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Fractals and the Distribution of Galaxies
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This paper presents a review of the fractal approach for describing the large scale distribu-
tion of galaxies. We start by presenting a brief, but general, introduction to fractals, which
emphasizes their empirical side and applications rather than their mathematical side. Then
we discuss the standard correlation function analysis of galaxy catalogues and many obser-
vational facts that brought increasing doubts about the reliability of this method, paying
special attention to the standard implicit assumption of an eventual homogeneity of the
distribution of galaxies. Some new statistical concepts for analysing this distribution are
presented. Without the implicit assumption of homogeneity they bring support to the hy-
pothesis that the distribution of galaxies does form a fractal system. The Pietronero-Wertz's
single fractal (hierarchical) model is presented and discussed, together with the implications
of this new approach for understanding galaxy clustering.

I. Introduction

The goal of modern cosmology is to �nd the large

scale matter distribution and spacetime structure of the

Universe from astronomical observations. It dates back

from the early days of observational cosmology the re-

alization that to achieve this aim it is essential that

an accurate empirical description of galaxy clustering

be derived from the systematic observations of distant

galaxies. As time has passed, this realization has be-

come a program, which in the last decade or so took

a great impulse forward due to improvements in as-

tronomical data acquisition techniques and data ana-

lysis. As a result an enormous amount of data about

the observable universe was accumulated in the form of

the now well-known redshift surveys. Some widely ac-

cepted conclusions drawn from these data created a cer-

tain con�dence in many researchers that such an accu-

rate description of the distribution of galaxies was just

about to be achieved. However, those conclusions are

mainly based on a standard statistical analysis derived

from a scenario provided by the standard Friedman-

nian cosmological models, which assume homogeneity

and isotropy of the matter distribution. This scenario is

still thought by many to be the best theoretical frame-

work capable of explaining the large scale matter dis-

tribution and spacetime structure of the Universe.

The view outlined above, which has become the or-

thodox homogeneous universe view, has, never been

able to fully overcome some of its objections. In partic-

ular, many researchers felt in the past, and others still

feel today, that the relativistic derived idea of an even-

tual homogenization of the observedmatter distribution

of the Universe is 
awed, since, in their view, the empir-

ical evidence collected from the systematic observation

of distant cosmological sources also supports the claim

that the universal distribution of matter will not even-

tually homogenize. Therefore, the critical voice claims

that the large-scale distribution of matter in the Uni-

verse is intrinsically inhomogeneously distributed, from

the smallest to the largest observed scales and, perhaps,

inde�nitely.

Despite this, it is a historical fact that the inho-

mogeneous view has never been as developed as the

orthodox view, and perhaps the major cause for this

situation was the lack of workable models supporting
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this inhomogeneous claim. There has been, however,

one major exception, in the form of a hierarchical cos-

mological model advanced by Wertz (1970, 1971), al-

though, for reasons that will be explained below, it has

unfortunately remained largely ignored so far.

Nevertheless, by the mid 1980's those objections

took a new vigour with the arrival of a new method for

describing galaxy clustering based on ideas of a radi-

cally new geometrical perspective for the description of

irregular patterns in nature: the fractal geometry.

In this review we intend to show the basic ideas be-

hind this new approach for the galaxy clustering prob-

lem. We will not present the orthodox traditional view

since it can be easily found, for instance, in Peebles

(1980, 1993) and Davis (1997). Therefore, we shall con-

centrate in the challenging voice based on a new view-

point about the statistical characterization of galaxy

clustering, whose results go against many traditional

expectations, and which keep open the possibility that

the universe never becomes observationally homoge-

neous. The basic papers where this fractal view for

the distribution of galaxies can be found are relatively

recent. Most of what will be presented here is based

on Pietronero (1987), Pietronero, Montuori and Sy-

los Labini (1997), and on the comprehensive reviews

by Coleman and Pietronero (1992), and Sylos Labini,

Montuori and Pietronero (1998).

The plan of the paper is as follows. In section 2 we

present a brief, but general, introduction to fractals,

which emphasizes their empirical side and applications,

but without neglecting their basic mathematical con-

cepts. Section 3 brie
y presents the basic current ana-

lysis of the large scale distribution of galaxies, its dif-

�culties and, �nally, Pietronero-Wertz's single fractal

(hierarchical) model that proposes an alternative point

of view for describing and analysing this distribution, as

well as some of the consequences of such an approach.

The paper �nishes with a discussion on some aspects of

the current controversy about the fractal approach for

describing the distribution of galaxies.

II. Fractals

This section introduces a minimumbackground ma-

terial on fractals necessary in this paper and which

may be useful for readers not familiar with their ba-

sic ideas and methods. Therefore, we shall not present

an extensive, let alone comprehensive, discussion of the

subject, which can be found in Mandelbrot (1983),

Feder (1988), Takayasu (1990) and Peitgen, J�urgens

and Saupe (1992), if the reader is more interested in

the intuitive notions associated with fractals and their

applications, or in Barnsley (1988) and Falconer (1990)

if the interest is more mathematical. The literature on

this subject is currently growing at a bewildering pace

and those books represent just a small selection that

can be used for di�erent purposes when dealing with

fractals. This section consists mainly of a summary

of a background material basically selected from these

sources. The discussion starts on the mathematical as-

pects associated with fractals, but gradually there is a

growing emphasis on applications.

II.1 On the \De�nition" of Fractals

The name fractal was introduced by Benoit B. Man-

delbrot to characterize geometrical �gures which are

not smooth or regular. By adopting the saying in Latin

that nomen est numen, 1 he decided to \exert the right

of naming newly opened or newly settled territory land-

marks." Thus, he \coined fractal from the Latin ad-

jective fractus. The corresponding Latin verb frangere

means `to break:' to create irregular fragments. It is

therefore sensible (...) that, in addition to `fragmented'

(as in fraction or refraction), fractus should also mean

`irregular', both meanings being preserved in fragment

" (Mandelbrot 1983, p. 4).

In attempting to de�ne fractals mathematically,

Mandelbrot (1983) o�ered the following: \A fractal is

by de�nition a set for which the Hausdor�-Besicovitch

dimension strictly exceeds the topological dimension".

We shall discuss later the Hausdor� dimension, but the

important point here is that Mandelbrot himself has

since retreated from this original tentative de�nition

as it proved to be unsatisfactory, in the sense that it

excluded some sets which ought to be regarded as frac-

tals. In a private communication to J. Feder, Man-

delbrot proposed instead the following loose tentative

de�nition: \a fractal is a shape made of parts similar to

the whole in some way" (Feder 1988, p. 11). Even so,

1 To name is to know.
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in the school on \Fractal Geometry and Analysis" that

took place in Montreal in 1989, and was attended by

one of us (MBR) 2, Mandelbrot declined to discuss the

problem of de�nition by arguing that any one would

be restrictive and, perhaps, it would be best to con-

sider fractals as a collection of techniques and methods

applicable in the study of these irregular, broken and

self-similar geometrical patterns.

Falconer (1990) o�ers the following point of view on

this matter.

\The de�nition of a `fractal' should be re-
garded in the same way as the biologist regards
the de�nition of `life'. There is no hard and fast
de�nition, but just a list of properties charac-
teristic of a living thing, such as the ability to
reproduce or to move or to exist to some extent
independently of the environment. Most living
things have most of the characteristics on the
list, though there are living objects that are
exceptions to each of them. In the same way,
it seems best to regard a fractal as a set that
has properties such as those listed below, rather
than to look for a precise de�nition which will
almost certainly exclude some interesting cases.
(...) When we refer to a set F as a fractal,
therefore, we will typically have the following
in mind.

1. F has a �ne structure, i.e., detail on arbi-
trarily small scales.

2. F is too irregular to be described in tradi-
tional geometrical language, both locally
and globally.

3. Often F has some form of self-similarity,
perhaps approximate or statistical.

4. Usually, the `fractal dimension' of F (de-
�ned in some way) is greater than its
topological dimension.

5. In most cases of interest F is de�ned in a
very simple way, perhaps recursively."

It is clear that Falconer's \de�nition" of fractals in-

cludes Mandelbrot's loose tentative one quoted above.

Moreover, Falconer keeps open the possibility that a

given fractal shape can be characterized by more than

one de�nition of fractal dimension, and they do not

necessarily need to coincide with each other, although

they have in common the property of being able to take

fractional values. Therefore, an important aspect of

studying a fractal structure (once it is characterized as

such by, say, at least being recognized as self-similar in

some way) is the choice of a de�nition for fractal dimen-

sion that best applies to, or is derived from, the case

in study. As the current trend appears to indicate that

this absence of a strict de�nition for fractals will pre-

vail, the word fractal can be, and in fact is, even among

specialists, used as a generic noun, and sometimes as an

adjective.

Fractal geometry has been considered a revolution

in the way we are able to mathematically represent and

study �gures, sets and functions. In the past sets or

functions that are not su�ciently smooth or regular

tended to be ignored as \pathological" or considered as

mathematical \monsters", and not worthy of study, be-

ing regarded only as individual curiosities. Nowadays,

there is a realization that a lot can and is worth being

said about non-smooth sets. Besides, irregular and bro-

ken sets provide a much better representation of many

phenomena than do the �gures of classical geometry.

II.2 The Hausdor� Dimension

An important step in the understanding of fractal

dimensions is for one to be introduced to the Hausdor�-

Besicovitch dimension (often known simply as Haus-

dor� dimension). It was �rst introduced by F. Haus-

dor� in 1919 and developed later in the 1930's by A. S.

Besicovitch and his students. It can take non-integer

values and was found to coincide with many other def-

initions.

In obtaining the dimension that bears his name,

Hausdor� used the idea of de�ning measures using cov-

ers of sets �rst proposed by C. Carath�eodory in 1914.

Here in this article, however, we shall avoid a formal

mathematical demonstration of the Hausdor� measure,

and keep the discussion in intuitive terms. We shall

therefore o�er an illustration of the Hausdor� measure

whose �nal result is the same as achieved by the formal

proof found, for instance, in Falconer (1990).

The basic question to answer is: how do we mea-

sure the \size" of a set F of points in space? A simple

manner of measuring the length of curves, the area of

surfaces or the volume of objects is to divide the space

into small cubes of diameter � as shown in Figure 1.

2 See B�elair and Dubuc (1991).
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Figure 1. Measuring the \size" of curves (Feder 1988).

Small spheres of diameter � could have been used

instead. Then the curve can be measured by �nding

the number N (�) of line segments of length � needed

to cover the line. Obviously for an ordinary curve we

have N (�) = L�=�. The length of the curve is given by

L = N (�)� !
�!0

L��
0:

In the limit � ! 0, the measure L becomes asymptoti-

cally equal to the length of the curve and is independent

of �.

In a similar way we can associate an area with the

set of points de�ning a curve by obtaining the number

of disks or squares needed to cover the curve. In the

case of squares where each one has an area of �2, the

number of squares N (�) gives an associated area

A = N (�)�2 !
�!0

L��
1:

In a similar fashion the volume V associated with the

line is given by

V = N (�)�3 !
�!0

L��
2:

Now, for ordinary curves both A and V tend to zero

as � vanishes, and the only interesting measure is the

length of the curve.

Let us consider now a set of points that de�ne a

surface as illustrated in Figure 2. The normal measure

is the area A, and so we have

A = N (�)�2 !
�!0

A��
0:

Here we �nd that for an ordinary surface the number

of squares needed to cover it is N (�) = A�=�
2 in limit

of vanishing �, where A� is the area of the surface. We

may associate a volume with the surface by forming

the sum of the volumes of the cubes needed to cover

the surface:

V = N (�)�3 !
�!0

A��
1:

This volume vanishes as � ! 0, as expected. Now, can

we associate a length with a surface? Formally we can

simply take the measure

L = N (�)� ! A��
�1;

which diverges for � ! 0. This is a reasonable result

since it is impossible to cover a surface with a �nite

number of line segments. We conclude that the only

useful measure of a set of points de�ned by a surface in

three-dimensional space is the area.

Figure 2. Measuring the \size" of a surface (Feder 1988).

There are curves, however, that twist so badly that

their length is in�nite, but they are such that they

�ll the plane (they have the generic name of Peano

curves 3). Also there are surfaces that fold so wildly

that they �ll the space. We can discuss such strange

sets of points if we generalize the measure of size just

discussed.

So far, in order to give a measure of the size of a

set F of points, in space we have taken a test function

h(�) = 
(d)�d { a line, a square, a disk, a ball or a

cube { and have covered the set to form the measure

Hd(F ) =
P

h(�). For lines, squares and cubes we have

the geometrical factor 
(d) = 1. In general we �nd

that, as � ! 0, the measure Hd(F ) is either in�nite

or zero depending on the choice of d, the dimension of

the measure. The Hausdor� dimension D of the set F

is the critical dimension for which the measure Hd(F )

jumps from in�nity to zero (see Figure 3):

3 See x2.3.1
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c

Hd(F ) =
X


(d)�d = 
(d)N (�)�d !
�!0

�
0; d > D;
1; d < D:

(1)

d

The quantity Hd(F ) is called the d-measure of the

set and its value for d = D is often �nite, but may

be zero or in�nity. It is the position of the jump in

Hd as function of d that is important. Note that this

de�nition means the Hausdor� dimension D is a local

property in the sense that it measures properties of sets

of points in the limit of a vanishing diameter of size �

of the test function used to cover the set. It also follows

that the D may depend on position. There are several

points and details to be considered, but they are not

important for us here (see Falconer 1990).

The familiar cases are D = 1 for lines, D = 2 for

planes and surfaces and D = 3 for spheres and other �-

nite volumes. There are innumerable sets, however, for

which the Hausdor� dimension is noninteger and is said

to be fractal. In other words, because the jump of the

measure Hd(F ) can happen at noninteger values of d,

when Hd(F ) is calculated for irregular and broken sets

the value D where the jump actually occurs is usually

noninteger.

Figure 3. Graph of Hd(F ) against d for a set F . The Haus-
dor� dimension is the critical value of d at which the jump
from 1 to 0 occurs (Falconer 1990).

II.3 Other Fractal Dimensions and Some Ex-

amples of Fractals

The illustration of the Hausdor� dimension shown

previously may be very well from a mathematical point

of view, but it is hard to get an intuition about the

fractal dimension from it. Moreover, we do not have a

clear picture of what this fractional value of dimension

means. In order to try to answer these questions let us

see di�erent de�nitions of fractal dimension and some

examples.

II.3.1 Similarity Dimension and Peano Curves

The fractals we discuss may be considered to be sets

of points embedded in space. This space has the usual

topological dimension which we are used to, and from

a physicist's point of view it coincides with degrees of

freedom de�ned by the number of independent vari-

ables. So the location of a point on a line is determined

by one real number and a set of two independent real

numbers is needed to de�ne a plane. If we de�ne dimen-

sion by degrees of freedom in this way, we can consider

a d-dimensional space for any non-negative integer d.

In fact, in mechanics it is conventional to consider the

motion of m particles in 3 dimensions as being the mo-

tion of one particle in a 6m-dimensional space if we take

each particle's location and momentumas independent.

The dimension de�ned by degrees of freedom seems

very natural, but more than 100 years ago it was found

to contain a serious 
aw. In 1890 Giuseppe Peano de-

scribed a curve that folds so wildly that it \�lls" the

plane. We shall describe below what we mean by plane-

�lling curves and how we can generate them, but let us

keep this meaning in a qualitative and intuitive form

for the moment. The important point is that those
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Peano curves can be drawn with a single stroke and

they tend to cover the plane uniformly, being able not

only to avoid self-intersection but also self-contact in

some cases. Since the location of a point on the Peano

curve, like a point in any curve, can be characterized

with one real number, we become able to describe the

position of any point on a plane with only one real num-

ber. Hence the degree of freedom, or the dimension, of

this plane becomes 1, which contradicts the empirical

value 2. This process of natural parameterization pro-

duced by the Peano \curves" was called Peano motions

or plane-�lling motions by Mandelbrot (1983, p. 58).

In order to see how Peano curves �ll the plane, let

us introduce �rst a new de�nition of dimension based

on similarity. If we divide an unit line segment into N

parts (see Figure 4) we get at the end of the process each

part of the segment scaled by a factor � = 1=N , which

means N�1 = 1. If we divide an unit square into N

similar parts, each one is scaled by a factor � = 1=N1=2

(if N = 4 the square is scaled by half the side length);

so N�2 = 1. Now if an unit cube is divided in N parts,

each scaled by � = 1=N1=3 (again if N = 8 the cube

is scaled by half the side length), we have N�3 = 1.

Note that the exponents of � correspond to the space

dimensions in each case. Generalising this discussion

we may say that for an object of N parts, each scaled

down from the whole by a ratio �, the relation N�D = 1

de�nes the similarity dimension D of the set as

D =
logN

log 1=�
: (2)

The Hausdor� dimension described previously can be

seen as a generalization of this similarity dimension.

Unfortunately, similarity dimension is only meaningful

for a small class of strictly self-similar sets.

Figure 4. Dividing a segment, a square and a cube

(Takayasu 1990).

Figure 5. Construction of the von Koch curve F . At each
stage, the middle third of each interval is replaced by the
other two sides of an equilateral triangle (Falconer 1990).

Let us see some examples of calculations of the

similarity dimension of sets. Figure 5 shows the con-

struction of the von Koch curve, and any of its seg-

ments of unit length is composed of 4 sub-segments

each of which is scaled down by a factor 1/3 from

its parent. Therefore, its similarity dimension is

D = log 4 = log 3 �= 1:26. This non-integer dimension,

greater than one but less than two, re
ects the prop-

erties of the curve. It somehow �lls more space than a

simple line (D = 1), but less than a Euclidean area of

the plane (D = 2). The Figure 5 also shows that the

von Koch curve has a �nite structure which is re
ected

in irregularities at all scales; nonetheless, this intricate

structure stems from a basically simple construction.

Whilst it is reasonable to call it a curve, it is too irreg-

ular to have tangents in the classical sense. A simple

calculation on the von Koch curve shows that Ek is of

length
�
4
3

�k
; letting k tend to in�nity implies that F

has in�nite length. On the other hand, F occupies zero

area in the plane, so neither length nor area provides a

very useful description of the size of F .

After this discussion we start to have a better idea

of what those fractal dimensions mean. Roughly, a di-

mension provides a description of how much space a set

�lls. It is a measure of the prominence of the irregu-

larities of a set when viewed at very small scales. We
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may regard the dimension as an index of complexity.

We can therefore expect that a shape with a high di-

mension will be more complicated than another shape

with a lower dimension.

Figure 6. Construction of Peano's plane-�lling curve with

initiator and generator. In each step the segment is divided

in N = 9 parts, each scaled down by � = 1=3. This means

the similarity dimension is D = 2. For reasons of clarity

the corners where the curve self-contacts have been slightly

rounded (Peitgen, J�urgens and Saupe 1992).

A nice and mathematically fundamental example

of this property are the plane-�lling curves mentioned

above, which we are now in position to discuss in a more

quantitative manner. There are many di�erent ways of

constructing these plane-�lling curves and here we shall

take the original generator discussed by Peano. Fig-

ure 6 shows the construction of the curve and we can

see that the generator self-contacts. The �gure only

shows the �rst two stages, but it is obvious that after a

few iterations the pattern becomes so complex that pa-

per, pencil and our hands turn out to be rather clumsy

and inadequate tools to draw the �gure, being unable

to produce anything with much �ner detail than that.

Therefore, some sort of computer graphics is then nec-

essary to obtain a detailed visualization of such curves.

The important aspect of this construction is that the

segment is divided in N = 9 parts, each scaled down by

� = 1=3, which means the similarity dimension of the

Peano curve is D = 2.

So we see that this curve has similarity dimension

equals to the square, although it is a line which does

not self-intersect. The removal of one single point cuts

the curve in two pieces which means that its topolog-

ical dimension is one. The self-contact points of the

Peano curve are inevitable from a logical and intuitive

point of view, and after an in�nite number of itera-

tions we e�ectively have a way of mapping a part of

a plane by means of a topologically one-dimensional

curve: given some patch of the plane, there is a curve

which meets every point in that patch. The set becomes

everywhere dense. The Peano curve is perfectly self-

similar, which is shown very clearly in the �gure. The

generator used to construct the Peano curve is not the

only possible one, and in fact there are many di�erent

ways of constructing such plane-�lling curves using dif-

ferent generators, although they are generically known

as Peano curves. Mandelbrot (1983) shows many dif-

ferent and beautiful examples of di�erent generators of

Peano curves.

II.3.2 Coastlines

The Hausdor� and similarity dimensions de�ned so

far provide de�nitions of fractal dimension for pure frac-

tals, that is, classical fractal sets in a mathematically

idealized way. Although some of these classical fractals

can be used to model physical structures, what is nec-

essary now is to discuss real fractal shapes which are

encountered in natural phenomena. Hence, we need to

apply as far as possible the mathematical concepts and

tools developed so far in the study of real fractal struc-

tures, and when the mathematical tools are found to

be inadequate or insu�cient, we need to develop new

ones to tackle the problem under study. If the existing

tools prove inadequate, it is very likely that a speci�c

de�nition of fractal dimension appropriate to the prob-

lem under consideration will have to be introduced. Let

us see next two examples where we actually encounter

such situations. The �rst is the classical problem of

the length of coastlines, where a practical application

of the equation (1) gives the necessary tools to charac-

terize the shape.

The length of coastlines is the classical fractal prob-

lem that was characterized as such and solved by Man-

delbrot. It provides a very interesting example of a

fractal shape in nature and how our intuitive notion

of recti�able curves is rather slippery. What we shall

attempt to show next is a brief and straightforward pre-

sentation of the problem and its solution, as nothing re-

places the fascinating discussion made by Mandelbrot

himself (Mandelbrot 1983).



Marcelo B. Ribeiro and Alexandre Y. Miguelote 139

Figure 7. The coast of the southern part of Norway. The
�gure was traced from an atlas and digitized at about
1800 � 1200 pixels. The square grid indicated has spacing
of � � 50 km (Feder 1988).

Let us start with the Figure 7 showing the southern

part of Norway. The question in this case is: how long is

the coast of Norway? On the scale of the map the deep

fjords on the western coast show up clearly. The details

of the southern part are more di�cult to resolve, and if

one sails there one �nds rocks, islands, bays, faults and

gorges that look much the same but do not show up

even in detailed maps. This fact is absolutely intuitive

and anyone who has walked along a beach and looked at

the same beach in the map afterwards can testify it. So

before answering the question of how long is the coast

under analysis we have to decide on whether the coast

of the islands should be included. And what about the

rivers? Where does the fjord stop being a fjord and

becomes a river? Sometimes this has an easy answer

and sometimes not. And what about the tides? Are we

discussing the length of the coast at low or high tide?

Despite these initial problems we may press ahead

and try to measure the length of the coast by using an

yardstick of length � along the coastline of the map,

and count the number of steps N (�) needed to cover it

entirely. If we choose a large yardstick then we would

not have to bother about even the deepest fjords, and

can estimate the length to be L = � N (�). However,

somebody could raise objections to this measurement

based on the unanswered questions above, and we could

try a smaller yardstick. This time the large fjords of

Figure 7 would contribute to the measured length, but

the southeastern coast would still be taken relatively

easily in few measurements of the yardstick. Neverthe-

less, a serious discussion would demand more detailed

maps, which in consequence reveal more details of the

coast, meaning that a smaller yardstick is then made

necessary. Clearly there is no end to this line of investi-

gation and the problem becomes somewhat ridiculous.

The coastline is as long as we want to make it. It is a

nonrecti�able curve and, therefore, length is an inad-

equate concept to compare di�erent coastlines as this

measurement is not objective, that is, it depends on the

yardstick chosen.

Coasts, which are obviously self-similar on nature,

can, nevertheless, be characterized if we use a di�erent

method based on a practical use of equation (1). In

Figure 7 the coast of Norway has been covered with

a set of squares with edge length �, with the unit of

length taken to equal the edge of the frame. Count-

ing the number of squares needed to cover the coastline

gives the number N (�). If we proceed and �nd N (�) for

smaller values of � we are able to plot a graph of N (�)

versus �, for di�erent grid sizes. Now it follows from

equation (1) that asymptotically in the limit of small �

the following equation is valid:

N (�) /
1

�D
: (3)

So the fractal dimensionD of the coastline can be deter-

mined by �nding the slope of log N (�) plotted as a func-

tion of log �. The resulting plot for the coastline shown

in �gure is presented in Figure 8, with D � 1:52, and

the same method produces D � 1:31 for the coast

of Britain. These two values agree with the intuition

already associated with fractal dimensions in the sense

that the more irregular coast, the Norwegian in this

case, should have a higher value for D than the British
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coast. By means of equation (3) we can obtain the

expression for the length of coastlines as

L / �1�D;

which shows its explicit dependence on the yardstick

chosen. The dimensionD in equation (3) is determined

by counting the number of boxes needed to cover the set

as a function of the box size. It is called box counting

dimension or box dimension.

Figure 8. The number of `boxes' of size � needed to cover
the coastline in the previous �gure as a function of �. The
straight line is a �t of N(�) / ��D to the observations.
The fractal dimension is D � 1:52 (Feder 1988).

The box counting dimension proposes a system-

atic measurement which applies to any structure in

the plane, and can be readily adapted for structures

in the space. It is perhaps the most commonly used

method of calculating dimensions and its dominance

lies in the easy and automatic computability provided

by the method, as it is straightforward to count boxes

and maintain statistics allowing dimension calculation.

The program can be carried out for shapes with and

without self-similarity and, moreover, the objects may

be embedded in higher dimensional spaces.

II.3.3 Cluster Dimension

Let us see now the application of fractal ideas to the

problem of aggregation of �ne particles, such as those of

soot, where an appropriate fractal dimension has to be

introduced. This kind of application of fractal concepts

to real physical systems is under vigorous development

at present, inasmuch as it can be used to study such

systems even in a laboratory, where they can be grown,

or in computer simulations.

The Hausdor� dimensionD in equation (1) requires

the size � of the covering sets to vanish, but as physical

systems in general have a characteristic lower length

scale, we need to take that into consideration in our

physical applications of fractals. For instance, the prob-

lem of the length of coastlines necessarily involves a

lower cuto� in its analysis as below certain scale, say,

at the molecular level, we are no longer talking about

coastlines. For the same reason we sometimes have to

assume upper cuto�s to the fractal structures we are

analysing. This highlights once more an important as-

pect of application of fractals to real physical phenom-

ena: each problem must be carefully analysed not only

to look for the appropriate fractal dimension (or di-

mensions as we may have more than one de�ned in the

problem), but also to see to what extent the fractal

hypothesis is valid to the case in study.

Let us see a speci�c example. In order to apply

the ideas of the previous sections, we can replace a

mathematical line by a linear chain of \molecules" or

monomers. Figure shows the replacement of a line by

a chain of monomers, a two-dimensional set of points

by a planar collection of monomers, and a volume by a

packing of spheres. Let us call the radius R0 the small-

est length scale of the structure under study. In this

case R0 will be the radius of the monomers in �gure .

The number of monomers in a chain of length L = 2R

is

N =

�
R

R0

�1

:

For a group of monomers in a circular disk we have the

proportionality

N /

�
R

R0

�2

:

For the three-dimensional close packing of spherical

monomers into a spherical region of radius R, the num-

ber of monomers is

N /

�
R

R0

�3

:

By generalising these relations we may say that the

number of particles and the cluster size measured by

the smallest sphere of radius R containing the cluster

is given by

N /

�
R

R0

�D
; (4)

where D is the dimension of the distribution that may

be non-integer, that is, fractal. Equation (4) is a
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number-radius relation and D is the cluster fractal di-

mension of the aggregation. The cluster fractal dimen-

sion is a measure of how the cluster �lls the space it

occupies.

Figure 9. Simple aggregation of spherical monomers (Feder

1988).

A fractal cluster has the property of having a de-

creasing average density as the cluster size increases, in

a way described by the exponent in the number radius

relation. The average density will have the form

�(R) � R0
�DRD�E ; (5)

where E is the Euclidean dimension of the space where

the cluster is placed. Therefore, a cluster is not neces-

sarily fractal, even if it is porous or formed at random,

as its density may be constant. Note that the shape

of the cluster is not characterized by the cluster fractal

dimension, although D does characterize, in a quanti-

tative way, the cluster's feature of \�lling" the space.

Figure 10 shows a very much studied type of clus-

ter, obtained by the di�usion-limited aggregation pro-

cess (DLA). In this process the cluster is started by

a seed in the centre, and wandering monomers stick

to the growing cluster when they reach it: if the ran-

dom walker contacts the cluster, then it is added to it

and another walker is released at a random position on

the circle. This type of aggregation process produces

clusters that have a fractal dimension D = 1:71 for

di�usion in the plane. Numerical simulations show that

the fractal dimension is D = 2:50 for clusters in three-

dimensional space.

Figure 10. Random cluster containing 50,000 particles ob-
tained from a two-dimensional di�usion-limited aggregation
process (DLA) with D = 1:71 (Feder 1988).

Before closing this section, it seems appropriate to

discuss something about the limitations of the fractal

geometry. For this purpose we shall quote a paragraph

from Peitgen, J�urgens and Saupe (1992, p. 244) which

beautifully expresses this point.

\The concept of fractal dimension has in-
spired scientists to a host of interesting new
work and fascinating speculations. Indeed, for
a while it seemed as if the fractal dimensions
would allow us to discover a new order in the
world of complex phenomena and structures.
This hope, however, has been dampened by
some severe limitations. For one thing, there
are several di�erent dimensions which give dif-
ferent answers. We can also imagine that a
structure is a mixture of di�erent fractals, each
one with a di�erent value of box counting di-
mension. In such case the conglomerate will
have a dimension which is simply the dimension
of the component(s) with the largest dimen-
sion. That means the resulting number can-
not be characteristic for the mixture. What we
would really like to have is something more like
a spectrum of numbers which gives information
about the distribution of fractal dimensions in
a structure. This program has, in fact, been
carried out and runs under the theme multi-

fractals."

For reasons of simplicity we shall not deal with multi-

fractals in this paper.

As a �nal remark, as Pietronero (1988) has pointed

out, the fractal concept provides a description of these
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irregular structures on nature, but it does not imply

the formulation of a theory for them. Indeed, Mandel-

brot has not produced a theory to explain how these

structures actually arise from physical laws. A study of

the interrelations between fractal geometry and phys-

ical phenomena is what may be called the \theory of

fractals", and forms the objective of intense activity in

the �eld nowadays. This activity is basically divided in

two main streams. The �rst tries to understand how

it has come about that many shapes in nature present

fractal properties. Hence, the basic question to answer

is: where do fractals come from? The second approach

is to assume as a matter of fact the existence of fractal

structures and to study their physical properties. This

generally consists of assuming a simple fractal model as

a starting point and studying, for example, some basic

physical property, like the di�usion on this structure.

As examples of such studies, there are the fractal

growth models, which are based on a stochastic growth

process in which the probability is de�ned through

Laplace equation (e.g., DLA process). They are con-

sidered the prototypes of many physical phenomena

that generate fractal structures. As other examples, we

have the self-organized critical systems, which are such

that a state with critical properties is reached sponta-

neously, by means of an irreversible dynamical evolu-

tion of a complex system (e.g., sandpile models). They

pose problems similar to the fractal growth process, and

use theoretical methods inspired by the latter, like the

so-called \�xed scale transformation", that allows to

deal with irreversible dynamics of these process and to

calculate analytically the fractal dimension.

III. The Fractal Hypothesis for the Distribution

of Galaxies

In this section we shall discuss how the fractal con-

cept can be used to study the large scale distribution

of galaxies in the observed universe. We start with a

brief summary of the standard methods used to study

this distribution. Later we will see the problems of this

orthodox analysis and the answers given to these prob-

lems when we assume that the large scale distribution

of galaxies forms a self-similar fractal system. Some

implications of the use of fractal ideas to describe the

distribution of galaxies, like a possible crossover to ho-

mogeneity, are also presented.

III.1 The Standard Correlation Function Ana-

lysis

The standard statistical analysis assumes that the

objects under discussion (galaxies) can be regarded as

point particles that are distributed homogeneously on a

su�ciently large scale. This means that we can mean-

ingfully assign an average number density to the distri-

bution and, therefore, we can characterize the galaxy

distribution in terms of the extent of the departures

from uniformity on various scales. The correlation func-

tion as introduced in this �eld by P. J. E. Peebles

around 25 years ago is basically the statistical tool that

permits the quantitative study of this departure from

homogeneity.

We shall discuss in a moment how to obtain the ex-

plicit form of the two-point correlation function, but it

is important to point out right now two essential aspects

of this method. First that this analysis �ts very well in

the standard Friedmannian cosmology which assumes

spatial homogeneity, but it does not take into consider-

ation any e�ect due to the curvature of the spacetime.

In fact, this method neglects this problem altogether

under the assumption that the scales under study are

relatively small, although it does not o�er an answer to

the question of where we need to start worrying about

the curvature e�ects. In other words, this analysis does

not tell us what scales can no longer be considered rel-

atively small.

Secondly that if the homogeneity assumption is not

justi�ed this analysis is inapplicable. Moreover, because

this analysis starts by assuming the homogeneity of the

distribution, it does not o�er any kind of test for the hy-

pothesis itself. In other words, this correlation analysis

cannot disprove the homogeneous hypothesis.

Let us present now a straightforward discussion on

how this statistic can be derived (Raine 1981). If the

average number density of galaxies is �n = N=V then we

have to go on average a distance (�n)�1=3 from a given

galaxy before another is encountered. This means that

local departures from uniformity can be described if

we specify the distance we actually go from any par-

ticular galaxy before encountering another. This will

sometimes be larger than average, but sometimes less.
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Specifying this distance in each case is equivalent of giv-

ing the locations of all galaxies. This is an awkward way

of doing things and does not solve the problem. What

we require is a statistical description giving the proba-

bility of �nding the nearest neighbour galaxy within a

certain distance.

However, as the probability of �nding a galaxy

closer than, say, 50 kpc to the Milky Way is zero, and

within a distance greater than this value is one, this is

clearly not the sort of probability information we are

after; what is necessary is some sort of average. Now

we can think that the actual universe is a particular

realization of some statistical distribution of galaxies,

some statistical law, and the departure from random-

ness due to clustering will be represented by the fact

that the average value over the statistical ensemble of

this separation is less than (�n)�1=3.

In practice, however, we do not have a statistical

ensemble from which the average value can be derived,

so what we can do is to take a spatial average over

the visible universe, or as much of it as has been cat-

alogued, in place of an ensemble average. This only

makes sense if the departure from homogeneity occurs

on a scale smaller than the depth of the sample, so that

the sample will statistically re
ect the properties of the

universe as a whole. In other words, we need to achieve

a fair sample of the whole universe in order to ful�ll

this program, and this fair sample ought to be homo-

geneous, by assumption. If, for some reason, this fair

sample is not achieved, or is not achievable, that is,

if the universe has no meaningful average density, this

whole program breaks down.

For a completely random but homogeneous distribu-

tion of galaxies, the probability dP1 of �nding a galaxy

in an in�nitesimal volume dV1 is proportional to dV1

and to �n, and is independent of position. So we have

dP1 =
�n

N
dV1;

where N is the total number of galaxies in the sample.

The meaning of the probability here is an average over

the galaxy sample; the space is divided into volumes

dV1 and we count the ratio of those cells which con-

tain a galaxy to the total number. The probability of

�nding two galaxies in a cell is of order (dV1)
2
, and so

can be ignored in the limit dV1 ! 0. It is important to

state once more that this procedure only makes sense

if the galaxies are distributed randomly on some scale

less than that of the sample.

Suppose now that the galaxies were not clustered.

In that case the probability dP12 of �nding galaxies

in volumes dV1 and dV2 is just the product dP1dP2 of

probabilities of �nding each of the galaxies, since in a

random distribution the positions of galaxies are uncor-

related. Now, if the galaxies were correlated we would

have a departure from the random distribution and,

therefore, the joint probability will di�er from a simple

product. The two-point correlation function �(~r1; ~r2) is

by de�nition a function which determines the di�erence

from a random distribution. So we put

dP12 =
� �n

N

�2
[1 + �(~r1; ~r2)] dV1dV2 (6)

as the expression of �nding a pair of galaxies in vol-

umes dV1, dV2 at positions ~r1, ~r2. Obviously, the

assumption of randomness on su�ciently large scales

means that �(~r1; ~r2) must tend to zero if j~r1 � ~r2j is

su�ciently large. In addition, the assumption of homo-

geneity means that � cannot depend on the location of

the galaxy pair, but only on the distance j~r1 � ~r2j that

separates them, as the probability must be indepen-

dent of the location of the �rst galaxy. If � is positive

we have an excess probability over a random distribu-

tion and, therefore, clustering. If � is negative we have

anti-clustering. Obviously � > �1. The two-point cor-

relation function can be extended to de�ne n-point cor-

relation functions, which are functions of n� 1 relative

distances, but in practice computations have not been

carried out beyond the four-point correlation function.

It is common practice to replace the description

above using point particles by a continuum description.

So if galaxies are thought to be the constituent parts

of a 
uid with variable density n(~r), and if the aver-

aging over a volume V is carried out over scales large

compared to the scale of clustering, we have

1

V

Z
V

n(~r)dV = �n; (7)

where dV is an element of volume at ~r. The joint prob-

ability of �nding a galaxy in dV1 at ~r + ~r1 and in dV2

at ~r + ~r2 is given by

�
1

N

�2

n(~r + ~r1)n(~r + ~r2)dV1dV2:
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Averaging this equation over the sample gives

dP12 =
1

N2V

Z
V

n(~r + ~r1)n(~r + ~r2)dV dV1dV2:

Now if we compare the equation above with equation

(6) we obtain

�n2 [1 + �(~� )] =
1

V

Z
V

n(~R)n(~R+ ~� )dV; (8)

where ~� = ~r2 � ~r1, ~R = ~r + ~r1 and dV is the volume

element at ~R.

Related to the correlation function is the so-called

power spectrum of the distribution, de�ned by the

Fourier transform of the correlation function. It is also

possible to de�ne an angular correlation function which

will express the probability of �nding a pair of galaxies

separated by a certain angle, and this is the function

appropriate to studying catalogues of galaxies which

contain only information on the positions of galaxies on

the celestial sphere, that is, to studying the projected

galactic distribution when the galaxy distances are not

available. Further details about these two functions can

be found, for instance, in Raine (1981, p. 10). Finally,

for the sake of easy comparison with other works it is

useful to write equation (8) in a slightly di�erent nota-

tion:

�(r) =
hn(~r0)n(~r0 + ~r)i

hni2
� 1: (9)

The usual interpretation of the correlation function

obtained from the data is as follows. When � � 1 the

system is strongly correlated and for the region when

� � 1 the system has small correlation. From direct

calculations from catalogues it was found that at small

values of r the function �(r) can be characterized by a

power law (Pietronero 1987; Davis et al. 1988; Geller

1989):

�(r) � Ar�
 ; (
 � 1:7); (10)

where A is a constant. This power law behaviour holds

for galaxies and clusters of galaxies. The distance r0

at which � = 1 is called the correlation length, and

this implies that the system becomes essentially homo-

geneous for lengths appreciably larger than this charac-

teristic length. This also implies that there should be

no appreciable overdensities (superclusters) or under-

densities (voids) extending over distances appreciably

larger than r0.

III.2 Di�culties of the Standard Analysis

The �rst puzzling aspect found using the method

just described is the di�erence in the amplitude A of

the observed correlation function (10) when measured

for galaxies and clusters of galaxies. While the expo-

nent 
 is approximately 1.7 in both cases, for galaxies

AG ' 20 and for clusters AC ' 360. Less ac-

curately, superclusters of galaxies were found to have

ASC ' 1000 � 1500 (see Pietronero 1987 and refer-

ences therein). The correlation length was found to be

r0 ' 5 h�1 Mpc for galaxies and r0 ' 25 h�1 Mpc

for clusters.

These are puzzling results, because as AC ' 18AG,

clusters appear to be much more correlated than galax-

ies, although they are themselves made of galaxies.

Similarly superclusters will then appear to be more cor-

related than clusters. From the interpretation of �(r)

described above, the galaxy distribution becomes ho-

mogeneous at the distance ' 10-15 h�1 Mpc where �(r)

is found to become zero, while clusters and superclus-

ters are actually observed at much larger distances, in

fact up to the present observational limits.

Figure 11. The behaviour of r0 plotted against the sample
size RS found by Einasto, Klypin and Saar (1986). The
di�erent symbols (open circles, crosses and triangles) mean
the di�erent directions from where the samples were taken
in the sky. (Calzetti et al. 1987). Further extensions of
this behaviour, to around 100 Mpc, are shown in Pietronero
(1997), �g. 2.

The second di�culty of the standard analysis was

�rst found by Einasto, Klypin and Saar (1986) and later
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con�rmed by Davis et al. (1988) (see also Calzetti et al.

1987; Coleman, Pietronero and Sanders 1988; Pietro-

nero 1997). They found that the correlation length r0

increases with the sample size. Figure 11 shows this

dependence clearly, and it is evident that this result

brings into question the notion of a universal galaxy

correlation function.

Figure 12. The picture on top shows the observed distri-
bution of galaxies in the 18o wide slice centered at 35:5o.
Voids and clusters are clearly visible as well as the lack of
homogenization of the sample. The largest inhomogeneities
are comparable with the size of the sample and, therefore,
it is not large enough to be considered fair. The picture
below shows a sample of 2483 randomly distributed points
(Geller 1989).

The third problem of the standard analysis has to

do with the homogeneity assumption itself and the pos-

sibility of achieving a fair sample, which should not be

confused with a homogeneous sample as the standard

analysis usually does. A fair sample is one in which

there exists enough points from where we are able to

derive some unambiguous statistical properties. There-

fore homogeneity must be regarded as a property of the

sample and not a condition of its statistical validity.

Improvements in astronomical detection techniques, in

particular the new sensors and automation, enabled as-

tronomers to obtain a large amount of galaxy redshift

measurements per night, and made it possible by the

mid 1980's to map the distribution of galaxies in three

dimensions. The picture that emerged from these sur-

veys was far from the expected homogeneity: clusters of

galaxies, voids and superclusters appeared in all scales,

with no clear homogenization of the distribution. The

�rst \slice" of the universe shown by de Lapparent,

Geller and Huchra (1986) con�rmed this inhomogeneity

with very clear pictures. More striking is the compari-

son of these observed slices with a randomly generated

distribution where the lack of homogenization of the ob-

served samples is clear (see Figure 12). Deeper surveys

(Saunders et al. 1991) show no sign of any homogeneity

being achieved so far, with the same self-similar struc-

tures still being identi�ed in the samples.

Those problems together with the power law be-

haviour of �(r) clearly call for an explanation, and while

many have been proposed they usually deal with each

of these issues separately. As we shall see, the frac-

tal hypothesis, on the other hand, deals with all these

problems as a whole and o�ers an explanation to each of

them within the fractal picture. While we do not intend

to claim that the fractal hypothesis is the only possi-

ble explanation to these problems, whether considering

them together or separately, from now on in this paper

we shall take the point of view that fractals o�er an

attractively simple description of the large scale distri-

bution of galaxies and that the model o�ered by them

deserves a deep, serious and unprejudiced investigation,

either in a Newtonian or relativistic framework. From

its basis, the fractal hypothesis in many ways represents

a radical departure from the orthodox traditional view

of an observationally homogeneous universe, which is

challenged from its very foundations in many respects.

III.3 Correlation Analysis without Assumptions

Before we discuss the fractal model itself, it is conve-

nient to look �rst at the statistical tools where a correla-

tion appropriate to a fractal distribution can be derived.
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The method that is going to be introduced obviously

does not imply the existence of a fractal distribution,

but if it exists, it is able to describe it properly (see

Pietronero 1987; Coleman and Pietronero 1992; Pietro-

nero, Montuori and Sylos Labini 1997; Sylos Labini,

Montuori and Pietronero 1998). The appropriate ana-

lysis of pair correlations should therefore be performed

using methods that can check homogeneity or fractal

properties without assuming a priori either one. This

is not the case of the function �(r), which is based on

a priori and untested assumption of homogeneity. For

this purpose it is useful to start with a basic discussion

on the concept of correlation.

If the presence of an object at r1 in
uences the prob-

ability of �nding another object at r2 these points are

said to be correlated. So there is correlation at a dis-

tance ~r from ~r0 if, on average,

G(r) = hn(~r0)n(~r0 + ~r)i 6= hni2:

On the other hand there is no correlation if

G(r) � hni2:

From this it is clear that non-trivial structures like voids

or superclusters are made, by de�nition, from corre-

lated points. Hence, the correlation length de�nition

will only be meaningful if it separates correlated regions

from uncorrelated ones. Figure 13 shows what would be

the typical behaviour we would expect from the galaxy

correlation if there is an upper cuto� to homogeneity.

The power law decay will be eventually followed by a


at region that corresponds to the homogeneous dis-

tribution. In this case the correlation length �0 is the

distance at which there is a change in the correlation

G(r): it changes from a power law behaviour to a ho-

mogeneous regime and the average density becomes the

same, being independent of the position.

Actually in Figure 13 we have a situation where the

sample size RS is larger than �0. If we had RS < �0,

then the average density measured would correspond to

an overdensity, di�erent from the real average density of

the distribution. The precise value of this overdensity

would then depend explicitly on the sample radius, and

in this case the function �(r) becomes spurious because

the normalization of correlated density by the average

density (eq. 9) will depend explicitly on RS. Only in

the limiting case where RS � �0 will the length r0

indeed be related to the correlation length �0
4. This

is in fact the case for liquids, where the two-point cor-

relation function �(r) was originally introduced, as any

reasonable sample size larger than some atomic scale

for, say, water, will contain so many molecules that its

average density is a well de�ned physical property. Be-

cause water has a well de�ned value for hni, the function

�(r) will be the same for a glass of water and for a lake,

referring only to the physical properties of water and

not to the size of the glass. However, by just looking at

Figure 12 it is quite clear that this is not the case for

the distribution of galaxies. As pointed out by Geller

(1989), at least up to the present observational limits

the galaxy average density is not well de�ned.

Figure 13. This illustration represents schematically the

expected behaviour for the galaxy correlation density of a

correlated system with a crossover to homogeneity. The


at behaviour of the function G(r) beyond some correlation

length �0 corresponds to the unambiguous sign of homo-

geneity (Coleman and Pietronero 1992).

The function G(r) as de�ned above has, however,

the factor hni = N=V which may, in principle, be an

explicit function of the sample's size scale. Therefore,

it is appropriate to de�ne the conditional density �(r)

as,

�(r) �
hn(~r0)n(~r0 + ~r)i

hni
: (11)

4 See xIII.5.2 for the proof of this statement.
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By the de�nition of the average number density of

galaxies, we have

hn(~r0)n(~r0 + ~r)i =
1

V

Z
V

n(~r0)n(~r0 + ~r)dV; (12)

and together with hni = N=V , equation (11) becomes

�(r) =
1

N

Z
V

n(~r0)n(~r0 + ~r)dV: (13)

Assuming

n(~r) =
NX
i=1

�(~r � ~ri);

and remembering that

Z +1

�1

�(x� y)'(y)dy = '(x); �(x) = �(�x);

equation (13) may be rewritten as

�(r) =
1

N

NX
i=1

n(~ri + ~r) = hn(~ri + ~r)ii; (14)

where n(~ri + ~r) is the conditional density of the ith

object, and hn(~ri + ~r)ii the �nal average that refers

to all occupied points ri. This corresponds to assigning

an unit mass to all points occupied by galaxies, with

the ith galaxy at ~ri and N being the total number of

galaxies. Equation (14) measures the average density

at distance r from an occupied point, and the volume V

in that equation is purely nominal and should be such

to include all objects, but it does not appear explicitly

in equation (14). �(r) is more convenient than G(r)

for comparing di�erent catalogues since the size of the

catalogue only appears via the combination 1
N

PN
i=1

and this means that a larger sample volume will only

increases the number of objects N . Hence a larger sam-

ple size implies a better statistic.

Equations (9) and (14) are simply related by

�(r) =
�(r)

hni
� 1: (15)

We can also de�ne the conditional average density

��(r) =
1

V

Z
V

�(r)dV; (16)

which gives the behaviour of the average density of a

sphere of radius r centered around an occupied point

averaged over all occupied points 5, and the integrated

conditional density

I(r) = 4�

Z r

0

r0
2
�(r0)dr0; (17)

which is the number of galaxies of a spherical region of

radius r.

Figure 14 shows the calculation of �(r), ��(r) and

�(r) for the CfA redshift survey, where the absence of

a homogenization of the distribution within the sample

and the absence of any kind of correlation length are

clear. This result brings strong support to the hypoth-

esis that the large scale distribution of galaxies forms

indeed a fractal system.

Table 1 shows the correlation properties of the

galaxy distributions in terms of volume limited cata-

logues arising from most of the 50; 000 redshift mea-

surements that have been made to date. The samples

are statistically rather good in relation to the fractal di-

mension D and the conditional density �(r), and their

properties are in agreement with each other.

While various authors consider these catalogs as not

fair, because the contradiction between each other, Pi-

etronero, Montuori and Sylos Labini (1997) show that

this is due to the inappropriate methods of analysis.

Figure 14 shows a density power law decay for many

redshift surveys, and it is clear that we have well de-

�ned fractal correlations from 1 to 1000 h�1 Mpc with

fractal dimension D � 2. This implies necessarily that

the value of r0 (�(r0) = 1) will scale with sample size

RS, 6 which gives the limit of the statistical validity of

the sample, as shown also from the speci�c data about

r0 in table 1. The smaller value of CfA1 was due to

its limited size. At this same �gure we can see the so-

called Hubble-de Vaucouleurs paradox, which is caused

by the coexistence between the Hubble law and the frac-

tal distribution of luminous matter at the same scales

(Pietronero, Montuori and Sylos Labini 1997). 7

5 See Coleman and Pietronero (1992) for a more detailed discussion on this subject with many examples of calculations of �(r),
��(r) and �(r) using test samples.

6 See xIII.5.1 for an explanation of this e�ect under a fractal perspective.
7 See Ribeiro (1995) for a relativistic perspective of this \paradox", where it is shown that this is just a result of a relativistic e�ect.
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Table 1. The volume limited catalogues are characterized by the following parameters: 
 (sr) is the solid angle, RD

(h�1 Mpc) is the depth of the catalogue, RS (h�1 Mpc) is the radius of the largest sphere that can be contained in
the catalogue volume, r0 (h�1 Mpc) is the length at which �(r0) � 1, D is the fractal dimension and �0 (h�1 Mpc) is
the eventual real crossover to homogeneity that this is actually never observed. The CfA2 and SSRS2 data are not yet
available (Pietronero, Montuori and Sylos Labini 1997).

Sample 
 RD RS r0 D �0

CfA1 1.83 80 20 6 1:7� 0:2 > 80
CfA2 1.23 130 30 10 2.0 ?
PP 0.9 130 30 10 2:0� 0:1 > 130

SSRS2 1.13 150 50 15 2.0 ?
LEDA 4� 300 150 45 2:1� 0:2 > 150
LCRS 0.12 500 18 6 1:8� 0:2 > 500
IRAS 4� 80 40 4.5 2:0� 0:1 � 15
ESP 0.006 700 10 5 1:9� 0:2 > 800

Figure 14. �(r), ��(r) and �(r) plotted as function of length

scale for the CfA redshift survey. There is no indication of a

homogenization of the sample and both �(r) and �(r) obey a

power law, a result consistent with a fractal structure for the

distribution of galaxies. The dashed line indicates a refer-

ence slope of �1:7 (Coleman, Pietronero and Sanders 1988).

It is important to mention that there are e�ects

which may conceal the true statistical behaviour of the

samples. Those e�ects may lead to the conclusion that

the sample under study is homogeneous, although such

a conclusion would be wrong, since such homogeneity

may appear not as a statistical property of the sample,

but just as an e�ect of its �nite size.

Figure 15. Conditional average density of galaxies plotted

as function of distance (decreasing from left to right) for

the following redshifts surveys: CfA1 (crosses), Perseus-

Pisces (circles) and LEDA (squares). The solid line cor-

responds to D = 2. The Hubble redshift-distance is also

shown in this graph. The dotted line corresponds to the

Hubble law (increasing from left to right) with H0 = 55

km s�1 Mpc�1. This law is constructed from: galaxies

with Cepheid-distances for cz > 0 (triangles), galaxies with

Tully-Fisher (B-magnitudes) distances (stars), galaxies with

SNIa-distances for cz > 3000 km/s (�lled circles) (Pietro-

nero, Montuori and Sylos Labini 1997).

Figure 16 shows the behaviour of the density com-

puted from the vertex of a conic sample. At very small

distances we are not going to �nd any galaxy because

the total number is rather small. After the Voronoi's
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length V , which is of the order of the mean particle

separation, we begin to have signal but this is strongly

a�ected by �nite size e�ects. The correct scaling be-

haviour is reached for the region r � �. In the in-

termediate region we have an apparent homogeneous

distribution, but it is due to the �nite size e�ects (Pie-

tronero, Montuori and Sylos Labini 1997; Sylos Labini,

Gabrielli, Montuori and Pietronero 1996; Sylos Labini,

Montuori and Pietronero 1998).

As evidence that this new statistical approach is the

appropriate method of analysis, we can see in Figure 17

an agreement between various available redshift cata-

logues in the range of distances 0:1� 1� 103 h�1 Mpc.

From this we can conclude that there is no tendency

to homogeneity at this scale. In contrast to Figure 17

we have Figure 18 where the traditional analysis based

on �(r) for the same catalogues of Figure 17 shows a

strong con
ict between these two analytical methods.

Figure 18 shows that �(r) is unable to say without any

doubt if there is a homogeneous scale, and this is the

main reason from where the concept of \unfair sample"

is generated.

Figure 16. Schematic behaviour of the density computed

from the vertex. Inside the Voronoi's length V (small dis-

tances), one �nds almost no galaxies. After this length the

number of galaxies starts to grow with a regime strongly

a�ected by �nite size 
uctuations, and the density can be

approximately roughly by a constant value, leading to an

apparent exponent D � 3. Finally the scaling region r � �

is reached (Pietronero, Montuori and Sylos Labini 1997; Sy-

los Labini, Gabrielli, Montuori and Pietronero 1996).

Figure 17. Full correlation for the various redshift cata-

logues in the range of distances 0:1� 1 � 103 h�1 Mpc. A

reference line with a slope �1 is also shown (D � 2). In the

insert it is shown a conic volume. The radial density is com-

puted by counting all the galaxies up to a certain limit, and

by dividing for the volume of this conic sample (Pietronero,

Montuori and Sylos Labini 1997).

Figure 18. Graph of the function �(r) versus the distance

r (Mpc) for the same galaxy catalogues of Figure 17. Here

we can see rather confusing results generated by the a pri-

ori and untested assumption of homogeneity, which are not

present in the real galaxy distribution (Pietronero, Montuori

and Sylos Labini 1997).

Another statistical analysis is the number counts

and angular correlations. In Figure 19 we show the
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behaviour of the number counts versus magnitude re-

lation (N (< m)) with an exponent � = D=5. At small

scales � = 0:6�0:1 (D � 3), which means that we have

an apparent homogeneity. However, this is due to the

�nite size e�ects discussed above, while at larger scales

the value 0:4 (D � 2) shows correlation properties of

the sample in agreement with the results obtained for

�(r). In addition, the fact that the exponent 0:4 holds

up to magnitudes 27 � 28 seems to indicate that the

fractal structure may continue up to 2 � 3 � 103 h�1

Mpc (Pietronero, Montuori and Sylos Labini 1997).

III.4 Pietronero-Wertz's Single Fractal (Hierar-

chical) Model

The single fractal model proposed by Pietronero

(1987) is essentially an application of the cluster frac-

tal dimension to the large scale distribution of galaxies,

a straightforward analysis of the consequences of this

fractal interpretation of the galactic system plus the

proposal of new statistical tools to analyse the cata-

logues of galaxies, derived from his strong criticisms of

the standard statistical analysis based on the two-point

correlation function. He also studied the problem from

a multifractal perspective. What we shall attempt to

do here is to present a summary of the basic results re-

lated to the discussion above. Later in a review paper,

Coleman and Pietronero (1992) extended the theory,

with especial emphasis on multifractals and the angu-

lar correlation function, and added new results. Further

extensions and results of this theory were also made in

Sylos Labini, Montuori and Pietronero (1998).

Wertz's (1970, 1971) hierarchical model, on the

other hand, was proposed at a time when fractal ideas

had not yet appeared. However, these ideas were more

or less implicit in his work, and as we shall see below,

he ended up proposing a hierarchical model mathemat-

ically identical to Pietronero's single fractal model, but

17 years earlier. For this reason his work deserves to

be quoted as being the �rst independent model where

self-similar ideas were applied in the study of the large

scale distribution of galaxies. The reasons why Wertz's

work was forgotten for so long lies on the shortcomings

of its physical implications, as it will be shown below.

Figure 19. The galaxy number counts in the B-band from

several surveys. In the range 12 � m � 19 the counts show

an exponent � = 0:6 � 0:1, while in the range 19 �m � 28

the exponent is � � 0:4. The amplitude of galaxy number

counts for m � 19 (solid line) is computed from the deter-

mination of the prefactor B of the density n(r) = Br�(3�D)

at small scale and from the knowledge of the galaxy lumi-

nosity function. The distance is computed for a galaxy with

M = �16 and the value used for H0 is 75 km s�1 Mpc�1

(Pietronero, Montuori and Sylos Labini 1997).

III.4.1 Pietronero's Single Fractal Model

The de�nition of the fractal dimension as made by

Pietronero (1987) is slightly di�erent than in the case

of the cluster dimension discussed previously. Figure

20 shows a schematic representation of a fractal distri-

bution of points. Clearly we have a self-similar distri-

bution as more and more structure appears at smaller

and smaller scales, with the structure at small scales

being similar to the one at large scales. By starting

from a point occupied by an object and counting how

many objects are present within a volume characterized

by a certain length scale, we have that within a certain

radius d0, there are N0 objects; then within d1 = k d0
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there are N1 = ~k N0 objects; in general, within

dn = knd0 (18)

we have

Nn = ~knN0 (19)

objects. Generalizing this idea to a smooth relation, we

can de�ne a generalized mass-length relation between N

and d of the type

N (d) = �dD; (20)

where the fractal dimension

D =
log ~k

logk
(21)

depends only on the rescaling factors k and ~k, and the

prefactor � is related to the lower cuto�s N0 and d0,

� =
N0

d0
D
: (22)

Equation (20) corresponds to a continuum limit for the

discrete scaling relations.

Figure 20. Schematic illustration of a deterministic fractal

system from where a fractal dimension can be derived. The

structure is self-similar, repeating itself at di�erent scales

(Pietronero 1987).

Let us now suppose that a sample of radius RS con-

tains a portion of the fractal structure. If we assume it

to be a sphere, then the sample volume is given by

V (RS) =
4

3
�RS

3;

which allows us, together with equation (20), to com-

pute the average density hni as being

hni =
N (RS)

V (RS)
=

3�

4�
RS

�
 ; 
 = 3�D: (23)

This is the same type of power law expression obtained

several years ago by de Vaucouleurs (1970), and equa-

tion (23) shows very clearly that the average density

is not a well de�ned physical property for this sort of

fractal system because it is a function of the sample

size.

III.4.2 Wertz's Hierarchical Model

The hierarchical model advanced by Wertz (1970,

1971) was conceived at a time when fractal ideas had

not yet appeared. So, in developing his model, Wertz

was forced to start with a more conceptual discussion

in order to o�er \a clari�cation of what is meant by

the `unde�ned notions' which are the basis of any the-

ory" (Wertz 1970, p. 3). Then he stated that \a clus-

ter consists of an aggregate or gathering of elements

into a more or less well-de�ned group which can be to

some extent distinguished from its surroundings by its

greater density of elements. A hierarchical struc-

ture exists when ith order clusters are themselves

elements of an (i+1)th order cluster. Thus, galax-

ies (zeroth order clusters) are grouped into first

order cluster. First order clusters are themselves

grouped together to form second order clusters,

etc, ad in�nitum" (see Figure 21).

Although this sort of discussion may be very well to

start with, it demands a precise de�nition of what one

means by a cluster in order to put those ideas on a more

solid footing, otherwise the hierarchical structure one is

talking about continues to be a somewhat vague notion.

Wertz seemed to have realized this di�culty when later

he added that \to say what percentage of galaxies occur

in clusters is beyond the abilities of current observations

and involves the rather arbitrary judgment of what sort

of grouping is to be called a cluster. (...) It should be

pointed out that there is not a clear delineation between

clusters and superclusters" (p. 8).

Despite this initially descriptive and somewhat

vague discussion about hierarchical structure, which is
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basically a discussion about scaling in the fractal sense,

Wertz did develop some more precise notions when he

began to discuss speci�c models for hierarchy, and his

starting point was to assume what he called the \univer-

sal density-radius relation", that is, the de Vaucouleurs

density power law, as a fundamental empirical fact to

be taken into account in order to develop a hierarchical

cosmology. Then if M (x; r) is the total mass within a

sphere of radius r centered on the point x, he de�ned

the volume density �v as being the average over a sphere

of a given volume containing M . Thus

�v(x; r) �
3M (x; r)

4�r3
; (24)

and the global density was de�ned as being

�g � lim
r!1

�v(x; r): (25)

A pure hierarchy is de�ned as a model universe which

meets the following postulates:

(i) for any positive value of r in a bounded region, the

volume density has a maximum;

(ii) the model is composed of only mass points with

�nite non-zero mean mass;

(iii) the zero global density postulate: \for a pure hier-

archy the global density exists and is zero everywhere"

(see Wertz 1970, p. 18).

Figure 21. Reproduction from Wertz (1970, p. 25) of a rough sketch cross-section of a portion of an N = i + 2 cluster of a

polka dot model.

With this picture in mind, Wertz states that \in

any model which involves clustering, there may or may

not appear discrete lengths which represent clustering

on di�erent scales. If no such scales exist, one would

have an indefinite hierarchy in which clusters of

every size were equally represented (...). At the other
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extreme is the discrete hierarchy in which cluster

sizes form a discrete spectrum and the elements of one

size cluster are all clusters of the next lowest size" (p.

23). Then in order to describe polka dot models, that

is, structures in a discrete hierarchy where the elements

of a cluster are all of the same mass and are distributed

regularly in the sense of crystal lattice points, it be-

comes necessary for one be able to assign some average

properties. So if N is the order of a cluster, N = i is a

cluster of arbitrary order (�gure ), and at least in terms

of averages a cluster of massMi, diameter Di and com-

posed of ni elements, each of mass mi and diameter di,

has a density given by

�i =
6Mi

�Di
3 : (26)

From the de�nitions of discrete hierarchy it is obvious

that

Mi�1 = ni�1mi�1 = mi; (27)

and if the ratio of radii of clusters is

ai �
Di

di
=

Di

Di�1
; (28)

then the dilution factor is de�ned as

�i �
�i�1
�i

=
ai

3

ni
> 1; (29)

and the thinning rate is given by

�i �
log(�i�1=�i)

log(Di=Di�1)
=

log(ai3=ni)

logai
: (30)

A regular polka dot model is de�ned as the one whose

number of elements per cluster ni and the ratio of the

radii of successive clusters ai are both constants and

independent of i, that is, n and a respectively. Conse-

quently, the dilution factor and the thinning rate are

both constants in those models,

� =
a3

n
; � =

log(a3=n)

log a
: (31)

The continuous representation of the regular polka

dot model, which amounts essentially to writing the

hierarchical model as a continuous distribution, is ob-

tained if we consider r, the radius of spheres centered

on the origin, as a continuous variable. Then, from

equation (28) the radius of the elementary point mass

r0, is given by

r0 =
R1

a
; (32)

where RN is the radius of a Nth order cluster with MN

mass, VN volume, and obviously that R0 = r0. It fol-

lows from equation (32) the relationship between N and

r,

r = aNr0; (33)

where RN = r.

Notice that by doing this continuous representation

Wertz ended up obtaining an equation (eq. 33) which

is nothing more than exactly equation (18) of Pietro-

nero's single fractal model, although Wertz had reached

it by means of a more convoluted reasoning. Actu-

ally, the critical hypothesis which makes his polka dot

model essentially the same as Pietronero's fractal model

was the assumption of regularity of the model because,

in this case a and n become constants. Also notice

that this continuous representation amounts to chang-

ing from discrete to an inde�nite hierarchy, where in

the latter the characteristic length scales for clustering

are absent. Therefore, in this representation clusters

(and voids) extend to all ranges where the hierarchy

is de�ned, with their sizes extending to all scales be-

tween the inner and possible outer limits of the hierar-

chy. Hence, in this sense the continuous representation

of the regular polka dot model has exactly the same

sort of properties as the fractal model discussed by Pi-

etronero.

From equation (27) we clearly get

MN = nNM0; (34)

which is equal to equation (19), except for the di�erent

notation, and hence the de Vaucouleurs density power

law is easily obtained as

�v =
MN

VN
=

�
3M0

4�r0(logn= loga)

�
r��; (35)

where � is the thinning rate

� = 3�

�
logn

log a

�
: (36)

Notice that equations (35) and (36) are exactly equa-

tions (23), where 
 is now called the thinning rate. Fi-

nally, the di�erential density, called conditional density



154 Brazilian Journal of Physics, vol. 28, no. 2, June, 1998

by Pietronero, is de�ned as

�d �
1

4�r2
dM (r)

dr
=

�
1�

�

3

�
�v: (37)

From the presentation above it is then clear that

from a geometrical viewpoint Wertz's continuous rep-

resentation of the regular polka dot model is nothing

more than Pietronero's single fractal model. However,

the two approaches may be distinguished from each

other by some important conceptual di�erences. Ba-

sically, as Pietronero clearly de�nes the exponent of

equation (20) as a fractal dimension, that immediately

links his model to the theory of critical phenomena

in physics, and also to nonlinear dynamical systems,

bringing a completely new perspective to the study of

the distribution of galaxies, with potentially new math-

ematical concepts and analytical tools to investigate

this problem. In addition, he strongly emphasized the

fundamental importance of scaling behaviour in the ob-

served distribution of galaxies and the fundamental role

of the exponent of the power law, as well as pointing

out the appropriate mathematical tool to describe this

distribution, namely the fractal dimension. Finally, as

many fractals have a statistical nature, either in their

description or in their construction, or both, and also

are inhomogeneously distributed, the statistical meth-

ods capable of dealing with fractals must also be able

to derive well-de�ned statistical properties even from

inhomogeneous samples, fractals or not, where the av-

erage density may not be well-de�ned. Therefore, the

fractal perspective brings together a completely new set

of statistical tools capable of a comprehensive reinter-

pretation of the conclusions drawn upon the available

data about the distribution of galaxies, and without

any need of a priori assumptions about homogeneity.

All that is missing in Wertz's approach, and his

thinning rate is just another parameter in his descrip-

tion of hierarchy, without any special physical meaning

attached to it. Therefore, in this sense his contribu-

tion started and remained as an isolated work, ignored

by most, and which could even be viewed simply as

an ingenious way of modelling Charlier's hierarchy, but

nothing more.

Nonetheless, it should be said that this discussion

must not be viewed as a critique of Wertz's work, but

simply as a realization of the fact that at Wertz's time

nonlinear dynamics and fractal geometry were not as

developed as at Pietronero's time, if developed at all,

and therefore Wertz could not have bene�tted from

those ideas. Despite this it is interesting to note that

even with less data and mathematical concepts he was

nevertheless able to go pretty far in discussing scaling

behaviour in the distribution of galaxies, developing a

model to describe it in the context of Newtonian cos-

mology, and even suggesting some possible ways of in-

vestigating relativistic hierarchical cosmology.

III.5 Consequences of the Single Fractal Model

As stated above, the fractal model shown in the pre-

vious section o�ers an attractively simple explanation

for the results obtained when analysing the distribution

of galaxies by means of the new statistical methods ad-

vanced by Pietronero and collaborators. Thus, when

this statistic is applied to a fractal system some impor-

tant results that can be related to the observed distribu-

tion of galaxies are obtained. Here in this subsection we

shall discuss some straightforward results arising from

the fractal approach to the galaxy clustering problem.

But, before we start this discussion some important re-

marks must be made.

Firstly, although the fractal distribution never be-

comes homogeneous, it is a statistically fair sample in

the sense mentioned above, which is contrary to the

traditional lines where only a homogeneous sample is

taken to be a fair one.

Secondly, a three dimensional galaxy distribution

(�gures 22a,b), which has fractal properties when stud-

ied in 3D, appears relatively homogeneous at some large

angular scale (�gure 22c), loosing some of its irregular

characteristics when projected on an angular distribu-

tion. Due to this property of fractal structures, it is

necessary great care when dealing with projected struc-

tures, as their fractal features may become hidden when

dealing with 2D data (Coleman and Pietronero 1992;

Pietronero, Montuori and Sylos Labini 1997).

Thirdly, the galaxy distribution has been studied

also in terms of their mass (Pietronero 1987; Coleman



Marcelo B. Ribeiro and Alexandre Y. Miguelote 155

and Pietronero 1992) and their luminosity distribution

(Pietronero, Montuori and Sylos Labini 1997), which

is a full distribution and not a simple set of points.

The study of these distributions requires a generaliza-

tion of the fractal dimension and the use of the con-

cept of multifractals. In this case, we have di�erent

scaling properties for di�erent regions of the system,

while in the fractal case only one exponent characterizes

the entire system. A multifractal analysis also shows a

new important relation between the luminosity func-

tion (Schechter luminosity distribution) and the space

correlation properties.

Finally, equation (23) shows the intrinsic inhomo-

geneity of the fractal system, and although we cannot

yet rule out the possibility of an upper cuto� to homo-

geneity, if the fractal system were unlimited the average

density will tend to zero at increasing distances. This

possibility has provoked strong reactions from some au-

thors as they assumed it to go against established ideas

in cosmology and, therefore, could not accept it. Nev-

ertheless, it is important to point out that such a tra-

ditional view is not as sound as it seems at �rst, inas-

much as Ribeiro (1992, 1993, 1994) showed that even

Friedmannian cosmologies do allow Wertz's zero global

density postulate under a speci�c relativistic interpre-

tation.

Figure 22. A slice of the three dimensional galaxy distribution (a) and (b) compared with the corresponding (c) angular

distribution. Note that the angular distribution appears relatively homogeneous while the real three dimensional distribution

in space is much more irregular. This picture shows the Great Wall which extends over the entire sample (at least 170 h�1

Mpc) (Pietronero, Montuori and Sylos Labini 1997).
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III.5.1 Power Law Behaviour and Fractal Di-

mension

Pietronero (1987) de�ned the conditional density

from an occupied point of the fractal system as being

given by

�(r) =
1

S(r)

dN (r)

dr
=
D�

4�
r�
 ; (38)

where S(r) is the area of the spherical shell of radius r

(this is the same as Wertz's di�erential density). Now

by means of equations (15) and (23), it is straightfor-

ward to see that

�(r) =

�
3� 


3

��
r

RS

�
�


� 1: (39)

The two equations above show clearly the dependence

of �(r) on the sample size RS while this is not the case

for �(r). It is clear therefore, that in a fractal system

the function �(r) mixes up the physical properties of

the distribution with the sample size, an e�ect actually

observed in analysis of catalogues, as seen above.

Since the correlation length r0 is de�ned as the point

at which �(r) = 1, we have

r0 =

�
3� 


6

�1=


RS ; (40)

which is dependent on RS . Therefore, the fractal sce-

nario explains the dependence of the correlation length

r0 with the sample size. The point at which �(r) = 0

is

r00 =

�
3� 


3

�1=


RS: (41)

For r > r00 the function �(r) is negative and for

r � RS it can be approximated by a power law,

�(r) � A(RS)r
�
 ; (r � r0); (42)

where the two-point correlation function amplitude is

given by

A(RS) =

�
3� 


3

�
RS


 : (43)

Considering equation (10) obtained empirically, we

then have a fractal dimension D � 1:3 for the distri-

bution of galaxies in this model for small r. For larger

r the fractal dimension is D � 2.

From these simple equations it is clear that with the

exception of the exponent 
, all relevant features of the

function �(r) are related to the sample radius RS and

not to the intrinsic properties of the system.

Equation (43) allows us to obtain a new interpre-

tation of the di�erence in the amplitude of the corre-

lation (42). Considering now a sample radius RG for

the galaxy catalogue, the amplitude of the two-point

correlation function is clearly given by

AG =

�
3� 


3

�
RG


 :

In the case of clusters we then have

AC =

�
3� 


3

�
RC


 :

The hypothesis of self-similarity means that it is

the exponent of the power law which matters as giv-

ing the property of the structure. The amplitude is

just a rescaling factor related to the size of the sample

and the lower cuto�, without a direct physical mean-

ing. As an example, under a rescaling of the length

by a factor b such that r ! r0 = b � r, a self-

similar function will be rescaled as the functional rela-

tion f(r0) = f(b � r) � A(b) � f(r). This is clearly

satis�ed by power laws with any exponent. In fact, for

f(r) = f0r
D we have f(r0) = f0(br)

D = (b)D � f(r).

Therefore, under the assumption of a single self-similar

structure, the amplitudes AG and AC should be related

by
AC

AG
=

�
RC

RG

�

: (44)

Since for the galaxy and cluster catalogues we have

RC � 5RG, equation (44) predicts (with 
 = 1:8)

AC

AG
� 18;

which is the value found for the discrepancy in the am-

plitudes. Note that this is a simple evaluation of the

mismatch by a single deterministic fractal which does

not take into account any stochastic process, which

would be a more realistic situation in the case of the

distribution of galaxies. This discussion shows therefore

that correlations of clusters appear to be a continuation

of galaxy correlations in larger scales, and the discrep-

ancy in amplitudes simply means di�erent observations

of the same system at di�erent depth samples.

So we see that the fractal hypothesis explains many

of the puzzling problems so far encountered in the study
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of the large scale distribution of galaxies. It is impor-

tant to say that this is accomplished with a model of re-

markable simplicity, showing once more the strength of

the fractal concept of dealing with this sort of complex

problems. Therefore, from a theoretical point of view,

due to the simplicity of the model and the strength

of the concept, it becomes seductive to apply a fractal

approach to modern cosmology.

III.5.2 Possible Crossover to Homogeneity

Until now we have seen that this new statistical ap-

proach shows no evidence for a homogeneous distribu-

tion of the visible matter on large scale, but we cannot

yet exclude this possibility, as it may occur at some

scale not yet observed.

As we saw in xIII.3 the conditional density �(r) =

G(r)=hni, obeys a power law for r < �0, and for r � �0

it is constant.

By equation (38), we have

�(r) =
D�

4�
r�(3�D); r < �0; (45)

�(r) = n0; r � �0: (46)

Then at �0, we have

n0 =
D�

4�
�0
�(3�D): (47)

Therefore the function �(r) has a power law behaviour

up to �0 and it is constant thereafter.

The integrated conditional density (17) may be writ-

ten as

I(r) = �rD; r < �0; (48)

I(r) = D��0
D

�
1

D
�

1

3

�
+

1

3
D��0

�(3�D); r � �0;

(49)

which is the total number of galaxies. The change in

the power law from D to 3 indicates the crossover to

length �0.

If we want to consider the function �(r) for a system

with a crossover to homogeneity we have to specify our

sample radius RS (RS > �0) explicitly. Considering

that the density hni is the total number of galaxies per

volume unity of the sample, we have

hni =
D�

4�
�0
�(3�D)

"
1 +

�
3

D
� 1

��
�0
RS

�3
#

(50)

and, considering equation (45) we obtain

�(r) =
D�

4�

r�(3�D)

hni
� 1; r < �0; (51)

�(r) =
D�

4�

�0
�(3�D)

hni
� 1; r � �0; (52)

where the dependence of hni on RS implies that the

point at which �(r) = 0 is a function of �0 and RS.

Then, the function �(r), which is still inappropriate,

becomes an appropriate tool only in the limiting case

where �0 � RS , in the sense that hni becomes inde-

pendent of RS . Then, in this case we have

hni =
D�

4�
�0
�(3�D); (53)

�(r) =

�
r

�0

��(3�D)

� 1; r < �0; (54)

�(r) = 0; r � �0: (55)

Only in this case the length r0 is related to the corre-

lation length �0,

r0 = 21=(D�3)�0: (56)

For the case D � 2 one has r0 = �0=2.

IV. Conclusions

In this paper we have studied the distribution of

galaxies by means of a Newtonian fractal perspective.

We began with a brief introduction to fractals, and in x

we discussed a more appropriated statistical analysis

for the large scale distribution of galaxies. We also

discussed the fractal hypothesis itself which contrasts

to the orthodox traditional view of an observationally

homogeneous universe. We �nished this section show-

ing the Pietronero-Wertz's single fractal (hierarchical)

model for describing and analysing the large scale dis-

tribution of galaxies and some of its consequences. In

summary the main results of xIII are:

1. the employment of the two-point correlation func-

tion �(r) for a statistical analysis of the galaxy

distribution is problematic due to the a priori as-

sumption of homogeneity. This assumption is hid-

den in the average density which does not seem to

be a well de�ned physical property for the galaxy

distribution because it is a function of the sam-

ple size, a result consistent with the fractal view of
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such a distribution. In order to solve this problem

Pietronero (1987) introduced a new statistical ap-

proach for the galaxy distribution, which can test

the assumption of homogeneity;

2. the comparison between two di�erent methods

of analysis shows that an inappropriate method

leads to wrong conclusions in volume limited cata-

logues, due to its �nite size and shallowness. Due

to this they may wrongly be considered as not

fair, as shown in table . So, an apparent homo-

geneous distribution in the region V � r < � of

�gure , where V is the Voronoi's length and � is

the inferior limit for reaching the correct scaling

behaviour, is due to the �nite size e�ects, and the

correct scaling is reached for the region r � �;

3. homogeneity must be regarded as a property of

the sample and not a condition of its statistical

validity;

4. the fractal model o�ers an attractively simple de-

scription of the galaxy distribution in the ob-

served universe, and the results produced by the

new statistical approach in the form of the condi-

tional density �(r) and its derived functions are

consistent with this fractal picture. Therefore the

galaxy catalogues available so far may be con-

sidered as statistically fair samples of this distri-

bution, which is contrary to the traditional lines

where only a homogeneous sample is considered

to be fair;

5. from this new statistical approach we can see an

agreement between various available redshift cat-

alogues in the range of 0:1 � 103 h�1 Mpc, as

shown in �gure , without any tendency to homo-

geneity at this scale. These redshift catalogues

obey a density power law decay and have fractal

dimension D � 2;

6. a three dimensional galaxy distribution, which

has fractal properties when projected on an angu-

lar distribution, appears relatively homogeneous

at some large scale;

7. the function �(r) becomes an appropriate tool

only in the limiting case where the sample size is

much bigger than the new correlation scale, that

is, when �0 � RS , so that the orthodox correla-

tion length r0 is related only to the new correla-

tion length �0, and not to the sample size RS.

Some authors, although recognizing the problems of

the standard analysis, have argued against a fractal dis-

tribution from a somewhat unconvincing perspective.

For example, Davis et al. (1988) have claimed that

although their analysis con�rm the dependence of the

correlation length with the sample size, this e�ect can-

not be explained by Pietronero's single fractal model

because they found r0 to be approximately proportional

to the square root of the sample size, while it is linear

in Pietronero's picture. Davis et al. (1988) neverthe-

less have o�ered only statistical explanations where it

is not always clear what are the hidden hypotheses as-

sumed by them. This point is of especial concern due

to the current widespread practice of \correcting" the

samples in order to \improve" them for \better" statis-

tics. The problem with this sort of practice is that the

homogeneous hypothesis is often implicit, and this fact

considerably weakens that kind of statistical explana-

tions. 8

Another important point that ought to be said again

about the fractal system as de�ned above is its total

incompatibility with the two-point correlation function

�(r). The problem lies in the fact that this sort of frac-

tal system does not have a well de�ned average density,

at least in between upper and lower cuto�s. Ru�ni,

Song and Taraglio (1988) have, nonetheless, pointed

out that there are fractal systems in which the average

density does tend to a �nite and non-zero value, which

led them to suppose that this should be the case in cos-

mology. Although this is a reasonable point to raise,

the problem with this argument, as we see it, is again

the a priori assumption that this must be the case in

cosmology, i.e., that in cosmology the average density

ought to tend to a �nite non-zero limit for very large

distances. Obviously, behind this idea lies the homo-

geneous hypothesis which Ru�ni, Song and Taraglio

(1988) try to incorporate into the fractal cosmology,

but, once again, by means of an untested argument.

8 See Coleman and Pietronero (1992) for criticisms of this sort of practice and some examples of these \corrections" where the
homogeneous hypothesis is actually implicit in those procedures.
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From a relativistic perspective, at �rst it would seem

reasonable to think that this should be the case because

the standard Friedmannian cosmology is spatially ho-

mogeneous, and as this is the most popular relativistic

cosmological model, we would have to incorporate some

sort of homogenization or upper cuto� in the model,

sooner or later. However, as shown by Ribeiro (1992,

1993, 1994) this viewpoint may be a rather misleading

approach to the problem as we can have an interpreta-

tion of the Friedmann models where they have no well

de�ned average density.

The conceptual advantage of Pietronero's scenario

is the absence of this sort of a priori reasoning, which

means that it has the ability of describing properly the

distribution of galaxies if it really forms a fractal struc-

ture. In other words, this scenario is able to free our-

selves from the homogeneity hypothesis, putting us in a

position to test whether or not the galaxies are actually

distributed uniformly, rather than starting assuming it

as so far has been mostly done in the literature con-

cerning observational cosmology. If the distribution of

galaxies does tend to homogeneity, this will be indicated

in the measurements of the fractal dimension inasmuch

as in such case it will tend to the value D = 3. Nev-

ertheless, despite this advantage o�ered by the fractal

picture, some researchers still claim that fractals bring

\nothing new" to the galaxy clustering problem, while

others, even if accepting fractals at small scales, insist

on the need for an eventual homogeneity at an unspec-

i�ed large scale. It is our point of view that it is best to

allow this issue to be decided by the observations them-

selves, by the measurement ofD, rather than be guided,

or misguided, by untested assumptions on homogeneity

as has been mostly done so far. In such case, great care

must be exercised in order to avoid introducing in the

tests the very hypotheses that they are supposed to ver-

ify. Currently there is a lot of controversy surrounding

those points of homogenization or not at larger scales

and the validity of the methods used, with claims and

counter claims on the results published succeeding each

other, and no apparent sight of a consensus being even

close to being achieved. 9
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