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We reconsider a nonlinear quantum kinetic theory which is built within the context of a
nonequilibrium statistical ensemble formalism. This is the Nonequilibrium Statistical Oper-
ator Method based on a variational principle, namely, the Maximization of the Informational-
Statistical Entropy, and referred to as MaxEnt-NESOM. It may be considered as encom-
passed within the framework of E. T. Jaynes' Predictive Statistical Mechanics. These theory
has an ample domain of application covering a large class of experimental conditions. We
consider a particular { and quite important { limiting case, consisting in the Markovian
approximation. For illustration we applied it to the study of a spin system in interaction
with the lattice. The presentation is an extended and detailed version of a Brief Report
published in Phys. Rev. E 57, 3637-3640 (1998).

I Introduction

The description of the evolution { and eventual steady

states { of the macroscopic state of dissipative sys-

tems, that is, the creation of reliable, practical, and

soundly based kinetic theories has constituted a long

sought task. Earlier attempts to tackle this prob-

lem go back to the fundamental work of Maxwell and

Boltzmann in the nineteen century. They were fol-

lowed in the present century by a vast number of

contributions by many authors, and, we may men-

tion the emergence of speci�c methods like the Fokker-

Planck equations, the master equations, the general-

ized Newton-Langevin-Mori equations, the equations of

Hydrodynamics as the Navier-Stokes equations, Fick's

and Fourier's di�usion equations, Bloch equations in

magnetism, etc. The several attempts looking for a

comprehensive kinetic theory have been summarized by

Zwanzig [1]. Among them it may be highlighted the

Nonequilibrium Statistical Operator Method. In the

words of Zwanzig in 1981, it "has by far the most ap-

pealing structure, and may yet become the most e�ec-

tive method for dealing with nonlinear transport pro-

cesses." Since then the NESOM has been largely de-

veloped by several authors along either heuristic or

projection operator techniques. These di�erent ap-

proaches can be encompassed within a unifying theory,

based on a variational principle [2, 3], which, seemingly,

may be considered to be contained within the scope of

Jaynes' Predictive Statistical Mechanics [4]. In this uni-

fying approach Jaynes' principle of maximization of the

informational-statistical entropy (MaxEnt)plays a fun-

damental role and then we will refer to the formalism

as the MaxEnt-NESOM (it is "revisited" in references

[5,6]). We stress that the MaxEnt-NESOM provides:(i)
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microscopic (mechanical-statistical) foundations for a

thermodynamics for dissipative processes, the so-called

Informational Statistical Thermodynamics (sometimes

referred to as Information-theoretic Thermodynamics;

see for example short historical notes and a brief review

in reference [7], see also references [8,9]); (ii) a response

function theory with a accompanying nonequilibrium

thermodynamic double-time Green function method

[3, 10]; (iii) a generalization of Boltzmann's transport

theory [11] and Mori's equations [3, 12]; and (iv) a

generalized nonlinear quantum theory of a large scope

[2, 3, 13, 14, 15].

Such nonlinear kinetic theory [12, 13, 14, 15] is of

large relevance for dealing with a large class of ex-

perimental situations in dissipative systems arbitrarily

away from equilibrium. At this point we call the atten-

tion to the fact that among the di�erent approaches to

the MaxEnt- NESOM, the one due to Zubarev [2, 13]

(the renowned Russian scientist deceased a few years

ago [16]) appears to be a most concise and practical

one. Zubarev's approach was used in the derivation of

the generalized transport theory reported in reference

[15]. A quite important limiting case in this theory

is the so-called Markovian limit, valid in the weak cou-

pling limit of interaction between subsystems, when one

can retain terms only up to second order in the inter-

action strength. It can be applied to a large section of

experimental situations, which o�er an excellent testing

ground for the theory, and the numerical results that

follow are in a very good agreement with experimental

data. Among others, we may call the attention to the

case of pump-probe experiments in ultrafast laser spec-

troscopy in the highly excited photoinjected plasma in

semiconductors (see for example reference [17]). These

facts point to the relevance of performing a careful con-

sideration and discussion of the so-called Markov limit

in MaxEnt-NESOM nonlinear quantum kinetic theory.

This necessity is reinforced by the fact that such results

have received some criticism [18]. After a presentation

and discussion of the instantaneous-in-time approxima-

tion in Zubarev's approach to MaxEnt-NESOM, we ap-

plied the theory to a spin system in interaction with a

thermal bath which we analise in detail, deriving the

equations of evolution for the magnetization. The solu-

tion is obtained and the �nal approach to equilibrium

is evidenced. In the process, it is shown that adverse

arguments advanced in [18] are incorrect.

The paper is organized as follows: in the next sec-

tion we �rst brie
y review the fundamentals of the

MaxEnt-NESOM in order to o�er the reader with a

self-contained article, characterizing the main points

and results that are of relevance for the purpose of

describing, next, how to obtain the instantaneous in

time (memoryless or Markovian) approximation for the

MaxEnt-NESOM kinetic equations, which describe the

irreversible evolution of the macroscopic state of the

system towards �nal equilibrium. In section III the re-

sults are applied to a system composed of a many-spin

subsystem in interaction with lattice vibrations. Sec-

tion IV contains a summary of results and concluding

remarks.

II The Markovian Limit of the

Kinetic Theory

The �rst, and fundamental, step in MaxEnt-NESOM is

the choice of the basic set of variables deemed appro-

priate for the characterization of the macroscopic state

of the system. This involves a description in terms

of, say, the mechanical quantities
n
P̂j

o
; j = 1; 2; :::,

with the upper circum
ex indicating Hermitian oper-

ators. The MaxEnt-NESOM nonequilibrium statisti-

cal operator will be denoted by �(t). The thermody-

namics (macroscopic or mesoscopic) state is character-

ized by a point in Gibbs { or thermodynamic state {

space given, at time t, by the set of macrovariablesn
Qj(t)

o
; j = 1; 2; :::, which are the averages of the P̂j,

i.e., Qj(t) = Tr

(
P̂j�(t)

)
. The choice of the basic vari-

ables is assisted by the fundamental Bogoliubov proce-

dure of contraction of description based on a hierarchy

of relaxation times [19], and { to it related { the ideas

put forward by, among others, Mori [20], Zubarev [13],

and Peletminskii [14], introducing a separation of the

total Hamiltonian into two parts, namely,

Ĥ = Ĥo + Ĥ 0 ; (1)

where Ĥo is the "relevant" (or secular) part composed

of the Hamiltonian for the free subsystems and a part
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of the interactions, namely, those strong enough to have

associated very short relaxation times (meaning those

much smaller than the characteristic time scale of the

experiment (or resolution time), and possessing certain

symmetry properties described below. The other term,

Ĥ0, contains the interactions related to long-time re-

laxation mechanisms. The symmetry characteristics of

the strong interactions depend on the problem under

consideration: The required symmetry { to be called

Zubarev-Peletminskii symmetry condition { is that

1

i~

h
P̂j ; Ĥo

i
=
X
k

�
jk
P̂k ; (2)

where the left side is the commutator of P̂j and Ĥo,

and the �jk are c-numbers determined by Ĥo. It should

be noticed that quantities P̂j can be dependent on the

space variable, i.e., when they are densities and then

quantities � can also be di�erential operators.

Equation (2) provides a closure-like condition for

the choice of the set of variables. In reference [9] this

procedure is related to the question of the choice of the

basic variables in phenomenological irreversible ther-

modynamics. Practical use of the formalism usually

requires to introduce an appropriated truncation pro-

cedure (see second of references [9]) along the chain that

application of the method produces, or an asymptotic

expansion yielding renormalized coe�cients. It ought

to be noticed that Eq.(2) also encompasses the case of

quantities P̂ such that they have associated null coef-

�cients �; i.e., they are constants of motion under the

dynamics generated by Ĥo. Accordingly they are ac-

ceptable basic variables, and Ĥo itself falls under this

condition, and should be always present in the basic

set.

Assuming that the basic set
n
P̂j

o
has been cho-

sen, the nonequilibrium statistical operator is built in

the MaxEnt-NESOM, i.e. within the context of Jaynes'

Predictive Statistical Mechanics, using the principle of

maximization of the statistical-informational entropy,

with fading memory and ad hoc hypothesis which in-

troduce from the outset irreversible evolution from an

initial condition of preparation of the system: for de-

tails see references [2, 3, 5, 6]. Summarizing for later

use, in the particular case of Zubarev's approach to the

MaxEnt-NESOM [2, 13] (by far the most concise and

practical one, and founded on sound physical basis) the

nonequilibrium statistical operator is given by

c

��(t) = exp

�
ln
�
� (t; 0)�

Z t

�1

dt0e� (t
0�t) d

dt0
ln
�
� (t0; t0 � t)

�
; (3)

where
�
� is an auxiliary operator (or coarse-grained part of ��(t)) { of large practical relevance in the theory { given

by the Gibbsian-like generalized nonequilibrium canonical distribution

�
� (t; 0) = exp

8<
:��(t) �

X
j

Z
d3rFj(r; t) P̂j(r)

9=
; ; (4a)

and
�
� (t0; t0 � t) = exp

�
� 1

i ~
(t0 � t) Ĥ

�
�
� (t0; 0) exp

�
1

i ~
(t0 � t) Ĥ

�
: (4b)

d

In Eq.(4), �(t) ensures the normalization of
�
�, and

the Fj(t) (as well as �) are the Lagrange multipliers

that MaxEnt introduces. In Eq.(3) � is a positive in-

�nitesimal that goes to zero after the calculation of the

averages is performed; this implies to introduce Bo-

goliubov's quasi-averages procedure [21], a symmetry-

breaking process, in this case corresponding to a break-

ing of time-reversal symmetry in Liouville equation

[2, 3, 5, 11]. Space dependence has been explicitly in-
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troduced, and in the Eq.(3) it is clear the presence of

retro-e�ects with fading memory, where quantities P̂j

are given in the time-dependent Heisenberg representa-

tion. Variables Fj(t) are related to the macrovariables

Qj through the relations

Qj(r; t) = Tr

(
P̂j(r) ��(t)

)
; (5)

with j = 1; 2; :::, and the method allows for the con-

struction of a quantum nonlinear, nonlocal in space,

and memory dependent kinetic theory describing infor-

mation on the dissipative evolution of the macroscopic

nonequilibrium state of the system [2, 3, 13, 15].

Let us consider the construction of the MaxEnt-

NESOM nonlinear quantum kinetic theory. First, it

should be noticed that the equations of evolution for

the basic variables are simply the time derivative of

Eq.(5), namely,

@

@t
Qj(r; t) = Tr

�
1

i~

h
P̂j(r); Ĥ

i
��(t)

�
; (6)

that is to say, they are the average over the nonequilib-

rium ensemble of the corresponding Heisenberg equa-

tion of motion for quantities P̂j(r). Equation (6), tak-

ing into account that j = 1; 2; :::, constitutes, in gen-

eral, a coupled set of integro-di�erential equations of

formidable proportions. But the use of the separation

of the Hamiltonian as provided by Eq.(1), and the clo-

sure condition of Eq.(2), allows to obtain an alternative

expression for the right hand side of Eq.(6) easier to

handle mathematically and allowing to obtain a more

clear physical picture of the dissipative processes that

develop in the media. A price is paid, consisting in the

fact that we obtain an in�nite series of collision opera-

tors associated to two, three, etc, collisional processes,

but at the same time permits evaluation of the di�erent

contributions and to introduce a cut-o� in the series ex-

pansion. This, of course, amounts to an approximation

and therefore each particular case requires an evalua-

tion of its validity [22].

We brie
y summarise the results: Taking into ac-

count that the Liouville equation with in�nitesimal

sources in Zubarev's approach to the MaxEnt-NESOM,

is given by

@

@t
��(t) +

1

i~

h
��(t); Ĥ

i
= ��

�
��(t)�

�
� (t; 0)

�
; (7)

where �� is given in Eq.(3) and
�
� in Eq.(4), substracting

from both sides the quantity

@

@t

�
� (t; 0) +

1

i~

�
�
� (t; 0) ; Ĥ

�
; (8)

and multiplying both sides of the resulting equation on

the left by exp
n
� t Ĥo

i~

o
and on the right by its adjoint,

and then by e�t, and resorting to Zubarev-Peletminskii

symmetry condition of Eq.(2) together with somemath-

ematical manipulations (Appendix A in [15]), we obtain

that

c

��(t) =
�
� (t; 0)� 1

i~

Z t

�1

dt0e�(t
0�t)

h
��(t

0; t0 � t)o ; Ĥ
0(t0 � t)o

i

� 1

i~

X
j

Z t

�1

dt0e�(t
0�t) Tr

( h
P̂j ; Ĥ

0
i
��(t

0)

)
�
�
� (t0; t0 � t)o

�Qj(t0)
; (9)

where � stands for functional derivative and subindex nought indicates that the dynamical operators are given in

interaction representation, that is, in Heisenberg representation with the partial Hamiltonian Ĥo, and

��(t
0; t0 � t)o = e�

1

i
(t0�t)Ĥo ��(t

0) e
� 1

i~
(t0 � t)Ĥo

:

Equation (9) is an integral equation for ��(t) and admits a solution by iteration, namely,

��(t) =
1X

m=0

�(m)
� (t; 0) ; (10)
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as described in reference [15]. Using the partial solutions �
(m)
� of Eq.(10), as given in [15], in Eq.(6) leads to

equations of evolution of the type

@

@t
Qj(t) =

1X
m=0



(m)
j (t) ; (11)

where



(0)
j (t) = Tr

(
1

i~

h
P̂j ; Ĥo

i
�
� (t; 0)

)
; (12a)


(1)
j (t) = Tr

(
1

i~

h
P̂j ; Ĥ

0
i
�
� (t; 0)

)
; (12b)


(2)
j (t) =

 
1

i~

!2 Z t

�1

dt0 e�(t
0�t) Tr

�h
Ĥ0(t0 � t)o ;

h
Ĥ0 ; P̂j

ii
�
� (t0; t0 � t)o

�

+
1

i~

X
k

Z t

�1

dt0 e�(t
0�t) 
(1)

k (t0)
�

�Qk(t0)
Tr

�h
Ĥ0 ; P̂j

i
�
� (t0; t0 � t)o

�
; (12c)

d
are the �rst three contributions, which are those of in-

terest in what follows, and then we omit to write down

the other cumbersome higher order contributions. We

stress that Eqs.(11), which are highly nonlinear, are

applicable to a large array of situations in systems far-

from-equilibrium conditions, contain nonlocal in space

contributions (space correlations) and memory (time

correlations), and can be considered as far-reaching

generalizations of Mori's equations [20]. It may be no-

ticed that this is a kind of fading memory (as a result

of the presence of the kernel in the form of the expo-

nential), or, alternatively, can be interpreted as a time-

smoothing procedure in Kirkwood's sense [23]. Contri-

butions 
(0) and 
(1) are { in Mori's terminology { pre-

cession terms, while 
(2) is a proper collision integral,

and the �rst one in Eq.(11) to contribute to dissipation

(
(0) and 
(1) are dissipationless contributions).

Again, because of the fundamental tenets of the

method, mainly Eqs.(1) and (2), the collision integral

of Eq.(12c), which, clearly, contains (fading) memory

e�ects, can be rewritten in terms of only the auxiliary

operator
�
� (t; 0) at the time t when a measurement is

performed. For that purpose we introduce what we call

a memory-propagating operator � in such a way that

�
� (t0; t0 � t) = �(t; t0 � t)

�
� (t; 0) ; (13)

with the details of the calculation of this memory-

propagating operator given in reference [15]. We simply

notice that it can be written in the form

�(t; � ) = 1l +
1X
k=1

�(k)(t; � ) ; (14)

where � � t0 � t and �(k) is a correlation function in

a k-power order in the interaction strengths in Ĥ0 [15].

The �rst term, namely the unit operator 1l, does not

propagates memory, the latter being accounted for in

the series of �(k) operators of k-power (k = 1; 2; :::)

in the strengths of the interactions contained in Ĥ0.

Therefore the memoryless limit corresponds to the one

of weak coupling between subsystems.

Futhermore, as shown elsewhere [15], the collision

integrals 
(m) for m � 2, can be rewritten in terms of

simpler collision integrals in the form


(m)
j (t) =

1X
n=m

(m)J
(n)
j (t) : (15)

Without going into details (some considerations are

given in [15] and further discussions will be reported

in a forthcoming article), it is veri�ed that the par-

tial collision integrals J (n) are composed of three types

of contributions, namely, (i) a main one corresponding

to the Born series in perturbation theory for nth-order

collisions averaged over the nonequilibrium ensemble;

(ii) a second one which propagates the e�ect of the
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change in the nonequilibrium thermodynamic state of

the system during its evolution while the mechanical

collisions described by (i) are occurring; and (iii) cor-

rections coming frommemory e�ects, which, as noticed,

since m � 2, are of order three and up in the interaction

strengths. These three di�erent contributions may be

termed as dissipation e�ects arising out of: (i) the re-

sult of \viscous" forces; (ii) accounted for the change in

the variables that characterize the evolving macrostate;

and (iii) the e�ect of the evolving history (or memory)

of a fading character implying in irreversible thermo-

dynamic behavior of the system.

Let us concentrate our attention in the term with

m = 2, and for simplicity let us retain only the contri-

bution of type (i), in this case implying in the Golden

Rule of QuantumMechanics averaged over the nonequi-

librium ensemble. In a large number of cases, as the

one to be considered in next section, the contribution

of type (ii) cancels out because of the properties of the

subsystem that acts as an ideal reservoir. Finally, ne-

glecting the contribution of type (iii) implies in a mem-

oryless approximation: this means that in Eq.(14) we

keep only the term 1l and, then, the contribution from

this collision integral is exclusively of second order in

the interaction Ĥ0. The resulting collision integral, to

be designated by J (2) is [13, 15]

c

J
(2)
j (t) =

 
1

i~

!2 Z t

�1

dt0 e�(t
0�t) Tr

�h
Ĥ 0(t0 � t)o ;

h
Ĥ 0 ; P̂j

ii
�
� (t; 0)

�
: (16)

d
Consequently the memoryless (Markovian) kinetic

equation is, in MaxEnt-NESOM, and in the conditions

stated above implying that J (1) = 0, given by

d

dt
Qj(t) = J

(0)
j (t) + J

(2)
j (t) ; (17)

where we wrote J
(0)
j (t) instead of the 
(0)

j (t) of

Eq.(12a). Let us next apply these results to a particular

system.

III A Spin-Lattice System

Let us consider a system of N spins in interaction with

a lattice, the latter composed of a gas of phonons at

temperature To and to be considered as an ideal reser-

voir, and in the presence of a magnetic �eld B =

(Bx; By; Bz). Spin-lattice relaxation is of fundamen-

tal relevance in the area of eletronic paramagnetic res-

onance, the �rst studies dating back to the work of

Waller in 1932. Two types of processes were proposed, a

direct one with absorption or emission of a phonon, and

a so-called Raman process with scattering of phonons.

The theory was extended by Van Vleck on the basis of

the study of the e�ect arising out of the modulation of

the crystalline eletrostatic potential. We are consider-

ing here an ideal model involving only the direct process

mentioned above [24]. In this case the Hamiltonian is

of the form of Eq.(1), where now [24]

Ĥo = ĤS + ĤR (18)

with

ĤS =
NX
j=1

�
~!xŜjx + ~!yŜjy + ~!zŜjz

�
; (19a)

ĤR =
X
k

~!
k

�
a+
k
a
k
+

1

2

�
; (19b)

and

Ĥ0 = i
p
� ~

NX
j=1

X
m

Ŝjm
X
k

gm(k)

�
a
k
� a+

�k

�
: (20)

In Eq.(20), m = x; y; z, in Eq.(19a) !x;y;z are the Lar-

mor frequencies of the spins in the magnetic �eld, and

ĤS accounts for the precession of the spin around the

magnetic �eld. Moreover, Ŝx; Ŝy; Ŝz are the spin-half

operators, a (a+) boson annihilation (creation) oper-

ators; � is a coupling constant, gm(k) the matrix ele-

ments of the interaction between spin and thermal bath,
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and HR the Hamiltonian of the free phonons with fre-

quency dispersion relation !
k
. The choice !y = 0,

gx = gy = 0, correspons to the model Hamiltonian used

in the theory of paraeletric resonance and relaxation,

where the Ŝm stands for isospin; see for example [25],

and in what follows for simplicity we take an isotropic,

gx = gy = gz = g, model.

The chosen set of basic dynamical variables for the

spin system is composed of 3N spin operators, namely,n
Ŝjx; Ŝjy; Ŝjz; j = 1; 2; :::; N

o
, we call

D
Ŝjmj t

E
the cor-

responding macrovariables, and Fjm(t) the associated

Lagrange multipliers. The given basic dynamical vari-

ables satisfy Zubarev-Peletminskii closure condition of

Eq.(2); in fact

1

i~

h
Ŝjx ; Ĥo

i
= �!z Ŝjy + !y Ŝjz ; (21a)

1

i~

h
Ŝjy ; Ĥo

i
= !z Ŝjx � !x Ŝjz ; (21b)

1

i~

h
Ŝjz ; Ĥo

i
= �!y Ŝjx + !x Ŝjy ; (21c)

for each j = 1; 2; :::;N . For the thermal bath, the basic

variable is the Hamiltonian ĤR and, since it is assumed

to constantly remain in equilibrium, it is statistically

characterized by a canonical distribution, in which, the

associated Lagrange multiplier is �o = 1=kBTo. More-

over,
h
ĤR ; Ĥo

i
= 0. On the other hand, the contribu-

tion to the spin dynamics due to the interaction is

c

1

i~

h
Ŝjx ; Ĥ

0
i
= i

p
�
X
k

g(k)
�
a
k
� a+

k

��
Ŝjz � Ŝjy

�
; (22a)

1

i~

h
Ŝjy ; Ĥ

0
i
= i

p
�
X
k

g(k)
�
a
k
� a+

k

��
Ŝjx � Ŝjz

�
; (22b)

1

i~

h
Ŝjz ; Ĥ

0
i
= i

p
�
X
k

g(k)
�
a
k
� a+

k

��
Ŝjy � Ŝjx

�
; (22c)

for each j = 1; 2; :::; N . For such choice of basic variables the auxiliary MaxEnt-nonequilibrium statistical operator

is

�
� (t; 0) = exp

8<
:��(t) �

NX
j=1

X
m

Fjm(t) Ŝjm

9=
; exp

n
��R � �o ĤR

o
: (23)

This coarse-grained statistical operator is the direct product of the statistical operator for the spin system times

the one for the thermal bath, the latter being the equilibrium canonical distribution as already noticed. We recall

that � and �R ensure the normalization of each one respectively, and play the role of the logarithm of partition

functions in this nonequilibrium ensemble formalism.

Applying the memoryless approximation of Eq.(17), once in this case it is in fact veri�ed that all four con-

tributions of the type J (1) [cf. Eq.(12b)] are null, it follows in a matrix form which is the same for each spin

(j = 1; 2; :::;N ), that

d

dt
M(t) = AM(t) + � ; (24)

where M(t) is the column vector with components
D
Ŝxj t

E
,
D
Ŝyj t

E
and

D
Ŝyj t

E
; � is the nonhomogeneous term in

this equation, namely, the column vector of components

�m =
�

4


Z !D

0

d!G(!)

(
2
!

S
�mm0m" (!m" � !m0 )

� !(!2 � 
2)
+
X
m0

(!m0 � !m) �(! �
)

)
; (25)

where

!
s
= !x + !y + !z ; (26a)
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2 = !2x + !2y + !2z ; (26b)

and

G(!) = � jg(!)j2D(!) ; (26c)

where D(!) is the density of phonon states, and g(!) the matrix element g(k) in frequency space in this isotropic

model. In Eq.(25), m 6= m0 6= m", m;m0;m" = x; y; z; �mm0m" = 1 if mm0m" is a ciclic permutation of xyz (i.e.,

xyz, zxy, and yzx) and null otherwise, !D is Debye cut-o� frequency. The square matrix A is

A =

2
4 �
x �!z + ax !y + ax

!z + ay �
y �!x + ay
�!y + az !x + az �
z

3
5 ; (27)

where the quantities 
m and am are given by


m =
�

2
2

Z !D

0

d!G(!) [2n(!) + 1]

("
(!m" � !m0 )2 +

X
m0

!m (!m � !m0 )

#
�(! � 
)

+
2
2

�

�mm0m" (!m0 � !m")

!2 � 
2

)
; (28a)

am =
�

2
2

Z !D

0

d!G(!) [2n(!) + 1]

("X
m0

!m0 (!m0 � !m)

#
�(! � 
)

+
2
2

�

�mm0m" (!m" � !m0 )

!2 � 
2

)
; (28b)

Finally,

n(!) = [exp f�o ~!g � 1]�1 ; (29)

is the population of the phonon modes (Planck distribution with temperature To).

Using the method of the matri�cant [26], the solution of Eq.(24) is

M(t) = �A�1 (1� exp ftAg) � ; (30)

once we take into account that the initial values are null, i.e. M(0) = 0. From this Eq.(30) we can easily see that

a steady state solution can follow only if for su�ciently large t (i.e. for t much larger than all relaxation times)

d

exp ftAg � �! 0 ; (31)

and then a steady-state (ss) magnetization follows,

given by

Mss = �A�1� ; (32)

Consequently, the behavior of the trajectories [the

evolution of M(t)] is dependent on the condition of

Eq.(31), and this is governed by the eigenvalues of the

matrix A (or Lyapounov exponents in linear stability

analysis [27]). For Eq.(31) to follow all Lyapounov ex-

ponents must have a negative real part (its modulus

standing for the reciprocal of a relaxation time), while

no steady-state may occur if at least one of Lyapounov

exponents has a positive real part (when the spins keep

precessing inde�nitely around the resulting magnetic

�eld). Let us consider the matrix of Eq.(27), whose

eigenvalues �i are, for 
 < !D, given by the expres-

sions

�1 = �� � jg(
)j2D(
) [2n(
) + 1]


2
� (33a)
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�2;3 =
1

2

�
�1 �

p
�
�

; (33b)

where

� = 
2 � (!x !y + !x !z + !y !z) � 0 ; (34a)

(then �1 < 0),

� = �21 � 4
�

2 � 2 � �

�
; (34b)

and

� = �

Z !D

0

d!D(!)
jg(!)j2 [2n(!) + 1]

!2 � 
2
: (34c)

Inspection of Eqs.(33) tells us that for a steady state

to follow is required that either

�(�) = �21 + 8 � �� 4
2 < 0 ; (35a)

(an inequality satis�ed, for all other parameter being

�xed, for � < �+, where �+ is the largest value of the

solutions of equation �(�) = 0), when, since �1 < 0,

the eigenvalues �2;3 have a rotating solution with fre-

quency j� j1=2, and a decay time 2 = j�1j, or �(�) > 0,

and


2 > 2 � � ; (35b)

what means that �2;3 are real negative numbers.

Consider now the steady state, which is the �nal

state of equilibrium with the lattice (see Appendix A).

After some lengthly but straightforward algebra, we

�nd that the components of the magnetization in the

steady state are:

c

M ss
m =

D
Ŝm

E
ss
= � ~!m

2

tanh

�
�o ~


2

�
; (36)

where

~!m = !m �m ; (37)

�m =
1� qm
1� p

; (38a)

qm = �

Z !D

0
d!D(!)

jg(!)j2
!2 �
2

("X
m0

(!m � !m0)

!m

#
(2n(!) + 1)

+

"
�2!x !y !z +

P
m0 6=m !m0

�

2 � !2m

�

! !m

#
(2n(
) + 1)

)
; (38b)

p =
2�


2

Z !D

0

d!D(!)
jg(!)j2
!2 �
2

(2n(!) + 1) � ; (38c)

d

To be consistent with the fact that the Markovian

limit is valid only in �rst order in � (second order in the

interaction strengths), we expand 1=(1� p) in a series

of powers of � around � = 0 and take only terms up to

�rst order, i.e. 1=(1�p) = 1+p+O(�2). Consequently,

up to �rst order in �, Eq.(38a) takes the form

�m = 1 + p� qm ; (39)

and then the renormalized Larmor frequencies are

~!m = !m +�!m ; (40)

where

�!m = !m (p� qm) : (41)

Moreover, taking account Eqs.(36) and (40) we �nd

that

jMssj2 = j
D
Ŝx

E
ss
j2 + j

D
Ŝy

E
ss
j2 + j

D
Ŝz

E
ss
j2

=

"X
m

~!2m
4
2

# �
tanh

�
�o ~


2

��2

=
1

4

�
tanh

�
�o ~


2

��2
� 1

4
; (42)

as it should. This is so because we have neglected

contributions of type O(�2) to be consistent with the
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Markovian approximation. The contribution linear

in � (second order in the interaction strength), in

~!2x + ~!2y + ~!2z , that is, !x�!x + !y�!y + !z�!z,

[cf. Eqs.(37) and (38)] cancels out, while those of or-

der O(�2) do not. Overlooking this point led Luczka

[18] to the wrong conclusion that the Markovian limit

in Zubarev's NESOM has not been properly derived.

He claims that Eq.(24) is incorrect, because from it

there follow unphysical results, that is, the Lagrange

parameters Fm (�n in his nomenclature) cannot in all

circumstances be real numbers as they should. In other

words, according to Luczka the Markovianization pro-

cess in Zubarev's approach does not, in this case, sat-

isfy that the sum of the squares of the steady state

values of the spin variables is smaller or at most equal

to one fourth. An alternative Markovianization pro-

cedure is attempted by Luczka resorting to a modi�ed

version of Davies' technique [28]. Equations of the form

of Eq.(24) are obtained but with a modi�ed matrix A
and vector �, which apparently lifts the above men-

tioned claimed incorrectness of the Markovianization

procedure described in the previous section. However,

the modi�ed terms lead to new equations of evolution

for the magnetization which are not Heisenberg equa-

tions of motion for the spins averaged over the nonequi-

librium ensemble as it should, which are our Eqs.(24),

but contain additional (spurious) terms. This evidently

points to some mistake in Luczka's treatment of the

problem, which, as noticed, resides in that a failure of

consistency in the calculation has been introduced, con-

sisting in the fact that he obtains the value of jMssj2
larger than 1=4, but as a consequence of the presence

of terms O(�2).

Let us now look into the relevant question of analyz-

ing the Lagrange multipliers Fm(t). A straightforward

calculation leads to the result thatD
Ŝmj t

E
= Tr

�
Ŝm

�
� (t; 0)

�

= �Fm(t)

2F (t)
tanh

�
F (t)

2

�
; (43)

where

F 2(t) = F 2
x (t) + F 2

y (t) + F 2
z (t) : (44)

Using Eqs(43) and (44), it follows that the Lagrange

multipliers can be expressed in the form

Fm(t) = �Mm(t)

jM(t)j ln
�
1 + 2 jM(t)j
1� 2 jM(t)j

�
; (45)

where M(t) is the solution of the equations of evolu-

tion for the magnetization, as given by Eq.(30), and

jM(t)j2 = M2
x (t) +M2

y (t) +M2
z (t). In the steady state

regime it follows, up to �rst order in � (second order in

the interaction strengths), that

F ss
m = �o ~ ~!m ; (46)

where ~!m are the renormalized Larmor frequencies

given by Eqs.(40) and (41). We note that the Lagrange

multipliers can be rewritten as

F ss
m = �m ~!m (47)

where �m plays the role of a kind of inverse of temper-

ature for the m-component of magnetization, which we

write as

�m = �o +��m ; (48)

where

��m = �o
�~!m
!m

= �o (p� qm) ; (49)

and p and qm are given in Eqs(38b). and (38c).

Finally, we note that using Eq.(49) in Eq.(23) { the

one that de�nes the auxiliary \coarse-grained" operator

{ and introducing the later in the expression that de-

�nes Zubarev's statistical operator in the steady state,

�ss� , one obtains a \�ne-grained" statistical operator

which coincides with the canonical distribution in equi-

librium at temperature To. This is to be interpreted

in the sense that both produce the same average val-

ues, over the ensemble, of any observable, as shown in

Appendix A.

IV Concluding Remarks

As stated in the Introduction, we have here reconsid-

ered the question of the derivation of a generalized

nonlinear kinetic theory based on the seemingly pow-

erful, concise and practical, soundly based, MaxEnt-

NESOM. We recall that the MaxEnt-NESOM is a for-

malism which can be considered to be encompassed
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within the scope of Jaynes'Predictive Statistical Me-

chanics, and which provides microscopic mechanical-

statistical foundations to phenomenological nonequilib-

rium thermodynamics and hydrodynamics in the form

of so-called Informational Statistical Thermodynamics

and Non-Classical Thermo-Hydrodynamics, as well as

a response function theory for systems far away from

equilibrium, and which is showing to be of particular

success for analyzing a large class of experimental sit-

uations. In all these situations the kinetic theory men-

tioned above { or, more precisely, the equations of evo-

lution for the basic macrovariables that characterize the

macrostate of the system { plays a fundamental role.

It has been previously noticed, and we further stress

the point, that such MaxEnt-NESOM transport the-

ory can be considered a far-reaching generalization

of Boltzmann's approach [11] and Mori's formalism

[12,15]. It can properly account for a large array

of arbitrarily far-from-equilibrium situations involving

nonlinearity, nonlocality-in-space (space correlations),

and history (or memory or retro-) e�ects (time corre-

lations), containing limiting cases (that is, restricted

theories) within its scope as, for example, Boltz-

mann's original equation, Mori's equations, Maxwell-

Cattaneo-Vernotte's equations, the equations of tradi-

tional Hydrodynamics, Fokker-Planck equations, sev-

eral approaches to master equations, etc..

The theory has been very brie
y reviewed in sec-

tion II, followed by a description of a kinetic theory,

with particular attention to the limit of taking in the

derivation the lowest order in the interacting coupling

constant between subsystems. As shown, this is the

memoryless approximation in the theory (the some-

times called Markovian kinetic equations), which, we

stress, are shown to be acceptable in the weak-coupling

limit. They are very useful equations which apply to

a large set of experimental situations, for example, the

case of the highly excited photoinjected plasma in semi-

conductors (a system of large technological, industrial

and economical interest besides the purely scienti�c

one), as reviewed in reference [17].

We have shown that the MaxEnt-NESOM equations

of evolution are composed, in the memoryless limit, of

a contribution that can be interpreted as the Golden

Rule of QuantumMechanics (involving two-particle col-

lisions) averaged over the nonequilibrium ensemble plus

a contribution arising out of the change in time of

the macroscopic variables that characterize the macro-

scopic state of the system. This last contribution has

been omitted when writing Eq.(18), on the basis that

in most cases of interest it vanishes as a result of sym-

metry considerations related to the description of the

macrostate of the system. Moreover, contributions due

to memory e�ects are of course absent in this memory-

less approximation, but are present in the contributions

of higher order than two in the interaction strengths.

Contributions to the collision integrals arising out of

memory e�ects are at least of third order (usually begin-

ning with the fourth order) in the interaction strengths

and then, as already noticed before, can be neglected

in the weak coupling limit.

Finally, in section III we have applied the theory to

a speci�c model for a spin system in interaction with a

thermal reservoir composed of the lattice vibrations in

the material. The equations of evolution for the vari-

ables corresponding to the average of the spin dynami-

cal variables are derived in the memoryless limit. They

are exactly solved and it is shown that depending on

the characteristics of the material it may follow either

a steady state or a persistent precessional motion. This

depends on the fact that the constant rate of energy

pumped on the system (via the coupling with the ex-

ternal �eld) may or may not, respectively, be dissipated

towards the reservoir. The complete solution for the

evolution of the magnetization is obtained, as well a

the correct �nal state of equilibrium of the spin system

at the lattice at temperature To.

In the process, we have compared the results we

have obtained, for the system of section III, with those

of Luczka [18]. This author mantained that the Marko-

vian approach as derived by Zubarev, Peletminskii,

and us is incorrect. As discussed in the previous sec-

tion such consideration is invalid, and the result of a

failure of consistency in the order of the approxima-

tions introduced. In a forthcoming article we compare

the MaxEnt-NESOM and Davies [28] treatment of the

Markovian limit, showing their equivalence in the weak-

coupling limit.
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Appendix A: The Limit of Equilibrium

The \�ne-grained" Zubarev's statistical operator in the �nal steady state is

�ss� = e��̂o��̂� = Tr
n
e��̂o��̂�

o
; (A.1)

where

�̂o = �o ĤR + �o ĤS + �o
X
j;m

~�!m Ŝjm ; (A.2)

and

�̂� =

Z 0

�1

dt0 e� t
0 d

dt0

2
4�o Ĥo(t

0) +
X
j;m

�o ~�!m Ŝjm(t
0)

3
5 ; (A.3)

with Ĥo = ĤR + ĤS . Noticing that

d

dt0

h
Ĥo(t

0) + Ĥ0(t0)
i
= 0 ; (A.4)

then

d

dt0
Ĥo(t

0) = �d

dt0
Ĥ0(t0) : (A.5)

Using Eq.(A.5) in Eq.(A.3), and integrating by parts, it follows that

�̂� = ��o

2
4Ĥ0 �

X
j;m

~�!m Ŝjm � B̂�(t
0)

3
5 ; (A.6)

where

B̂�(t
0) = �

Z 0

�1

dt0 e� t
0

2
4Ĥ0(t0) +

X
j;m

~�!m Ŝjm(t
0)

3
5 : (A.7)

Hence, the statistical operator in the steady state, as given by Eq(A.1) becomes

�ss� = e��o (Ĥ�B�) = Tr
n
e��o (Ĥ�B�)

o
; (A.8)

an then the average of any observable �̂ in this steady state is given byD
�̂
Ess

= lim
�!+0

D
�̂ �ss�

E

= Tr

(
�̂
e��o Ĥ

Z

)
+ lim

�!+0
��(�̂) : (A.9)
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This separation is obtained applying Heims-Jaynes expansion series for averages [29], where the �rst term on the

right is the average over the canonical ensemble, with

Z = Tr
n
exp

�
��o Ĥ

�o
being the canonical partition function. The second term, involving the � ! +0 limit,

contains the terms of the series in Heims-Jaynes expansion involving operator B� once, twice, etc. Let us consider

the contribution of this operator in the �rst term, namely,

1

Z
Z 1

0

dxTr
n
e(x�1)�o Ĥ B� e

�x�o Ĥ
�
�̂�

D
�̂
E
c

�o
; (A.10)

where
D
�̂
E
c
is the average over the canonical ensemble.

We consider �rst the contribution to B� in Eq.(A.7), and present in Eq.(A.10), containing Ĥ0(t0). According to

Abel's theorem

lim
t0!�1

D
� j Ĥ0(t0) j�0

E
= lim

�!+0
�

Z 0

�1

dt0 e� t
0

D
� j Ĥ0(t0) j�0

E
; (A.11)

for any matrix element in, say, states j�
E
. But this limit is zero because of, in Zubarev's MaxEnt-NESOM approach,

the boundary condition

lim
t0!�1

�
ln ��(t+ t0; t0)� ln

�
� (t + t0; t0)

�
= 0 ; (A.12)

in the initial value problem including Bogoliubov's principle of correlation weakening [30], or, alternatively, taking

adiabatic switching on of the interaction at to !�1.

For the other contribution containing the spin operators in Eq.(A.10), a calculation performed taking the axis

of spin quantization along the axis with directional cosines

�x = !x =
, �y = !y =
, and �z = !z =
, lead to the result that it is proportional to !x�!x + !y�!y + !z�!z,

which is zero [see main text after Eq.(42)], and �nally in Eq.(A.9)

lim
�!+0

��

�
�̂
�
= 0 : (A.13)

Therefore, the average value of any observable �̂ with either �ss� or the canonical distribution coincide, thus

de�ning the same macroscopic state. Hence, the steady state is the state of equilibrium with the lattice.

References

[1] R. Zwanzig, Where do we go from here ? in Perspec-
tives in Statistical Physics, edited by H. J. Ravech�e
(North Holland, Amsterdam, 1981).

[2] D. N. Zubarev, V. N. Morosov, and G. R�opke, Statis-
tical Mechanics of Nonequilibrium Phenomena, Vol.1:
Basic Concepts, Kinetic Theory (Akademie Verlag,
Berlin, 1996).

[3] R. Luzzi and A. R. Vasconcellos, On the Nonequilib-
rium Statistical Operator Method, Fortschr. Phys. /
Prog. Phys. 38, 887 (1990).

[4] E. T. Jaynes, Predictive Statistical Mechanics, in Fron-
tiers of Nonequilibrium Statistical Physics, edited by
G. T. Moore and M. O. Scully (Plenum, New York,
1986);Macroscopic Predictions, in Complex Systems:
Operational Approaches, edited by H. Haken (Springer,
Berlin, 1985).

[5] J. T. Alvarez-Romero and L. S. Garcia-Colin, The
Foundation of Informational Statistical Thermodynam-
ics Revisited, Physica A 232, 207 (1996).

[6] R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Con-
siderations on a Nonequilibrium Ensemble Formalism,
IFGW-Unicamp Internal Report (1997), and future
publication.

[7] L. S. Garcia-Colin, A. R. Vasconcellos, and R. Luzzi,
On Informational Statistical Thermodynamics, J. Non-
Equilib. Thermodyn. 19, 24 (1994).

[8] S. Sieniutycz and P. Salamon, Editors, Introduction
and following articles in Nonequilibrium Theory and
Extremum Principles (Taylor and Francis, New York,
1990); also, R. E. Nettleton and S. L. Sobolev, Applica-
tion of Extended Thermodynamics to Chemical, Rheo-
logical, and Transport Processes, J. Non-Equilib. Ther-
modyn. 20, 205 (1995).

[9] A. R. Vasconcellos, R. Luzzi, and L. S. Garcia-Colin,
A Microscopic Approach to Irreversible Thermody-



182 Justino R. Madureira et al.

namics I, Phys. Rev. E 43, 6022 (1991); II, ibid E
43, 6633 (1991); R. Luzzi and A. R. Vasconcellos,
The Basic Principles of Irreversible Thermodynam-
ics in an Informational Statistical Approach, Physica
A 241, 677 (1997); M. A. Tenan, A. R. Vasconcel-
los and R. Luzzi, Statistical Mechanical Foundations
for a Generalized Thermodynamics of Dissipative Pro-
cesses, Fortschr.Phys./Prog. Phys. 45, 1 (1997); R.
Luzzi, A. R. Vasconcellos and J. G. Ramos, Statistical
Foundations of Irreversible Thermodynamics, Fortschr.
Phys./Prog. Phys. in press.

[10] V. P. Kalashnikov, Teor. Mat. Fiz. 9, 94 (1971) [Theor.
Math. Phys. 9, 1003 (1971)].

[11] J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, A Clas-
sical Approach in Predictive Statistical Mechanics: A
Generalized Boltzmann Formalism, Fortschr. Phys. /
Prog. Phys. 43, 265 (1995).

[12] J. R. Madureira, A. R. Vasconcellos, R. Luzzi, J. Casas-
V�azquez, and D. Jou, Evolution of Nonequilibrium
Processes in a Statistical Thermodynamic Approach,
IFGW-Unicamp Internal Report (1997) and J. Chem.
Phys. 108, 7568 (1998); ibid 108, 7580 (1998).

[13] D. N. Zubarev, Nonequilibrium Statistical Thermody-
namics (Consultants Bureau, New York, 1974).

[14] A. I. Akhiezer and S. V. Peletminskii, Methods of Sta-
tistical Physics (Pergamon, Oxford, 1981).

[15] L. Lauck, A. R. Vasconcellos and R. Luzzi, A Non-
linear Quantum Transport Theory, Physica A168, 789
(1990).

[16] In Memory of Dmitrii Nikolaevich Zubarev (November
27, 1917 { July 29, 1992), Editorial Preface in Teor.
Mat. Fiz. 96, 321 (1993) [Theor. Math. Phys. 96, 995
(1994)].

[17] A. C. Algarte, A. R. Vasconcellos, and R. Luzzi,
Kinetics of Hot Elementary Excitations in Photoex-
cited Polar Semiconductors, Phys. Stat. Solidi (b)173,
487 (1992); Ultrafast Phenomena in the Photoinjected
Plasma in Semiconductors, Braz. J. Phys. 26, 543
(1996).

[18] J. Luczka, On Markovian Kinetic Equations: Zubarev's
Nonequilibrium Statistical Operator Approach, Physica
A149, 245 (1988).

[19] N. N. Bogoliubov, Problems of a Dynamical Theory in
Statistical Physics, in Studies in Statistical Mechanics

I, edited by J. de Boer and G. E. Uhlenbeck (Noth
Holland, Amsterdam, 1962); for additional discussions
and applications see: G. E. Uhlenbeck, in Lectures in
Statistical Mechanics, edited by M. Kac (Am. Math.
Soc., Providence, RI, 1963); L. L. Buishvili and M.
D. Sviadaze, On the Quasi-Thermodynamic Theory of
Magnetic Relaxation, Physica 59, 697 (1972); A. R.
Vasconcellos, A. C. Algarte, and R. Luzzi, On the
Relaxation-times Hierarchy in Dissipative Systems: An
Example from Semiconductor Physics, Physica A166,
517 (1990).

[20] H. Mori, Transport, Collective Motion, and Brownian
Motion, Prog. Theor. Phys. (Japan) 33, 423 (1965).

[21] N. N. Bogoliubov, Lectures on Quantum Statistical
(Gordon and Breach, New York, 1970)

[22] J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, On the
Truncation Procedure in the Nonequilibrium Statisti-
cal Operator Method, IFGW-Unicamp Internal Report
(1998), and future publication.

[23] J. G. Kirkwood, The Statistical Mechanical Theory of
Transport Processes, J. Chem. Phys. 14, 180 (1946);
ibid. 15, 72 (1946).

[24] I. Waller, Z. Phys. 79, 730 (1932); J. H. Vleck, Phys.
Rev. 57, 426 (1940); R. Orbach and H. J. Stapleton,
Electron Spin-Lattice Relaxation, in Electron Param-
agnetic Resonance, edited by S. Geschwind (Plenum,
New York, 1972).

[25] L. M. Sander and H. B. Shore, Theory of Paraelec-
tric Resonance and Relaxation, Phys. Rev. B 3, 1472
(1971).

[26] F. R. Gantmacher, The Theory of Matrices, Vol.2, Ch.
XIV, Sect. 5 (Chelsea, New York, 1974).

[27] W. E. Boyce and R. C. DiPrima, Elementary Di�eren-
tial Equations and Boundary Value Problems (Wiley,
New York, 1992).

[28] E. B. Davies, Markovian Master Equations, Commun.
Math. Phys. 39, 91 (1974).

[29] S. P. Heims and E. T. Jaynes, Rev. Mod. Phys. 34, 143
(1962), see pp. 148-150 and Appendix B.

[30] D. N. Zubarev, M. V. Morosov, and G. R�opke, in ref-
erence [2], Sections 2.3.6 and 2.4.3.


