistic level

[18], and therefore it is referred to as an informational-
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theoretic approach. Since the process of construction of

the nonequilibrium statistical distribution is based on

the principle of maximization of the so-called informa-

tional entropy [19, 20], we will refer to the method as

the MaxEnt-NESOM [11, 12, 13, 14, 15].

It is our purpose in this communication to describe

a particular nonequilibrium statistical ensemble formal-

ism, based on the MaxEnt-NESOM, namely, a gen-

eralized nonequilibrium grand-canonical ensemble. As

shown in next section it consists of the macroscopic de-

scription of the nonequilibrium many-body system in

terms of the two typical dynamical quantities, density

of particles and density of energy, but in nonequilibrium

conditions we need also to introduce the 
uxes to all

orders of these two densities. The Hermitian operators

corresponding to these 
uxes are characterized, and �-

nally we brie
y describe the use of this ensemble for the

construction of a nonclassical thermo-hydrodynamics.

II Nonequilibrium Grand-

Canonical Ensemble

The �rst, and fundamental, step in MaxEnt-NESOM

is the choice of the basic set of variables deemed ap-

propriate for the characterization of the macroscopic

state of the system. This involves a description in terms

of, say, the mechanical quantities
n
P̂j(r)

o
; j = 1; 2; :::,

with the upper circum
ex indicating Hermitian oper-

ators, and the dependence on the space coordinate r

indicates the local density of the corresponding dy-

namical quantity P̂j. The MaxEnt-NESOM nonequi-

librium statistical operator will be denoted by ��(t),

and Zubarev's approach is consistently used. The ther-

modynamics (macroscopic or mesoscopic) state is char-

acterized by a point in Gibbs { or thermodynamic state

{ space given, at time t, by the set of macrovariablesn
Qj(r; t)

o
; j = 1; 2; :::, which are the averages of the

P̂j(r), i.e., Qj(r; t) = Tr

(
P̂j(r) ��(t)

)
. The choice of

the basic variables is assisted by the fundamental Bo-

goliubov procedure of contraction of description based

on a hierarchy of relaxation times [21], and { to it re-

lated { the ideas put forward by, among others, Mori

[22], Zubarev [11], and Peletminskii [16], introducing

a separation of the total Hamiltonian into two parts,

namely,

Ĥ = Ĥo + Ĥ0 ; (1)

where Ĥo is the \relevant" (or secular) part composed

of the Hamiltonian for the free subsystems and a part of

the interactions, namely, those strong enough to have

associated relaxation processes with very short relax-

ation times (meaning those much smaller than the char-

acteristic time scale of the experiment (or resolution

time). The other term, Ĥ0, contains the interactions

related to long-time relaxation mechanisms. The sym-

metry characteristics of the strong interactions depend

on the problem under consideration: The required sym-

metry { to be called Zubarev-Peletminskii symmetry

condition { is that

1

i~

h
P̂j ; Ĥo

i
=
X
k

�
jk
P̂k ; (2)

where the left side is the commutator of P̂j and Ĥo, and

�jk are, in an appropriate quantum representation, real

numbers. It should be noticed that quantities P̂j can

be dependent on the space variable, i.e., when they are

densities and then quantities � can also be di�erential

operators.

Equation (2) provides a closure-like condition for

the choice of the set of variables. In reference [23] this

procedure is related to the question of the choice of the

basic variables in phenomenological irreversible ther-

modynamics. Practical use of the formalism usually

requires to introduce an appropriated truncation pro-

cedure (see second of references [23]) along the chain

that application of the method produces, or an asymp-

totic expansion yielding renormalized coe�cients. It

ought to be noticed that Eq.(2) also encompasses the

case of quantities P̂ such that they have associated null

coe�cients �; i.e., they are constants of motion under

the dynamics generated by Ĥo. Accordingly they are

acceptable basic variables, and Ĥo itself falls under this

condition, and should be always present in the basic set.

Assuming that the basic set
n
P̂j(r)

o
has been cho-

sen, the nonequilibrium statistical operator is built

in MaxEnt-NESOM, using the principle of maximiza-

tion of the statistical-informational entropy, with fading

memory and an ad hoc hypothesis which introduce from

the outset irreversible evolution from an initial condi-

tion of preparation of the system: for details see refer-

ences [12, 13, 15, 24]. Summarizing for later use, in the
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particular case of Zubarev's approach to the MaxEnt-

NESOM [11, 12] (by far the most concise and practical

one, and founded on sound physical basis) the nonequi-

librium statistical operator is given by

c

��(t) = exp

�
ln

�
� (t; 0)�

Z t

�1

dt0e� (t
0�t) d

dt0
ln

�
� (t0; t0 � t)

�
; (3)

where
�
� is an auxiliary operator (or coarse-grained part of ��(t)) { of large practical relevance in the theory { given

by the Gibbsian-like generalized nonequilibrium canonical distribution

�
� (t; 0) = exp

8<
:��(t) �

X
j

Z
d3rFj(r; t) P̂j(r)

9=
; ; (4a)

and
�
� (t0; t0 � t) = exp

�
�

1

i ~
(t0 � t) Ĥ

�
�
� (t0; 0) exp

�
1

i ~
(t0 � t) Ĥ

�
: (4b)

d

In Eq.(4), �(t) ensures the normalization of
�
�, and

the Fj(t) (as well as �) are the Lagrange multipliers

that MaxEnt introduces. In Eq.(3) � is a positive in-

�nitesimal that goes to zero after the calculation of the

averages is performed; this implies to introduce Bo-

goliubov's quasi-averages procedure [25], a symmetry-

breaking process, in this case corresponding to a break-

ing of the time-reversal symmetry in Liouville equation

[12, 13, 14, 24]. Space dependence has been explicitly

introduced, and in Eq.(3) it is clear the presence of

retro-e�ects but with fading memory, where quantities

P̂j are given in the time-dependent Heisenberg repre-

sentation. We recall that ��(t) does satisfy Liouville

equation, but the presence of the kernel expf� (t � t)g

leads in the calculation of averages and transport coef-

�cients to a time-smoothing procedure. Variables Fj(t)

are related to the macrovariables Qj through the rela-

tions

Qj(r; t) = Tr

(
P̂j(r) ��(t)

)
; (5)

with j = 1; 2; :::, and the method allows for the

construction of a quantum nonlinear, nonlocal local

in space, and memory dependent kinetic theory de-

scribing information on the dissipative evolution of

the macroscopic nonequilibrium state of the system

[11, 12, 13, 26].

Let us consider the construction of the MaxEnt-

NESOM nonlinear quantum kinetic theory. First, it

should be noticed that the equations of evolution for

the basic variables are given by

@

@t
Qj(r; t) = Tr

�
1

i~

h
P̂j(r); Ĥ

i
��(t)

�
; (6)

that is to say, they are the average over the nonequilib-

rium ensemble of the corresponding Heisenberg equa-

tion of motion for quantities P̂j(r). Equations (6), tak-

ing into account that j = 1; 2; :::, constitute, in gen-

eral, a coupled set of integro-di�erential equations of

formidable proportions. But it is possible to obtain an

alternative expression for the right hand side of Eq.(6)

easier to handle mathematically and allowing to obtain

a more clear physical picture of the dissipative processes

that develop in the media [12-14,26]. A price is paid,

consisting in the fact that we obtain an in�nite series

of collision operators associated to two, three, etc, col-

lisional processes, but at the same time permits evalu-

ation of the di�erent contributions and to introduce a

cut-o� in the series expansion. This, of course, amounts

to an approximation and therefore each particular case

requires an evaluation of its validity [27].
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We note that the equations of evolution for the

macrovariables which characterize the macroscopic

nonequilibrium state of the system, Eq.(6), can be

rewritten in the form

d

dt
Qj(t) = J

(0)
j (t) + J

(1)
j (t) + Jj(t) ; (7)

where

J
(0)
j (t) = Tr

�
1

i ~

h
P̂j ; Ho

i
�
� (t; 0)

i�
; (8a)

J
(1)
j (t) = Tr

�
1

i ~

h
P̂j ; H

0
i
�
� (t; 0)

i�
; (8b)

Jj(t) = Tr

�
1

i ~

h
P̂j ; H

0
i
�0�(t)

i�
; (8c)

after writing ��(t) =
�
� (t; 0) + �0�(t) and using Eqs.(1)

and (2) [11-16,26,28,29]. Equation (7) is a far-reaching

generalization of Mori's equations (see [13] and [28]).

The �rst two terms, J
(0)
j and J

(1)
j are, in Mori's ter-

minology, precession terms, and the collision operator

of Eq.(8c) is, di�erently to the original Mori's theory,

a highly nonlinear term in the basic variables; also it

is nonlocal in space (for simplicity we have omitted the

possible space dependence of quantities P̂j), and it con-

tains memory e�ects (of a fading character).

The collision operator of Eq.(8c) is extremely di�-

cult to handle in practical calculations. In reference [26]

we show that, using the properties de�ned by Eqs.(1)

and (2), the complicated collision operator of Eq.(8c)

can be rewritten in terms of an in�nite series of collision

integrals which are instantaneous in time (given as av-

erages over the auxiliary NESO of Eq.(4a) at the time

of measurement) and organized in increasing powers n

of the interaction strengths, namely,

d

dt
Qj(t) = J

(0)
j (t) + J

(1)
j (t) +

1X
n=2

J
(n)
j (t) ; (9)

with the construction of quantities J
(n)
j described in

reference [26].

The form of the collision operator given by Eq.(9)

permits to introduce approximations by means of a

truncation of the series of partial collision operators in

a given order of the interaction. The lowest order that

introduces relaxation e�ects is a truncation in second

order in the interaction strengths: it consists in retain-

ing only binary collisions in a Markovian (memoryless)

approximation [11, 16, 29].

Let us specialize the theory just described for the

construction of a generalized nonequilibrium grand-

canonical ensemble. For that purpose consider a sys-

tem of many-bosons or fermions, described in an indi-

vidual particle representation (the typical situation in

solid state matter), and let "
k�

be the corresponding

single-particle energies (k is the crystalline momentum

runing over the Brillouin zone and � is the spin index).

In equilibrium conditions the grand-canonical distribu-

tion depends on the energy and particle-number oper-

ators. In nonequilibrium conditions, analogously, we

begin introducing as �rst basic dynamical variables the

density of energy ĥ(r) and of the particle-number n̂(r).

However, for practical purposes it is more convenient

to work with their Fourier transforms of wavevector Q,

that is, to perform the calculations in reciprocal space.

Then we have that

n̂(Q) =
X
k

n̂
kQ

; (10)

ĥ(Q) =
X
k

E
kQ

n̂
kQ

; (11)

where

E
kQ

=
1

2

 
"
k+1

2
Q

+ "
k� 1

2
Q

!
; (12a)

and

n̂
kQ

= cy
k+ 1

2
Q

ck� 1
2
Q (12b)

is Wigner-Landau single-particle dynamical operator.

Moreover, for simplicity { but without losing generality

{ we have taken plane wave states, the volume of the

system is taken equal to 1, and we disregard the spin

index. As usual cy (c) are creation (annihilation) oper-

ators in states jk
�
, for either fermion or boson system.

We write for the system Hamiltonian, taken in the

form given by Eq.(1),

Ĥo =
X
k

"
k
cy
k
c
k

; (13)

Ĥ0 = Ĥ0
S + Ĥ0

B ; (14)

where Ĥ0
S and Ĥ0

B accounts for the interactions of the

single-particle with external sources and thermal baths
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respectively (details are not necessary for our purposes

here).

Next, we need to look for the veri�cation of the clo-

sure condition (Zubarev-Peletminskii symmetry condi-

tion) of Eq.(2): This introduces, as anticipated in the

Introduction, the 
uxes of all order of the two basic

densities in the picture. First we calculate

1

i~

h
n̂(Q) ; Ĥo

i
= i

X
k

�!
kQ

n̂
kQ

; (15a)

1

i~

h
ĥ(Q) ; Ĥo

i
= i

X
k

E
kQ

�!
kQ

n̂
kQ

; (15b)

where

�!
kQ

= !
k+ 1

2
Q

� !
k� 1

2
Q

; ~!
k
= "

k
: (16)

As shown elsewhere [30] (and the case which in-

cludes interparticle interaction is dealt with in [31]),

we can write

�!
kQ

= Q � u(kQ) ; (17)

where quantity u, with units of velocity, is given by

u(kQ) =
1X
l=0

1

(2l + 1)!

�
Q

2
� r

k

�2l

r
k
!
k

; (18)

which has a very peculiar form, namely, the �rst con-

tribution (l = 0) is the group velocity of the single-

particle in state jki, followed by the curvature of this

k-dependent group velocity, etc. Hence, Eqs.(15) take

the form

1

i~
[n̂(Q) ; Ho] = iQ � În(Q) ; (19a)

1

i~

h
ĥ(Q) ; Ho

i
= iQ � Îh(Q) ; (19b)

where

În(Q) =
X
k

u(kQ) n̂
kQ

; (20a)

Îh(Q) =
X
k

E
kQ

u(kQ) n̂
kQ

: (20b)

According to the closure condition both are incorpo-

rated as basic variables. Next, the rule of Eq.(2) is

applied to them, to obtain

1

i~

h
În(Q) ; Ho

i
= iQ � Î [2]n (Q) ; (21a)

1

i~

h
Îh(Q) ; Ho

i
= iQ � Î [2]h (Q) ; (21b)

where

Î [2]n (Q) =
X
k

[u(kQ)u(kQ)] n̂
kQ

; (22a)

Î
[2]
h (Q) =

X
k

E
kQ

[u(kQ)u(kQ)] n̂
kQ

; (22b)

are second rank tensors (the term [uu] between square

brackets stands for tensorial product of vectors) which

constitute the second order 
uxes (or 
ux of the 
ux)

of density and energy density operators, respectively.

Therefore, they are to be included in the basic set, and

so on, that is, the closure condition commands that the


uxes of all order of the two basic densities must be

considered as basic dynamical variables. The basic set

is then composed by

(
ĥ(Q); n̂(Q); Îh(Q); În(Q); Î [r]h (Q); Î [r]n (Q)

)
; (23)

where r � 2 indicates the order (and also tensorial rank,

with r = 1 being the vectorial ones) of the 
uxes, given

by

Î [r]n (Q) =
X
k

u[r](kQ) n̂
kQ

; (24a)

Î
[r]
h (Q) =

X
k

E
kQ

u[r](kQ) n̂
kQ

; (24b)

where

u[r](kQ) = [u(kQ) ::: (r times) :::u(kQ)] ; (25)

indicating tensorial product of r vectors u, producing

a tensor of rank r [30].

Therefore, in terms of the basic set of dynami-

cal variables of Eq.(23), the auxiliary (coarse-grained

or \frozen" quasi-equilibrium) statistical operator of

Eq.(4a) is in this case given by
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�
� (t; 0) = exp

(
� �(t)�

X
Q

h
Fh(Q; t)ĥ(Q) + Fn(Q; t)n̂(Q)

i

�
X
Q

h
�h(Q; t) � Îh(Q) + �n(Q; t) � În(Q)

i

�
X
Q

X
r�2

h
�
[r]
h (Q; t)� Î

[ r]
h (Q) + �[r]

n (Q; t)� Î [ r]n (Q)
i)

; (26)

where � stands for fully contracted product of tensors, and we have introduced the corresponding set of associated

Lagrange multipliers indicated by(
Fh(Q; t); Fn(Q; t);�h(Q; t);�n(Q; t); �

[r]
h (Q; t); �[r]

n (Q; t)

)
: (27)

First, as already noticed, these Lagrange multipliers constitute a set of intensive variables, that, alternatively,

completely describe the nonequilibrium thermodynamic state of the system. They are related to the basic set

of macrovariables by the relations (which are the equivalent of equations of state in arbitrary nonequilibrium

conditions)

n(Q; t) = Tr

�
n̂(Q)

�
� (t; 0)

�
= �

��(t)

�Fn(Q; t)
; (28a)

h(Q; t) = Tr

�
ĥ(Q)

�
� (t; 0)

�
= �

��(t)

�Fh(Q; t)
; (28b)

etc., where we have used that �� and
�
�, at each time t, de�ne the same average values [11-15] and � stands for

functional di�erential [33]. As already noticed, the basic set of macrovariables which de�ne the nonequilibrium

thermodynamic space of states in IST (in this case we can refer to it as the Gibbs' grand-canonical space of

macrostates) is given by the average values over the nonequilibrium ensemble of the microdynamical variables of

Eq.(23), i.e.,

h(Q; t) = Tr
n
ĥ(Q) ��(t)

o
;

n(Q; t) = Tr fn̂(Q) ��(t)g ;

I
[r]
h(n)(Q; t) = Tr

n
Î
[r]
h(n)(Q) ��(t)

o
;

that is, they compose the set(
h(Q; t); n(Q; t); Ih(Q; t); In(Q; t); I [r]h (Q; t); I [r]n (Q; t)

)
; (29)

d

Hence, we have constructed a nonequilibrium grand-

canonical nonequilibrium statistical operator, which, we

stress is the ��(t) of Eq.(3) built using the auxiliary op-

erator of Eq.(26). In Ref. [30] it is shown that this

statistical operator goes over the well known grand-

canonical distribution in the limit when equilibrium is

achieved.



128 Brazilian Journal of Physics, vol. 28, no. 2, June, 1998

III Nonclassical Hydrodynam-

ics

This nonequilibrium grand-canonical operator de-

scribes a 
uid of particles and provides foundation for

a nonclassical hydrodynamics. In fact, the equations

of evolution, Eqs.(9), for the basic variables of Eq.(29),

when we transform back to the direct space, are given

@

@t
h(r; t) +r � Ih(r; t) = Jh(r; t) ; (30a)

@

@t
n(r; t) +r � In(r; t) = Jn(r; t) ; (30b)

@

@t
Ih(r; t) +r � I

[2]
h (r; t) = J h(r; t) ; (30c)

@

@t
In(r; t) +r � I [2]n (r; t) = J n(r; t) ; (30d)

@

@t
I
[r]
h (r; t) +r � I [r+1]

h (r; t) = J [r]
h (r; t) ; (30e)

@

@t
I [r]n (r; t) +r � I [r+1]

n (r; t) = J [r]
n (r; t) ; (30f)

with r � 2, and, clearly, if the collision operators

Jh(r; t) = Tr

(
1

i~

h
ĥ(r) ; H0

i
�0�(t)

)
; (31)

etc., are neglected we obtain the conservation equation

for each quantity, namely for the densities and their


uxes of all order.

Equations (30) provide the thermo-hydrodynamics

of the nonequilibrium many-body system, which,

clearly, constitute an in�nite set of coupled equations.

Evidently, a practical use requires to introduce a trun-

cation procedure, meaning the analog of the one in

the Hilbert-Chapmann-Enskog approach to Boltzmann

equation. This is discussed in a forthcoming article

[27], and a particular case { a photoinjected plasma in

semiconductors { is considered in [34].

Moreover, as a general rule the extremely compli-

cated collision operator J in Eqs.(30), can be calcu-

lated in the Markovian approximation to the MaxEnt-

NESOM kinetic theory, consisting in that in Eq.(9) one

retains only the �rst contribution J (2), which accounts

for instantaneous two-particle collision-like processes,

ignoring the in
uence of the past irreversible evolu-

tion of the macrostate of the system. Without going

into further details, we noticed that in the above said

Markovian approximation and in the limit of very weak


uxes and densities varying smoothly in space and time

(examples related to the photoinjected plasma in semi-

conductors are given in [35, 36, 37]), a truncation proce-

dure in which we retain only the densities of energy and

of particles and their �rst (vectorial)
uxes, their equa-

tions of evolution are to a good approximation given

by

@

@t
h(r; t) +r � I

h
(r; t) = ���1

h
h(r; t) ; (32a)

@

@t
I
h
(r; t) + L

h
rh(r; t) = ���1

hI
I
h
(r; t) ; (32b)

where the coe�cients �
h
and �

hI
play the role of relax-

ation times and L
h
is a kinetic coe�cient, and similar-

ily we obtain the evolution for the density of particles,

changing h by n in Eqs.(32a) and (32b). We have ne-

glected cross-kinetic terms coupling the motion of mass

and of energy, meaning that thermo-striction e�ects are

disregarded.

Di�erentiating in time Eq.(32a), and using

Eqs.(32b), we �nd an equation of evolution for the den-

sity of energy in the form�
1

c2h

@2

@t2
+

1

Dh

@

@t
�r2

�
h(r; t) = �

h(r; t)

�2
; (33)

which is of the type of the hyperbolic-type telegraphist

equation of classical electrodynamics, but with an ad-

ditional term on the right. In this Eq.(33), ch = L
1=2
h

is the velocity of propagation in the motion of en-

ergy, �2 = c2h �h �hI (with dimensions of cm2), and

Dh = c2h ��, with ��1
� = ��1

h + ��1

hI
, is a di�usion co-

e�cient. This equations, once we disregard the right

hand side, is also of the form of the one that is derived

within the framework of phenomenological Extended

Irreversible Thermodynamics [38].

Equation (33) implies in second sound propagation

in the carrier system. As known [39], such motion is

composed of a superposition of di�usive motion (in-

volving the long wavelengths) and damped undulated

motion (at intermediate to short wavelengths); these

characteristics are, for example, evidenced in experi-

ments related to the techno-industrial process of ther-

mal stereolithography [40].

A MaxEnt-NESOM nonclassical hydrodynamics

and a generalized nonclassical Navier-Stokes equation,
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for 
uids described at the classical level of mechanics,

are presented in [41] and [42] respectively.

IV Concluding Remarks

We have described how the nonequilibrium ensemble

formalismMaxEnt-NESOM { which can be placed un-

der the umbrella of Jaynes's Preditive Statistical Me-

chanics { provides a quite convenient framework for

dealing with the Statistical Thermodynamics of many-

body systems away from equilibrium. In this com-

munication we have paid particular attention to the

construction of a generalized nonequilibrium grand-

canonical statistical operator. As shown according to

the tenets of the formalism once the local density of

particle and of energy are introduced, the closure con-

dition requires the introduction of their 
uxes to all

orders. These 
uxes are given at the mechanical level

in terms of the single-particle dynamical operator (its

average over the statistical ensemble provides nonequi-

libriumWigner-Landau single-particle matrices), which

are built in terms of a generating vector [cf. Eq.(18)],

with dimensions of velocity, and completely determined

by the quantum-mechanical energy dispersion relation

of the single-particles. It involves a series expansion in

terms of increasing powers in the reciprocal of the wave-

length, the �rst contribution being the single-particle

wave-packet group velocity (for a simply quadratic dis-

persion relation is ~k=m, where ~k is the eigenvalue of

the single-particle linear momentum and m the mass).

The average over the nonequilibrium ensemble of these

mechanical 
uxes are the macroscopic 
uxes of the

NESOM-based thermo-hydrodynamics [cf. Eq.(29)].

The variational method that { similarly to the case

in equilibrium { provides the nonequilibrium statistical

operator, introduces the corresponding Lagrange mul-

tipliers associated to these 
uxes [cf. Eq.(27)]. We

have already stressed that these Lagrange multipliers

de�ne a set of intensive nonequilibrium thermodynamic

variables which provide a complete description of the

nonequilibrium thermodynamic state of the system, as

do the complete set of speci�c basic variables of Eq.(29).

They are completely de�ned in terms of the speci�c ba-

sic variables, and, since the latter have associated a ki-

netic theory of large scope, we can obtain a complete

set of equations of evolution for the Lagrange multi-

pliers. As a matter of fact, this is usually the most

convenient approach, because these Lagrange multipli-

ers can be accessible to measurement in experiments

(see for example [43] and [44]). A partial physical

interpretation of these Lagrange multipliers is possi-

ble: First, by close analogy with equilibrium and lo-

cal equilibrium thermodynamics, the Lagrange multi-

pliers associated to the density of energy and density

of particles, are, respectively, considered as a recipro-

cal of a nonequilibrium temperature-like �eld dubbed

a quasi-temperature [43], and a nonequilibrium chemi-

cal potential-like variable, dubbed a quasi-chemical po-

tential, divided by the quasi-temperature [44]. Those

Lagrange multipliers associated to the 
uxes, can be

interpreted as a drift velocity �elds divided by the qua-

sitemperature, with the one associated to the �rst 
ux

of particles (proportional to the linear momentum�eld)

being the usual kinetic drift velocity �eld [28, 30]. We

recall that in Ref. [30] we have shown how the nonequi-

librium statistical operator becomes the usual Gibbs'

grand-partition distribution once the system attains �-

nal full equilibrium.

As noticed, this nonequilibrium grand-canonical

statistical operator provides a quite convenient foun-

dation for the construction of a nonclassical thermo-

hydrodynamics of large scope. A short illustration

has been provided however in strongly simpli�ed con-

ditions.

A brief report of these results was orally presented

as a communication in the V Latin AmericanWorkshop

on Nonlinear Phenomena (Canela, RS, Brazil, October

1997) [45].
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