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We have performed some calculations involving two eigenmode frequencies of 2H � TaSe2.
We have obtained a good comparison with some well established Raman scattering data for
the commensurate and incommensurate charge-density-wave phases in this compound. We
outline an approximated method to compute the determinantal equation.
Subject Classi�cation: 64.70.Rh; 77.80.Bh; S1.63

I Introduction

Many experimental and theoretical works with charge-

density-waves (CDW ) phase transitions in layered

dichalcogenide transition metals, like 2H-TaSe2, have

emphasized the importance of the phenomenological

McMillan-Landau theory [1] -[8], which was successful

in introducing the notion of discommensuration defect

or soliton-like behaviour of the incommensurate CDW

near the incommensurate-commensurate 'lock-in' phase

transition, despite the existence of alternative theoret-

ical models[9]. The compound 2H � TaSe2 has a lay-

ered structure; in each layer a hexagonal sheet of Ta

ions is sandwiched between two hexagonal sheets of

Se[10] ions. Moncton et al[11] , from the initial neutron

di�raction study found, as the temperature is lowered,

an initial onset phase transition to an incommensurate

CDW phase at 122oK followed by another phase tran-

sition to a commensurate CDW phase at 90oK.

The order parameter 
uctuation modes for the

charge-density-waves in incommensurate systems have

been studied by various authors and, in the case of

2H�TaSe2, there has been a great deal of work due to

the complexity of its phase transition picture. The un-

derstanding of the incommensurate superlattice of this

substance, has been improved following the experimen-

tal work performed by Steinitz and Genossar[12] who

inferred that in the range between 122oK and 90oK,

this superlattice presents two di�erent phases. The �rst

one with hexagonal symmetry exhibits at 112oK a �rst-

order phase transition to an orthorhombic stripe phase,

which subsequently 'locks-in' at 90oK. Chen at al[13]

have stressed that 'on cooling', X-ray di�raction stud-

ies show that the CDW , although incommensurable,

remains hexagonal and it is generally believed that a

honeycomb array of narrow discommensurations[5] can

also describe the incommensurate phase. Despite this

possibility those authors have admitted that the hexag-

onal symmetry in the incommensurate superlattice of

this compound is retained on a larger scale. Other

writers [9], [14] have introduced an alternative model,

where they have proposed three types (I, II, III) of

orthorhombic stripe incommensurate CDW phases, as

well three types (I,II,III) of double honeycomb do-

main structure for the high-temperature incommensu-

rate superlattice of a single layer having the 2H�TaSe2

structure. Although we do not study this model here,

we emphasize that these three distinct types of incom-

mensurate phases correspond to three types (I, II, III)

of commensurate phases of a single layer of this com-

pound. There is experimental evidence that both the

type-I and type-II commensurate phases occur in this

substance [11], [15]. From this approach only the type-

I can be obtained from McMillan's phenomenological



242 A. Ribeiro Filho et al.

model. Those authors [14] have also showed how the

layers could be stacked to give both hexagonal and or-

thorhombic structures.

In spite of these new theoretical approaches, our in-

terests, in this work, have been in following McMillan's

model, which is simpler and describes very well the dis-

tinct incommensurate and commensurate phases of this

substance. In section II will perform calculations in-

volving the commensurate CDW phase, maintaining

the early notation [7], [8], outlining eigenmode frequen-

cies calculations in the hexagonal commensurate CDW

phase, comparing these results with those, of incom-

mensurate CDW phase, obtained previously [7] and

providing new analytical results, a little di�erent from

ones of McMillan [8] because he omitted the contribu-

tion of the term, in his free energy expression, that

computes the amplitude 
uctuation modes (or ampli-

tudons). That writer only discussed phase 
uctuation

modes (or phasons). In section III we present some

analytical calculations of the eigenmode frequencies

(E2g, A1g) for the range of temperature decreasing from

122oK, performing a limited numerical illustration and

using a set of phenomenological parameters[7], in or-

der to �t the two dominating modes, mentioned above,

reported by Steigmeier et al[16], in his Raman scatter-

ing studies. They observed two dominating modes at

49cm�1 (E2g) and 82cm�1 (A1g), at 6oK, which were

also con�rmed by Sugai et al [17].

II Theory

Let us consider the hexagonal commensurate phase of

2H�TaSe2, which is characterized by the space group

D6h � 6=mmm. The McMillan-Landau free energy

density[8] presents, in this case, a cubic "lock-in" energy

term. This term is associated with the strong contribu-

tion to the lattice potential energy from the electrons

due to the Peierls energy gap in band structure[18].

Now following the standard procedure we expand

the order parameter as[7]

 j(
!
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3
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where we see the contribution of the cubic 'lock-in' energy term, which is present in the mentioned phase. In order

to maintain a comparison between the notation used by Holy et al[18] and McMillan[8] papers with our expression

above, we note the following correspondence with their parameters and variables: ao � A; b1 � 2B = 2Bl exp[i3(
!
qj

�
!

G)�
!
x ]; (3co + 2do) � D; bo � �1

3
E = 1

3
Re[

�

E exp(i3�o)], and fj � �jl = �jl . The minimization of the static free

energy with respect to �o gives

2ao � 3bo�o �
1

2
3b1�o + 15co�

2
o + 8do�

2
o + 4eo[Q

2
1(
1

3
�1 �Q1)
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with Q1 =

����!Qi

���� and �1 = ���!�i���.
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Now we compute the phonon frequencies and we use the expansion (2), such that this procedure corresponds to

the addition of small phase and amplitude distortions to static distortion. Using Eq. (4) we expand (3) in powers of

�jq from (2) and keeping only second order terms, and following McMillan's procedure we compute the eigenmodes,

writing in terms of the coupled modes and �nd

V = V (�o) + V + + V � + V � (5)

where
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1

2
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2
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4
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d

In order to avoid some di�culties in solving the

complete 6 x 6 characteristic determinantal equation

to compute the 
uctuation eigenmodes, we have only

considered the particular situation where
!
q is paral-

lel to
!

Q1. Such situation results from the contribu-

tion of the cross q-linear term given by Eq. (9) above,

which does not occur in the hexagonal incommensurate

case[7]. Performing some algebraic manipulations, we

are able to rewrite the original matrix as the product of

two other matrices with dimensions 4 x 4 and 2 x 2 re-

spectively. The advantage of this calculation is that the

2 x 2 determinantal equation gives directly expressions

for the E2g and E1u eigenmode frequencies; and the 4 x

4 matrix provides the eigenmodes E2g, A1g, E1u, B1u,

avoiding the degeneracy problem of the doublet ampli-

tudons or phasons respectively. With this procedure,

we �nd the following results,

E2g : E
o
2g +

1

4
(eo + 3fo + 4e2o�E

o�1
2g )Q2

1q
2 (10)

E1u :
1

8
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1

4
(eo + 3fo � 4e2o�E

o�1
2g )Q2

1q
2 (11)

where we have de�ned

Eo
2g =

1

2
3(bo �

1

4
b1)�o � (

1

2
3co + 2do)�

2
o (12)

� = (
1

3
�1 �Q1)

2Q2
1 (13)

Equation (12) gives the frequencies of the modes

with symmetry E2g at q = 0, and we also see that

the quadratic contribution in eo results from the cross

q-linear term. As we have written before[7] the expres-

sions (10) and (11) represents M�!2

4
, being ! the mode

frequency and M� = 206au. E2g and E1u are the sym-

metry characters of the irreducible representations of

the group D6h � 6=mmm.

Our 4 x 4 determinantal equation can be written as
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In these calculations we see from V +, V � and V �

expressions that a, b, c, are directly connected with am-

plitudons; a0, b0, c0, with phasons, and d with the cross

term.

In reality the exact solution of the determinantal

equation (14) is not straightforward and we have used

an approximated method in order to calculate the last

four non-degenerate 
uctuation eigenmodes. We can

outline this procedure rewriting that equation as

(���1)(���2)(���3)(���4)�(A�2+B�+C)q2 � 0

(15)

being �i the eigenvalues and A, B and C are expressed

in terms of a, a0, b, b0,...,d, as we will discuss in the

appendix. We will derive the following expression for

the four eigenvalues,

�0j = �j +
A�2j + B�j + C

(�j+1 � �j)(�j+2 � �j)(�j+3 � �j)
q2 (16)

where j = 1; 2; 3; 4 and �5 = �1, �6 = �2 and

�7 = �3: Despite this expression is not evaluated here,

meanwhile it indicates how the analytical expression

can be obtained for the eigenvalues with symmetries

A1g, E2g, B1u, E1u, respectively, to order q2. We do

not consider the case of
!
q perpendicular to

!

Q1, be-

cause this has more severe algebraic di�culties, and

we cannot obtain similar simpli�cation. If we consider

the particular case of q = 0 the determinantal equa-

tion (14) can be solved to obtain the following expres-

sion: A1g : �1

4
3(bo +

1

2
b1)�o +

1

2
(15co + 8do)�

2
o; E2g :

1

2
3(bo�
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4
b1)�o �

1

2
(3co +4do)�

2
o; B1u : 1

4
9(bo +

1

2
b1)�o;

E1u :
1

8
9b1�o. These last expressions are similar in out-

line but di�er in detail from those reported by Holy at

al[18]. We must stress that it is not possible to make

a complete comparison because those authors used a

di�erent free energy for their commensurate phase cal-

culations in 2H � TaSe2:

III Numerical Results

In this section we present the results of a numeri-

cal illustration of eigenmode frequencies (E2g, A1g) of

2H � TaSe2. We have used the normalized coordi-

nates
�
!= 1

2
M�

1

2! and
�
q= e

1

2

o Q1q de�ned previously [7],

and we have assumed the phenomenological parameters

bo =
4

30
, b1 = 1:2, co = 8

3
, do = �3:9 and fo = 0. We

have used a quadratic expression, ao = a0(T 2 � T 2
o ),

as the de�nition of Landau parameter ao in terms of

temperature, with a0 = 2:35 � 10�4. If the standard

Landau expression, ao = a0(T � To), is used at low

temperatures regime, we �nd that the order parameter

and mode frequencies have a linear component in their

dependence temperature as T ! 0, in violation of the

third law of Thermodynamics[7]. Our quadratic expres-

sion has the usual linear form for T close to To but it

also produces the thermodynamically correct behaviour

as T ! 0. For the case of the hexagonal commensurate

phase, there is a visible variation of the frequencies of

these optical phonons with temperature but it is not

strongly.

We must emphasize that our calculations are in fact

an approximation to the exact ones, because the analyt-

ical calculations involving the normal mode frequencies

in this commensurate phase are not straightforward,

due to the cross q � linear term V �. We have also

performed numerical computations in the region of the

incommensurate-commensurate "lock-in " phase tran-

sition, obtaining the order parameter's behavior as the

temperature changes over the complete range between

122oK and 0oK . We consider the experimental 'on

cooling ' situation, where the orthorhombic stripe in-

commensurate phase for this compound does not occur,

that is, in the range of temperature between 122oK and

90oK, the unique phase is the hexagonal incommensu-

rate phase.

Let as consider the equations of minimization of the

static free energy for the incommensurate case [7] with

respect to �o,

2ao � 3bo�o + (15co + 8do)�
2
o = 0 (17)

and the similar for the commensurate case (4) that give

the analytical expressions for the order parameter for

the hexagonal incommensurate (�inc) and commensu-

rate (�c) phases respectively. Then, using the new def-

inition of the Landau parameter ao, we rewrite V (�o)

for the case of both phases as,
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c

V o
inc =

1

2
3[ao � bo�inc + (

1

4
15co + 2do)�

2
inc]�

2
inc (18)

and

V o
c =

1

2
3[ao � (bo +

1

2
b1)�c + (

1

4
15co + 2do)�

2
c +

1

2
e0]�2c (19)

where e0 represents 4eo[Q2
1(

1

3
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The numerical problem is to �nd a set of

phenomenological parameters that produce the

incommensurate-commensurate \lock-in" transition

temperature at 90oK , that is, the point where V o
inc =

V o
c . To illustrate this procedure, we have used the

same values of bo, b1, co and do introduced by Ribeiro

Filho[7] and take e0 = 0:779. The next step is to solve

numerically the equation V = V o
c (T ) � V o

inc(T ) = 0,

T being the \lock-in" temperature. These calculations

can be performed when we substitute Eqs. (17) and

(4) in V o
inc and V o

c , respectively. The expression for

V is an equation V (a0) = 0 that gives the values of

a0 for a particular set of phenomenological parameters.

If we use the parameter mentioned above we obtain

a0 = 2:35 � 10�4. Figs. (1) and (2) show the free

energies V o relative to the incommensurate and com-

mensurate phases and the order parameter (�o) versus

temperature for 2H � TaSe2. Further numerical com-

putations have been made in order to �t the theoreti-

cal results for eigenmode frequencies to light scattering

data. We have concentrated on the experimental results

of Raman scattering reported by Steigmeier et al [16],

that are an important contribution to the understand-

ing of the commensurate charge-density-wave phase of

2H � TaSe2. They observed two dominating modes at

49cm�1 (E2g) and 82cm�1 (A1g), at 6oK, which were

con�rmed by Sugai et al [17]. We have performed a

limited numerical calculation of these two eigenmode

frequencies (E2g, A1g), normalizing the Steigmeier et

al results to T = 0oK. We retain the same values

for parameters bo, b1, co, do and calculate a0 and e0

algebraically, with ao de�ned before. Then, after some

straightforward manipulations with the order parame-

ter and frequency expression of A1g and E2g, we write

for the range of temperature between 0oK and 90oK,

Figure 1. Free energies, relative to the incommensurate
(� � �) and commensurate ({) phase for a single layer of
the 2H-TaSe2 as a function of temperature with all param-
eters given in the text.

Figure 2. Order parameter (�0) versus temperature for 2H-
TaSe2, with all parameters given in the text.
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1

4
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2
(3co + 4do); with !A1g

(0) and !E2g
(0) being the experimental values of

Steigmeier et al, and �c(T ) has been obtained from the minimization of the static commensurate free energy.

In order to get an approximate picture of these modes for the incommensurate phase [7], we have written for

the range between 90oK < T < 122oK, the eigenmode frequencies as

!A1g
(T ) = !A1g

(90)

"��
�
1

4
3bo + !"A�inc(T )

�
�inc(T )

���
�
1

4
3bo + !A"�inc(90)

�
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and

!E2g
(T ) = !E2g

(90)
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1

2
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�
�inc(T )

���
1

2
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�
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��1# 1
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(23)

Equations (20-23) are plotted in Fig. (3) and give a reasonable picture of the Steigmeier et al experimental work

(1976).

d

Figure 3. Frequencies of the CDW models of 2H-Ta Se2
versus temperature. Fitting from Steigmeier et all for A1g

(��) and E2g (�� �) modes, with all parameters given in
the text.

IV Conclusions

In this work we have reported calculations of eigen-

mode frequencies for an assumed hexagonal commen-

surate charge-density-wave phase of 2H � TaSe2, de-

spite the controversy whether such phase is orthorhom-

bic [6] rather than hexagonal [11]. Fung et al (1981)

found that the commensurate phase is not hexagonal

but rather a network of orthorhombic domains and that

the hexagonal symmetry observed in scattering exper-

iments was due to domain averaging. Another inter-

esting contribution to the orthorhombic-hexagonal con-

troversy has been given by Walker and Jacobs[14] that

introduced an alternative free energy functional for the

CDW states in 2H � TaSe2. Those writers have clas-

si�ed three distinct (I, II, III) commensurate CDW

states with hexagonal (type-I layers) and orthorhom-

bic (type-II, III layers) symmetries. In fact the ex-

perimental study of the incommensurate and commen-

surate superlattices of this compound has been intense

during recent years, and there is the possibility that

new symmetry's interpretations can be improved in the

next future.

We have also performed some numerical computa-

tions in order to give an approximated picture of some

experimental results for this compound. The analytical

results for commensurate CDW phase can be corre-

lated with those ones of the incommensurate phase[7].
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We have assumed 'on-cooling' experimental situation

where only the hexagonal incommensurate phase is

present in the range of temperature between 122oK and

90oK. In the case of the commensurate superlattice we

have neglected any orthorhombic symmetry, retaining

the original picture of the hexagonal symmetry exist-

ing throughout the commensurate phase. In spite of

the limitations of this numerical illustration, it shows

the advantage of the McMillan-Landau theory in pro-

viding a uni�ed description of the charge-density-wave

phases of this compound. We have written some nor-

malized expressions for eigenmode frequencies in order

to �t the Raman scattering (E2g, A1g) data obtained by

Steigmeier et al[16]. It is important to stress that these

two previously identi�ed hexagonal E2g modes can be

then be thought of as superpositions of Ag and Blg or-

thorhombic modes, while the two previously identi�ed

Alg modes become Ag orthorhombic modes[19]. These

correlations between the two symmetry possibilities are

very interesting because they create a link between the

experimental results of those authors that found hexag-

onal or orthorhombic symmetries. Finally, we must em-

phasize that we have obtained, from Fig. 3, a reason-

able �tting from the Raman scattering data obtained

by Steigmeier et al.
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V Appendix

In this section we discuss the calculation of eigenmodes from the determinantal equation (14) using an approximated

method outlined below. We rewrite it as

��������
a� � 2c �2d 0
c b+ c� � 0 d

�2d 0 a0 � � 2c0

0 d c0 b0 + c0 � �

��������
= 0 (24)

with a; a0; b; b0; c; c0; d, as de�ned before. After performing straightforward algebraic manipulations, we write Eq.

(24) as
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A � P + [8cc0 � (a� �)(a0 � �) + 4(b+ c� �)(b0 + c0 � �)]d2 � 0 (25)

where

A =

���� a� � 2c
c b+ c� �

���� (26)

and

P =

���� a0 � � 2c0

c0 b0 + c0 � �

���� (27)

where we have neglected the quartic d-contribution. In order to get approximate solution of (25), we consider �rst

the case when d vanishes in (24). So, we have two uncoupled 2 � 2 determinantal equations A = 0 and P = 0,

which after diagonalization could be written as

(�1 � �)(�2 � �)(�3 � �)(�4 � �) = 0 (28)

In this case, using the same procedure outlined before and substituting a; a0; b; b0; c; c0; d, in (26) and (27) we �nd

�1 = �
1

4
3(bo +

1

2
b1)�o + (

1

2
15co + 4do)�

2
o +

1

2
(eo + fo)Q

2
1q

2 (29)

�2 =
1

2
3(bo �

1

4
b1)�o � (

1

2
3co + 2do)�

2
o +

1

4
(3eo + fo)Q

2
1q

2 (30)

�3 =
1

4
9(bo +

1

2
b1)�o +

1

2
(eo + fo)Q

2
1q

2 (31)

�4 =
1

8
9b1�o +

1

4
(3eo + fo)Q

2
1q

2 (32)

If we compare (29 - 32) with the expressions of A1g, E2g, B1u and E1u, given in section II, we identify these

modes as follows: �1 ! A1g; �2 ! E2g; �3 ! B1u; and �4 ! E1u. When we consider d 6= 0 in (25) we retain only

terms to order q2. After some algebraic manipulation we can rewrite (25) as

(� � �1)(� � �2)(� � �3)(� � �4)� (A�2 +B� + C)q2 = 0 (33)

where

A = 5e2o(
1

3
�1 �Q1)

2Q4
1 (34)

B = �
1

2
e2o[15(bo +

1

2
b1) + (39co + 16do)]�o(

1

3
�1 �Q1)

2Q4
1 (35)

C = 9e2of
1

2
(
1

2
bob1 + b2o �

1

8
3b21) + [bo(co + do) +

1

4
9b1co]�ogQ

2
1(
1

3
�1 �Q1)

2Q4
1 (36)

Equation (33) produces for instance the approximate value �01 of the eigenmode �1, where �01 = �1 + " with

" � O(q2). In this case when we substitute � = �01, we get

(�01 � �1)(�
0
1 � �2)(�

0
1 � �3)(�

0
1 � �4)� (A�021 + B�01 +C)q2 = 0 (37)

and to lowest order in q2,
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�01 = �1 +
A�21 +B�1 + C

(�1 � �2)(�1 � �3)(�1 � �4)
q2 (38)

Following the same procedure, we can write a general expression for these eigenvalues:

�0j = �j +
A�2j + B�j + C

(�j+1 � �j)(�j+2 � �j)(�j+3 � �j)
q2 (39)

with j = 1; 2; 3; 4, and �5 = �1, �6 = �2, �7 = �3. The values of �j are given by equations (29 - 32).


