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Liquid crystals have been very fruitful systems to study equilibrium phase transitions. Re-
cently, they have become an important system to study dynamics of �rst-order phase tran-
sitions. The moving nonequilibrium nematic-isotropic interface is a model system to study
growth of stable states into metastable states and displays a myriad of dynamical insta-
bilities that, far from equilibrium, drive the system to a scenario of spatio-temporal chaos.
We present a mean-�eld theory for the time evolution of a planar nonequilibrium nematic-
isotropic interface for pure liquid crystals using a time dependent Ginzburg-Landau equation,
which is one of the simplest approaches to dissipative dynamics. We obtain a theoretical
expression for the growth kinetics of the nematic phase into a metastable isotropic phase
and compare it with our experimental results. In a directional solidi�cation arrangement
we study instabilities of the nematic-isotropic interface of the liquid crystal 8CB doped with
water and hexachloroethane. The observed instabilities are similar to cellular instabilities
that appear during growth of crystal-melt interfaces of binary mixtures. We then compare
our results with known theories of morphological instabilities during crystal growth.

I Introduction

Equilibrium thermodynamics has contributed much to

the understanding of a variety of physical phenomena.

Like other areas of Physics, equilibrium thermodynam-

ics is based on some variational principle (maximum

entropy or minimum free-energy), such that if we know

the free-energy of the system then we are able to predict

all the properties of its, in general, unique equilibrium

state.

The diversity of shapes, forms (including living

forms) in Nature, certainly could not be explained

by equilibrium thermodynamics. We do not know if

nonequilibrium thermodynamics can explain all that

either, but at least it opens up some new possibili-

ties. In nonequilibrium thermodynamics, history (time

evolution) assumes its importance leading the system

to a variety of di�erent states, other than equilibrium

states, as energy is continuously pumped into it. When

the input of energy ceases, the system then evolves to

its equilibrium state - that is the boring state of death

for living forms. On the other hand, nonequilibrium

systems display a variety of rich and complex dynami-

cal phenomena, self-organization and pattern formation

giving rise to a great diversity of forms.

As far as I know, there is nothing like a general

variational principle for nonequilibrium thermodynam-

ics. We cannot say in general that the time evolution or

steady-states of nonequilibrium systems are determined

by some principle like minimum dissipation of energy,

or other like maximum production of entropy. In some

especial cases these principles work and in others they

do not work, raising some doubts about the usefulness

of such general principles. In hydrodynamic systems

one can �nd both situations [1 ] [2 ] . Therefore, the

usual approach to study nonequilibrium systems is to

consider each case and look for some universal behavior.

Here, universal behavior means that the time evolution

and steady-states of several di�erent real systems can

be grouped and described by solutions of a particular,

usually phenomenological, nonlinear partial di�erential

equation [2 ].

In the present work we will discuss two di�erent sit-



uations, both with very rich dynamical behavior. In

one case we shall discuss, for pure liquid crystals, the

motion of a planar nematic-isotropic interface when

the temperature of the system is quenched below its

equilibrium nematic-isotropic transition temperature,

such that the nematic phase (stable phase) grows into

the isotropic phase (metastable phase). Which order-

parameter-shape-pro�le and front velocity will be se-

lected out from several possible solutions of nonlinear

equations is what we would like to determine. One

of the simplest equations for dissipative dynamics is

a time-dependent Ginzburg-Landau equation [3 ] [4 ]

[5 ]. We will derive the kinetics of the nematic-isotropic

interface based on this equation, discuss the velocity-

selection problem and then compare the results with

our kinetic measurements [6 ] [7 ].

In the second situation, we will describe morpho-

logical instabilities that occur in the moving nematic-

isotropic interface of doped systems using an experi-

mental con�guration of directional solidi�cation. These

instabilities (cellular and dendritic) have been studied

for more than 30 years [8 ] [9 ] [10 ] in the context

of crystal-growth, because they are very important for

material processing. They are the main responsible for

the microstructure of cast metals, and, consequently,

responsible for their mechanical and electrical proper-

ties. More recently, the cellular instability was shown

to occur also in liquid crystals [11 ] [12 ] [13 ], dis-

playing a variety of new dynamical phenomena and a

scenario of spatio-temporal chaos [14 ] [15 ]. Since for

liquid crystals the parameters for triggering the cellular

instability and time scales involved are more amenable

to laboratory conditions, the moving nematic-isotropic

interface has become a model system to study com-

plex dynamics and pattern formation. We will discuss

the physical origin for the onset of the cellular insta-

bility and show some of our more recent data for the

moving nematic-isotropic interface of the liquid crystal

8CB doped with hexachloroethane and water.

II Nematic-isotropic phase tran-

sition

A. Pure systems

The nematic-isotropic phase transition in liquid

crystals is a weakly �rst-order transition. In the ne-

matic phase the rodlike anisotropic molecules inter-

act to create a long-range orientational order. The

molecules are aligned, in the average, along a partic-

ular direction de�ned by a vector �!n , the director. In

the nematic phase the center of mass of the molecules

are not correlated, therefore, concerning the translation

degrees of freedom the liquid crystal behaves as a liq-

uid : an anisotropic liquid. The quadrupolar ordering

of the nematic phase can be described by a traceless

tensor, the order parameter tensor, given by [16 ]

Q�� =
Q

2
(3n�n� � ���) (1)

where n� are the components of the director vector �!n

and Q (0 � Q � 1) is the modulus of the order param-

eter. As seen in other articles of this issue, the Landau-

de Gennes theory [16 ] can provide a phenomenologi-

cal mean-�eld description of phase transitions in liquid

crystals. The Landau-de Gennes free energy density for

nematic liquid crystals can be written as,

F = F0 +
1

2
C1Q��Q�� +

1

3
C2Q��Q�
Q
� + ::::

(2)

where F0 is the free energy density of the isotropic phase

and C1; C2; etc., are constants.

In our experiments, the liquid crystal 8CB is sand-

wiched between glass slides. Typical sample thicknesses

vary from 3 to 5 �m. The internal surfaces of the

cover glasses which are in contact with the liquid crystal

are treated with silane, what guarantees a homeotropic

con�guration for the nematic phase, i.e., the director �!n

is perpendicular to the cover glass surfaces. In this sim-

pli�ed geometry, where Qzz = Q , Qyy = Qxx = �Q=2

Qxy = Qyz = Qxz = 0 , the Landau-de Gennes free en-

ergy density can be written in terms of the scalar order

parameter Q as,

F =
1

2
AQ2 �

1

3
BQ3 +

1

4
CQ4 +

1

2
a�20T

�

�
@Q

@z

�2

(3)

where A;B;C and �0 are phenomenological coe�cients

whose values must be determined empirically from ex-

periments. As usual, one assumes that the main tem-

perature dependence is contained in A such that A =

a(T � T �) , where T is temperature, T � is the temper-

ature at which a second-order phase transition would



occur if B=0 exactly, and a is a constant. The coe�-

cient of the gradient term is also a constant which we

wrote as a�20T
�, anticipating future results. �0 is the

bare correlation length with dimension of the order of

the molecular size. Without losing generality we set the

free energy F0 of the isotropic phase equal to zero. A

schematic view of this free energy as a function of the

order parameter for di�erent temperatures and with-

out the gradient term, can be seen in Fig.1. TNI is

the nematic-isotropic transition temperature and QNI

is the order parameter at the transition. The free en-

ergy without the gradient term can describe homoge-

neous phases. In order to describe the nematic-isotropic

interface we have to include it. Let us use the homo-

geneous free energy (no gradient term) to make some

predictions for the homogeneous phases.

Figure 1. Plot of Landau-de Gennes homogeneous free en-

ergy density F for the nematic-isotropic phase transition as

a function of the scalar order parameterQ, for di�erent tem-

peratures. Parameters used are for the nematic-isotropic

transition of the liquid crystal 8CB.

To �nd the conditions describing a �rst-order phase

transition we shall, as usual, minimize the free en-

ergy density and impose the coexistence between the

isotropic and nematic phases, i.e., @F=@Q = 0 and

F (QNI) = F (0) = 0 , where QNI is the value of the

order parameter of the nematic phase at the transition

temperature TNI and Q = 0 is the value of the order

parameter of the isotropic phase. Note that the temper-

ature TNI is di�erent from the phantom second-order

transition temperature T � . By imposing the conditions

above we �nd:

TNI � T � =
2

9

B2

aC
; (4)

QNI =
2

3

B

C
: (5)

From Fig.1 we see that for T > TNI , the nematic

phase (Q 6= 0) has a local minimum (metastable phase)

while the isotropic phase (Q = 0) has an absolute mini-

mum (stable phase). For T < TNI the opposite occurs:

the nematic phase is the stable one while the isotropic

is the metastable phase. At T = T � , @2F=@Q2 = 0 ,

for Q = 0 , therefore the isotropic phase becomes ab-

solutely unstable. We also de�ne the temperature T+ ,

given by T+�TNI =
1
8 (TNI�T

�), where @2F=@Q2 = 0,

for Q+ = 3
4QNI , such that the nematic phase becomes

absolutely unstable. Therefore, the metastable region

occurs for T � � T � T+ and this is the temperature

interval where a nematic-isotropic interface can exist.

A fundamental question that must be answered is how

fast one phase grows at the expenses of the other, when

the system is quenched from one temperature to an-

other. This question is not trivial to answer and great

e�orts have been put into it in the last decades [3 ] [4 ]

[5 ] . This is the sort of question that we would like

to answer when we consider a nonequilibrium nematic-

isotropic interface.

1. Nematic-isotropic interface

At TNI the nematic and isotropic phases can coex-

ist, separated by a stationary interface. If we consider

the complete free energy density given by Eq. (3) and

imposing the boundary conditions Q(z = +1) = 0 and

Q(z = �1) = QNI , we can �nd the pro�le for Q(z).

To minimize the free energy density (�F=�Q = 0) we

then solve the Euler-Lagrange equation associated with

Eq. (3). The resulting equation is

a�20T
�
@2Q

@z2
= AQ�BQ2 + CQ3 (6)

with solution

Q(z) =
QNI

2

�
1� tanh

�
z

2�

��
(7)

where the correlation length � is related to the bare

correlation length �0 by

� = �0

r
T �

T � T �
(8)



The interface is located at z = 0 and its width is de-

termined by �. The equilibrium nematic-isotropic sur-

face tension can be calculated using the excess surface

free energy de�nition [17 ] [5 ]


e =

Z +1

�1

1

2
Ae�

2
e

�
@Q

@z

�2

dz =
1

6
Ae�eQ

2
NI (9)

where all the quantities are calculated at TNI .

2. Nonequilibrium nematic-isotropic interface

If we prepare the system initially at the equilibrium

temperature TNI , with boundary conditions Q(z =

+1) = 0 and Q(z = �1) = QNI , we will have the

pro�le Q(z) given by Eq. (7). Then we quench the tem-

perature to a value smaller than TNI but larger than

T �. The interface will start to move towards positive z,

i.e., the nematic phase starts to grow at the expenses

of the isotropic phase. It has been proposed in the lit-

erature some theoretical frameworks to compute this

velocity as a function of temperature. We will describe

below the simplest one for dissipative dynamics based

on a time dependent Ginzburg-Landau equation, given

by [3 ] [4 ] [5 ] [18 ]

�
@Q

@t
= �

�F

�Q
(10)

where � is a viscosity associated with the ordering of

the nematic phase. A transport parameter that can be

measured directly is the rotational viscosity of the ne-

matic liquid crystal 
1, which is related to � by [5 ]

[18 ]

� =

1

3Q2
NI

: (11)

The equation we have to solve is then,

�
@Q

@t
= a�20T

�
@2Q

@z2
�AQ+BQ2�CQ3 : (12)

We look for stationary solutions moving with con-

stant speed like Q(z � V t). By changing variable,

s = z � V t, we obtain,

a�20T
�
d2Q

ds2
+ �V

dQ

ds
�AQ+BQ2 �CQ3 = 0 :

(13)

We can try a solution of the type,

Q(s) =
�

2

h
1� tanh

� s

2�

�i
(14)

where � and � are to be determined. We will show

that this is indeed a solution of Eq. (13). This is not,

however, the only solution. The velocity V depends on

the shape of the interface. We can �nd a great num-

ber of shape solutions each one moving with di�erent

speed. Ben Jacob et al. and later W. van Saarlos [19 ]

[4 ] , made a nonlinear marginal stability analysis of

propagation of fronts into metastable states described

by an equation of the type of Eq. (13). They showed

that, within the metastable range, the only selected ve-

locity is the one of a moving front with pro�le de�ned

by Eq. (14). Then we can use this pro�le and uniquely

determine the velocity of the front.

We substitute Eq. (14) into Eq. (13) and obtain,

� =
3

4
QNI

"
1 +

s
1�

8

9

(T � T �)

(TNI � T �)

#

� =
4

3

�eh
1 +

q
1� 8

9
(T�T�)

(TNI�T�)

i
and �nally, the expression for the front velocity is

V =
3

4

a�e
�
(TNI � T �)

"s
1� 8

�
T � TNI

TNI � T �

�
� 1

#
:

(15)

If T < TNI the interface moves towards positive z

and it is supercooled. If T > TNI the interface moves

towards negative z and it is superheated. The di�erence

�T = T � TNI is called supercooling or superheating

depending on its sign. From Eq. (15), for tempera-

tures above T+, the front velocity becomes imaginary:

the nematic phase is absolutely unstable. For the liq-

uid crystal 8CB, TNI � T � is equal to 2K, therefore

T+ � TNI is equal to 0.25K. In fact we observe, even

for small superheatings like 0.3K , that the interface

disappears and the transition resembles a second order

transition.

For a �rst order transition and very small supercool-

ings or superheatings the velocity of the front should

vary linearly with �T . If we expand Eq. (15) impos-

ing that �T = T � TNI << (TNI � T �)=8 we obtain,

V =
3a�e
�

(TNI � T ) : (16)

This linear behavior is di�cult to observe in the case

of our liquid crystal 8CB because the linear region oc-

curs for undercoolings or superheatings much smaller



than 0.25K. This short temperature interval for the

linear behavior is a characteristic of weakly �rst-order

transitions. For instance, in the case of crystal-melt in-

terfaces this linear behavior can extend to larger tem-

perature intervals. We will �t our data of velocity as a

function of temperature using the complete Eq. (15).

In the above analysis we have neglected the latent

heat liberated during the motion of the interface. In

the case of the nematic-isotropic transition of the liq-

uid crystal 8CB the latent heat generated is very small

and can be safely neglected. This is one of the advan-

tages of studying kinetics of nematic-isotropic interfaces

rather than crystal-melt interfaces. In addition, for

the nematic-isotropic interface the Landau-de Gennes

free energy formulation can give reasonable results and

then we can make predictions based on this free energy,

like the velocity of the front shown above. For regular

crystal-
uid interfaces, as far as I know, there is no such

free energy description for the problem.

B. Doped systems

If we introduce dopants that are soluble or par-

tially soluble into the liquid crystal, a binary phase will

emerge. For very low concentrations a sketch of a bi-

nary phase diagram is shown in Fig. 2. There we show a

situation where the dopant decreases the free energy of

the solvent, then the transition temperature decreases

as the concentration of dopant increases. Also, a region

of coexistence of nematic and isotropic phases appears

between the liquidus and solidus lines. The liquidus

and solidus temperatures can be written as

TL = TNI �mLCI (17:a)

TS = TNI �mSCN ; (17:b)

where mL and mS are the liquidus and solidus slopes

and CN and CI are the dopant concentrations in the

nematic and isotropic phases respectively. For a given

temperature the dopant concentration in the nematic

phase (CN ) is in equilibrium with a dopant concentra-

tion in the isotropic phase (CI ) , such that the ratio

CN=CI = mL=mS = K, where K is the segregation

coe�cient. In the present case K < 1 .

Figure 2. Partial plot of a phase diagram for a binary
mixture with segregation coe�cient K smaller than one.
The transition temperature decreases linearly with increas-
ing dopant concentration, for small dopants concentrations.
Below the solidus line is the nematic phase (N), above the
liquidus line is the isotropic phase (I), between the two is a
region of coexistence of the two phases (N+I). Parameters
used are for water in 8CB with K = 0:75 and mL = 3:33
K/%mol.

Figure 3. Directional solidi�cation apparatus. A thin
sample of liquid crystal sandwiched between glass slides is
placed in contact with two aluminum blocks, one above and
the other below the nematic-isotropic transition tempera-
ture, separated by a 1 cm glass gap. The nematic-isotropic
interface is visualized in the gap with a microscope con-
nected to a video-system. As the sample is pulled towards
the colder block the nematic phase starts to grow. We can
revert the pulling system and also melt the nematic phase.
The motion of the interface is then video-recorded for pos-
terior analysis.

Let us consider now a experimental situation where

the liquid crystal is sandwiched between glass slides as

mentioned before and put in a directional solidi�cation

oven like in Fig. 3. The oven consists of two metal

blocks separated by some distance. One of the metal

blocks has temperature above TNI and the other below,

in such a way that a temperature gradient appears on

the sample when it is placed in thermal contact with



the two blocks. A nematic-isotropic interface will ap-

pear in the space between the two blocks. This interface

can be visualized by an optical microscope coupled to a

video system. A schematic plot of the equilibrium con-

centration of dopants is shown in Figure 4a. By using a

pulling system we start to pull the sample towards the

colder block, then the nematic phase starts to grow.

We follow the motion of the interface until it becomes

stationary in the laboratory frame. At this situation

we know that the interface is moving with the same ve-

locity as the pulling velocity. Since K < 1 , CN < CI ,

then as the nematic phase grows it segregates dopants

at the interface, then the dopant concentration at the

isotropic side of the interface starts to build up. The

steady-state situation is achieved when the segregated

dopant 
ux equals the dopant 
ux due to di�usion in

both phases. The transport equations for the dopants

in the system of reference of the moving interface are

given by [9 ] [10 ],

@CN
@t

= DN

@2CN
@z2

+ V
@CN
@z

(z < 0) (18:a)

@CI
@t

= DI

@2CI
@z2

+ V
@CI
@z

(z > 0) (18:b)

with boundary conditions,

V CI(1�K) = DN

@CN
@z

�DI

@CI
@z

at the interface

(z = 0) ; (18:c)

CN (z = �1) = CI(z = +1) = C0 ; (18:d)

where DN , DI , are the di�usion coe�cients of the

dopant in the nematic and isotropic phases respectively,

V is the velocity of the interface and C0 is the ini-

tial dopant concentration in the isotropic phase. The

steady-state solution for this problem is given by,

CN (z) = C0 for z < 0; (19:a)

CI (z) = C0

�
1 +

1�K

K
exp

�
�
V

DI

z

��
forz > 0 :

(19:b)

A steady-state dopant concentration pro�le given by

Eq (19:b) is shown in Fig. 4b. The liquidus tempera-

ture ahead of the interface and the actual temperature

pro�le in the sample is shown in Fig. 5. If the external

temperature gradient is such that the actual tempera-

ture of the interface is smaller than the liquidus tem-

perature (like in the case of Fig. 5), the liquid ahead of

the interface is supercooled (\constitutional supercool-

ing"). The interface is then growing into a metastable

phase, then instabilities occur: the planar interface be-

comes cellular. This morphological instability is named

Mullins-Sekerka instability [8 ] and has been the sub-

ject of intense research for the last 30 years [8 ] [9 ]

[11 ] [15 ] [12 ] [13 ] .

Figure 4. a) Equilibrium dopant concentration at the
nematic-isotropic interface (V = 0). Parameters are for
water in 8CB: K = 0:75 and dopant concentration in the
isotropic phase equal to C0 = 0:15% (saturation concentra-
tion of water in the isotropic phase). Interface is at z = 0,
nematic phase is at z < 0 and isotropic phase is at z > 0;
b) Steady-state dopant concentration pro�le at a moving
nematic-isotropic interface with velocity V = 0:7�m=s, as
predicted by Eq. (19.a) and Eq. (19.b). Interface is at
z = 0, nematic phase is at z < 0 and isotropic phase
is at z > 0. Parameters used are for water in 8CB with
C0 = 0:15%, K = 0:75 and DI = 70�m2=s.



Figure 5. Continuous line is the liquidus temperature in the
isotropic side of the interface for the steady-state dopant
concentration pro�le of Fig. 4b, given by Eq. (17.a), with
TNI = 313:5 K and mL = 3:33 K/%mol. The dashed line
represents the external temperature pro�le determined by
the temperatures of the ovens of the directional solidi�cation
apparatus. In the case shown here the temperature gradi-
ent G = 5 K/cm such that, near the interface, the actual
temperature of the isotropic phase is below the transition
(liquidus) temperature (constitutional supercooling). The
interface is then moving towards a metastable phase, then
cellular instabilities can occur. By increasing the external
temperature gradient, or decreasing the growth velocity this
instability can be avoided.

We are interested on the weakly non-linear regime

of such instabilities, where a simple phenomenological

description is possible. If only few Fourier modes of

the interface deformations are unstable and the rest is

damped due to dissipation, we can describe the dynam-

ics by a simple Landau amplitude equation of the type

[2 ] [10 ],

@A

@t
= !A� � jAj2A (20:a)

where A is the amplitude of the most unstable spatial

Fourier mode, ! is the growth rate of this mode and � is

the third-order coe�cient. This is the simplest Landau

equation allowed by the symmetry of the problem.

A solution to Eq. (20.a) is,

jAj =

2
4
vuut �

!
+

 
1

jA0j
2 �

�

!

!
exp (�2!t)

!35
�1

:

(20:b)

where A0 is the initial amplitude at t = 0. The behavior

above has been observed in hydrodynamic systems spe-

cially for the Rayleigh-Benard instability [2 ]. The �rst

demonstration of this universal behavior in directional

solidi�cation was made by us [12 ], using a nonequilib-

rium nematic-isotropic interface. As the growth veloc-

ity is increased the system is taken far from equilibrium,

secondary instabilities starts to occur and the interface

can become chaotic. Coullet et al. [20 ] showed that the

symmetry of the problem allows 10 di�erent secondary

instabilities. Some of them have been already observed

[15 ] . Kassner et al. [14 ] have studied some of the

scenarios of spatio-temporal chaos in this system.

We shall later present our data displaying some

of these instabilities. The nonequilibrium nematic-

isotropic interface is a very rich system to study

nonequilibrium dynamics and pattern formation.

III Experiments

A. Kinetic measurements for pure systems

Kinetic measurements are done with pure liquid

crystal 8CB. The system initially in the isotropic phase

at temperatures little above TNI is quenched down to

temperatures slightly below TNI . A moving nematic-

isotropic interface is then observed and recorded with

video techniques. Velocity of the front is measured as a

function of temperature. The apparatus oven is made

with a large copper block and visualization of the inter-

face is made with an optical microscope through sap-

phire windows. Sapphire windows are used because of

their high heat conduction coe�cient, such that the

temperature pro�le in the sample is little a�ected by

the ambient temperature and stays very uniform and

stable. The temperature is monitored by a thermocou-

ple inside of the copper block. Temperature stability is

of �0:01K during the time interval of each run. The

relaxation time for thermal equilibrium after quenching

the temperature is around 3s. We position the micro-

scope at the opposite end of our 7 cm sample in relation

to where the interface starts, such that the actual data

is taken after the temperature has equilibrated. Clearly,

we cannot safely measure very fast interfaces with high

supercoolings, then we limit the measurements to in-

terface velocities up to 5 to 6 mm/s, which will take

about 10s to enter the �eld of view of the microscope,

i.e., minimum of 3 times the thermal relaxation time.

A plot of velocity as a function of temperature is

shown in Fig. 6 [6 ] [7 ]. The data are circles with

associated error bars. The continuous line is a �t to



an expression like Eq. (15), where we use the value

TNI � T � = 2K for 8CB, such that

V = �
�p

1� 4 (T � TNI)� 1
�
;

and with the help of Eq. (11) we get,

� =
3

4

a�e
�

=
9

2

a�eQ
2
NI


1
:

Figure 6. Plot of the velocity V of the moving planar
nematic-isotropic interface as a function of temperature T .
The circles with error bars are the experimental data for the
pure liquid crystal 8CB. Continuous line is a �t to Eq. (15).

Figure 7. Time series of a doped moving nematic-isotropic
interface undergoing a cellular instability.

From the �tting we obtain the value �=3:1 � 0:5

mm/sK . We have to compare this value with the the-

oretical prediction above. The measurements of the ro-

tational viscosity 
1 were made by Viana et al.[6 ] [7 ] ,

using the technique of optical birefringence. Near TNI

its value is 
1 = 0:25 � 0:05 poise. The values for the

other parameters were measured by Faetti et al. [17 ]

and are,

a = (1:9� 0:1):106 erg=cm3K

�e = (18+17
�10):10

�8cm

QNI = (0:29� 0:01) .

With these values we obtain

� = 5:2 mm/sK , with a lower limit of 2:3 mm/sK

and upper limit of 10:4 mm/sK . The largest error

comes from the measurements of the correlation length.

Our result falls within this range.

B. Morphological instabilities in doped systems

Our measurements of instabilities on the moving

nematic-isotropic interface is done in a directional so-

lidi�cation apparatus described earlier and presented in

Fig. 3. The sample consists of the liquid crystal 8CB

doped with 1%mol of hexachloroethane C2Cl6, or with

0.15 %mol of water. In this paper we just want to give

a 
avor about the possibilities and wealth of dynamical

phenomena that the nonequilibrium nematic-isotropic

interface displays. For a more complete description of

experiments made by us and novel results with applied

electric �eld see references [12 ] [13 ] and [21 ] .

Figure 8. Circles are the measured amplitude of the most
unstable spatial Fourier mode of the interface of Fig. 7, as
a function of time. Continuous line is a �t using a solution
of the third-order Landau amplitude equation given by Eq.
(20:b).

For a particular temperature gradient, the planar

nematic-isotropic interface becomes cellular above some

critical velocity. An example of the growth of the cel-

lular instability as a function of time is shown in Fig.

7. The amplitude of the most unstable spatial Fourier

mode is displayed in Fig. 8. The data are the circles

and the continuous curve is a �t to a solution of the

third-order Landau amplitude equation given by Eq.



(20.a). From the �tting we obtain the growth rate of

the most unstable mode ! and � the third-order coe�-

cient. In a previous article we showed that in the regime

where a third-order Landau equation �ts well the data,

the results are consistent with the theory of Caroli et

al. [10 ] for this instability. As we increase growth ve-

locity, secondary instabilities start to appear and the

dynamical behavior of the interface becomes very com-

plex. An example of a secondary instability is shown

in Fig. 9. This is an vacillating-breathing instability,

where the interface shows a spatial period-doubling os-

cillatory instability. The cell width oscillates in phase

opposition with its neighbors (vacillation) and we also

notice that the cell top oscillates in a breathing fashion.

These motions are quasi-periodic and eventually the in-

terface becomes chaotic [14 ] . In Fig. 10 we show the

time evolution of the main spatial Fourier mode of the

patterns shown in Fig. 9. The oscillations are quasi-

periodic and the system evolves to a scenario of spatio-

temporal chaos.

Figure 9. Time sequence of a moving nematic-isotropic in-
terface undergoing a vacillating-breathing instability. Note
that the cell width oscillates in phase opposition with its
neighbors (vacillation) while the cell top oscillates in a
breathing fashion. t=0 s in this �gure corresponds to
t=1500 s in the actual experiment.

Figure 10. Amplitude of the most unstable spatial Fourier
mode of the nematic-isotropic interface from Fig. 9, as a
function of time. Pictures shown in Fig. 9 correspond to
interface shapes recorded from t=1500 s, while the plot of
the Fourier amplitude is for the whole run. We see a quasi-
periodic motion due to the vacillating-breathing instability.
Later on, the interface became chaotic.

More complex dynamical situations can be obtained

and a more complete characterization of these sec-

ondary instabilities are under way in our laboratory.

IV Conclusions

Nonequilibrium nematic-isotropic interfaces are very

convenient systems to study dynamics of �rst-order

phase transitions. Since a Landau-de Gennes free en-

ergy description for this phase transition is available,

predictions about the kinetics of growth can be made.

We presented calculations on the kinetics of the nematic

phase growing into a metastable isotropic phase and,

for the �rst time, kinetic measurements which compare

well with the theory presented. The nonequilibrium

nematic-isotropic interface is also a very good model

system to study morphological instabilities and pattern

formation during growth of binary mixtures. Because

the di�erence in free energy of the nematic and isotropic

phases is small (weakly-�rst-order transition), segre-

gation coe�cients are of the order of 0.7 to 0.9 what

makes experimentally easier and faster to work with

liquid crystals as compared to regular crystal-melt in-

terfaces. Also the latent heat produced during growth

can be safely neglected what makes the analysis of the

experimental results much simpler and more direct for



comparison with theoretical models. We present some

examples of the nematic-isotropic interfaces undergo-

ing a cellular instability. Also we showed an example of

a vacillating-breathing secondary instability which can

drive the system to a scenario of spatio-temporal chaos.

As the system becomes far from equilibrium , very com-

plex dynamical behavior occurs. Liquid crystals o�er

new possibilities as compared to regular solid-
uid sys-

tems, because the degree of order in both phases can

be varied under the action of electric �elds. Since the

applied electric �eld can be varied continuously, some

parameters like segregation coe�cient, capillary length

and anisotropy of the surface tension may as well be

varied continuously. Since this feature is unique for liq-

uid crystals, this opens up new interesting possibilities

for experiments. Interesting experiments would be on

the cellular-dendritic transition and test of the theory

of microscopic solvability for dendrites, both requiring

a continuous variation of surface tension anisotropy.

In this paper we reviewed two di�erent aspects of

the moving nematic-isotropic interface problem. Hope-

fully, it will give to the readers a 
avor about this area of

research and about the wealth of phenomena and com-

plex dynamical behavior that this conceptually simple

system can display.
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