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We present a review of our recent progress in the description of the elastic and dynamical
properties of the unstable periodic patterns (walls) arising in a nematic liquid crystal sample.
The Lonberg criterion for the selection of the period of these walls is analyzed. We present
a detailed study of the universal character of these walls, which is the basis for a law of
corresponding states of these periodic structures. We show the connection of correspondig
states with the constant ratio between the Miesowicz viscosity coe�cients. Finally, the
collapse of these structures is investigated. We show that it is due to the exponential
growth of the 
uctuations localized along the lines where the director does not bend at all.
PACS numbers: 61.30.Gd, 61.30.Jf, 64.70.Md.

I Introduction

In the last few years, the investigation of the properties

of magnetic walls has received a renewed interest from

the researchers working in the problem of pattern for-

mation in nematic liquid crystals (NLC). These struc-

tures make the transition between adjacent symmetri-

cal distorted regions of the sample and are usually found

when, under appropriated conditions, the nematic liq-

uid crystals is submitted to an external �eld[1].

Consider, for example, a high magnetic �eld ~H ap-

plied to a homogeneously pre-oriented NLC sample in a

direction perpendicular to the initial homogeneous di-

rection. A competition between the magnetic suscepti-

bility and the elastic energy takes place. The magnetic

�eld tends to align the director towards its direction and

the elastic interaction, due to the cohesion of the NLC

with the edges of the sample, tends to retain a uniform

orientation of the director. For values of the applied

�eld below a critical value Hc no distortion arises. For

those values of the �eld which are larger than Hc some

textures are observed, indicating that the magnetic cou-

pling between the director, ~n, and the �led, ~H , is bigger

than the elastic interaction inside the nematic material.

When this happens we have the well known Fr�eedericksz

transition that, from the static point of view, has some

characteristics of a second order phase transition. That

is, for an external �eld above Hc the director direction

changes continuously from the null bending.

Sometimes the director does not comply to the ex-

ternal magnetic �eld in a homogeneous way. When ob-

served across crossed polarizers the sample exhibits a

set of one-dimensional and equidistant lines parallel to

the external magnetic �eld. These lines indicate the ex-

istence of walls in the sample. The fundamental element

to understand the presence of these lines is the direc-

tor's �� symmetry. In the nematic medium the director

orientation is double valued (~n and �~n are equivalent).

Therefore, as it can be observed in Fig. 1, above the

Fr�eedericksz transition the director can bend clockwise

or anti-clockwise. This double choice is typical of sys-

tems exhibiting a symmetry breaking and, as it is usual

in these conditions, two di�erently orientated portions

of the sample can be created. A wall is the continu-



ous bending of the director �eld connecting these two

di�erent con�gurations. A typical periodic structure is

exhibited in Fig. 2.

Figure 1. Graphical representation of the a LC director's

evolution when submitted to an external magnetic �eld ~H.
a) The magnetic �eld is applied perpendicularly to the ini-
tial direction of the director. The director has no preferred
direction to rotate and, thus, it implies in symmetry break-
ing. b) In some regions the director rotates clockwise. b')
In another regions the director rotates anti-clockwise. c)
A wall is the continuos bending of the director connecting
these two di�erent con�gurations.

Figure 2. Lyotropic nematic calamitic phase in 200 mm
thick microslides between crossed polarizers. Magnetic �eld
along the y axis. The �gure was obtained from ref. [8].

Despite of its importance for the explanation of this

symmetry breaking the �-symmetry cannot explain the

astonishing symmetries observed in Fig. 2. The walls

are extended as right lines along the direction of the

external magnetic �eld and, furthermore, they are pe-

riodically distributed along the ~ex direction. They ap-

pear in the sample as an one-dimensional and periodic

structure. The �-symmetry cannot explain it. There

is not an a priori reason leading to this experimental

�nding. All that the �-symmetry teach us is that there

may be regions with di�erent bending of the director.

Therefore, some basic information about the building

process of the walls is missing.

It was conjectured by Guyon et al.[2] and demon-

strated by Lonberg et al.[3] how the elastic properties

of the nematic medium are not enough to explain the

observed walls geometry. The nematic material is an

anisotropic liquid and, at the moment of the walls cre-

ation, its internal rearrangement must be taken in ac-

count. The director rotation stimulates the motion of

the nematic material and it is this internal motion that

gives rise to the one-dimensional and periodic outstand-

ing character of the walls[4]. In fact, using the NLC

anisotropic properties, it was shown that the observed

geometry of the walls results from a coherent internal

motion of the nematic material. That is, the external

magnetic �eld creates an unstable situation that must

be eliminated as fast as possible. This implies that

the motion of the nematic material needs to occur with

the smallest possible e�ective viscosity. In the search

for the least e�ective viscosity the system selects the

observed one-dimensional and the periodic geometry.

Furthermore, it was shown that these symmetries are

connected. That is, one follows from the another one

and vice-versa[4].

The periodicity of the walls can be directly mea-

sured, and it can be easily observed that their lengths

are determined by the external magnetic �eld and by

the elastic constants. Larger is the magnetic �eld,

smaller is the distance between the walls. From the

curve of the dependence of this distance on the exter-

nal magnetic �eld it was possible to evaluate the ratio

between the elastic constants of the nematic material,

as well as its magnetic susceptibility [5-9].

With a change of scale, that depends solely on the

elastic constants, it was shown that the dependence of

the periodicity on the external magnetic �eld can as-

sume a universal form where all measured data can be

put along a sole universal curve. This possibility gives

us a powerful insight into the physical nature of these

systems because, by a single change of scale, all the

particular properties of a given NLC system can be put

aside and all that remains is a universal behavior pre-

senting the essential features of some large class[10].



This discovery puts another problem in the nature

of these periodic structures. It shows that these walls

present a universal behavior that depends only on the

elastic constants. But, as we have cited above, the walls

cannot be completely explained by an elastic model[11].

If this is so, why are not necessary the dynamical pa-

rameters in the scaling that leads the periodicity to a

universal behavior? The research in this matter is still

in progress. We have demonstrated that the geome-

try of the walls does not depend on the absolute values

of the viscosity, but only on its relative values. On

the other hand, as has been pointed out by Kneppe et

al.[12], the ratio between the viscosity coe�cients seem

to exhibit a universal behavior. If this is true, the uni-

versality of the walls geometry can be understood in

this framework.

The aim of this work is to present a review of the

recent progress in the description of the elastic and dy-

namical properties of these unstable periodic structures

in NLC media. An e�ort is made to present, in a concise

and uni�ed way, the successive steps towards a broad

understanding of these non-linear aspects of the NLC

physics, by focusing several stimulating results we have

recently obtained. The reader can �nd in the bibliog-

raphy a short but self-contained account of the basic

works dedicated to these periodic structures where the

fundamental problems of the �eld are addressed.

The paper is organized as follows. In Sec. II the

mechanism giving rise to these periodic structures is

studied. It is shown that the Fr�eedericksz transition is

indeed a dynamical critical point. The dynamic process

by means of which the period of the walls is selected is

also explained. In Sec. III the quasi-static structure

arising as soon as the initial motion of the nematic

material stops is studied. It is shown that while the

period of the walls is �xed by the motion of the ne-

matic material, the shape of the walls is determined by

its elastic, and static, properties. It is also shown that

the resulting form for the walls is not stable. These

structures decay and the mechanism initiating this col-

lapse is explained[13]. In Sec. IV our last �ndings in

the physics of the walls are reported. Their behavior

when the Fr�eedericksz threshold is approached is em-

phasized, and some hypothesis about the planar con-

�guration of these structures are discussed. Some con-

cluding remarks are drawn in Sec. V.

II The dynamical arising of the

walls

For the Fr�eedericksz transition study, a sample in the

shape of a microslide, whose dimensions (a; b; c) satisfy

the relation a � b � c, will be considered. Initially

the director is uniformly orientated along the ~ex direc-

tion and, after achieving a homogeneous orientation a

�xed, but controllable, magnetic �eld is applied along

the direction ~ey. As explained above, the minimization

of the interaction energy between the director ~n and the

external magnetic �eld ~H stimulates a director torsion

in order to put both parallel. But the nematic mate-

rial is an elastic medium which is not free to rotate.

The director is bounded to the sample's surface and,

at these points, it cannot turn. As stressed before, in

this situation a competition between the magnetic �eld

and the elastic energy arises. In fact, in the bulk, the

magnetic �eld tends to align the director along its di-

rection, whereas the elastic energy tends to produce an

orientation consistent with its orientation at the bound-

aries of the sample. When the value of magnetic �eld is

greater than a critical value Hc the director begins to

incline. For a value of the magnetic �eld belowHc there

is no observable distortion in the nematic material. But

when the value of the magnetic �eld overcomes Hc it is

observed the arising of textures in the sample, denoting

that away from edges the director has complied to the

magnetic torque. This critical point is the Fr�eedericksz

threshold Hc.

There are two ways of approaching this critical

point, i.e, from below, when H < Hc, and from above,

when H > Hc. In the �rst situation there is no direc-

tor bending and a static approach seems to be enough

to understand the Fr�eedericksz threshold. In the sec-

ond situation, as explained above, a complex dynami-

cal cooperative phenomenon appears. It is responsible

for the richness of nematic textures found above the

Fr�eedericksz threshold. In order to describe this di-

rector bending, and the subsequent matter 
ow, the

so-called Eriksen-Leslie-Parodi (ELP) approach [14-18]

will be used. In this picture the NLC dynamics is

given by the anisotropic version of the Navier-Stokes

equation[19]
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where � is the density of the system, V� is the �� com-

ponent of velocity, p is the pressure, and ��� is the

associated anisotropic stress tensor[20, 21]. Notice that

the stress tensor is dependent on variables like the ve-

locity ~V of the 
uid, the bending of the director �, and

the director time variation rate _�.

The equation of motion for the director, in the ELP

approach, assumes the form[20, 21]
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where the inertial terms were not considered, 
1 and


2 are the shear torque coe�cients, A�� =
1

2
(@�V� + @�V�), W�� = 1

2
(@�V� � @�V�) and, as

usual, the 
uid is considered incompressible.

Since the external magnetic �eld is applied along

the direction perpendicular to the initial orientation of

the director, we can suppose that the director will al-

ways remain in the plane de�ned by the magnetic �eld

direction and the initial orientation of the director[3],

that is

nx = cos �(x; y; z); ny = sin �(x; y; z) ; nz = 0;

(3)

where �(x; y; z) is the angle between the director ~n and

the ~ex direction. Furthermore, in order to further sim-

plify these equations, the motion along the ~ez direc-

tion will not be considered because the components de-

scribing the motion of the nematic 
uid along the ~ex

and ~ey directions are su�cient to describe the walls

phenomenology[3]. The pressure p can be eliminated

from these equations by subtracting, in the Navier-

Stokes equation, the term describing the motion along

the ~ey direction from the one describing the motion

along the ~ex direction. In this manner one obtains

c

�
d

dt
(@xVy � @yVx) = @2x�xy � @2y�yx + @x@y(�yy � �xx) + @z(@x�zy � @y�zx): (4)

d

The approximations made so far are not enough to

give a solution to Eq. (4). The usual way to proceed is

to restrict the analysis to the linear terms of the viscos-

ity tensor. This procedure overshadow the walls univer-

sal character and, in our approach, we tried to maintain

it. Consequently, our study was restricted to those re-

gions of the sample where the velocity component Vy

is dominant, and the fact that the director oscillatory

character is present, since the beginning of the walls cre-

ation, was used. This allows us to assume that, even at

these initial moments, there are a set of lines for which

@x� = 0: Furthermore, the one-dimensional character of

these structures requires that, once �xed x, the director

would be constant along the direction of the external

magnetic �eld, that is @y� = 0. Finally, a change of

scales given by[4]
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2
c = K33
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b

�2
+K22
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d

�2
;

x2 =
K33

�aH2
c

�x2; (5)
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is introduced.

Therefore, the equations governing the director's

bending becomes
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where the following de�nitions have been used:

k = 2�=�, with � being the walls length, k2 =

(�aH
2
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2

; and t = (
1=�aH
2
c )� . Furthermore, in

Eq. (6) one has
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In Eq. (8) �1; �2; �3; �12; and 
1; are the �ve inde-

pendent Miesowicz viscosity coe�cients[1, 20, 21]. Ob-

serve that due to the dependence of Ai; i = 1; :::; 5 on

�, Eq. (6) is yet strongly non-linear.

It is important to stress that Eq. (6) gives the time

rate of growing of the director only at those regions

where it achieves its greatest bending. Despite of this

limitation, this equation has some advantages. It can be

easily numerically integrated and the non linear struc-

ture of the phenomenon is maintained; its linear limit

gives the Lonberg result [3]. Furthermore, it shows, at

the left hand side, the rate of variation of the amplitude

@�� and, at the right hand side, its dependence on ~k2,

�, and on the viscosity coe�cients. According Lonberg

et al. [3] the preferred �k2 is determined when its value

giving the maximum to @�� is achieved.

III The elastic corresponding

states

From Eq. (2) one observes that when the motion of the

nematic material that gives rise to the walls stops, the

resulting structure is described by

c
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2
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2
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2
z� + �aH
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It is easily shown that this equation follows from an elastic energy given by
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where K11; K22; and K33 are the elastic constants of

splay, twist, and bend, respectively and V is the volume

of the sample. Therefore, as Eq. (9) describes elastic

structures, once formed the walls have to be considered

as solutions of Eq. (9).

Since, on the other hand, the walls are periodic

structures extending along the ~ex direction, the sim-

plest con�guration for the director along the ~ey and ~ez

directions[4] will be assumed, namely

�(x; y; z) = �(x) sin(
�y

b
) sin(

�z

d
); (11)

where the �eld �(x) describes the con�guration of the

director along the ~ex direction.

With these information in mind, and using the

change of scale de�ned in Eq. (5), the free energy given

by Eq. (10) can be rewritten in the form

F =
1

4
bd
p
K33 (�aH2

c )

Z �L

0

Fd�x; (12)

where

c
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2
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Z 1

0

Z 1

0

d�yd�z sin2 (�(�x) sin(��y) sin(��z)) : (13)

In Eqs. (12,13) �L is the re-scaled sample length along the ~ex direction, �y = y=b, and �z = z=d:

d

As it has been stressed in a previous work[22], all

the material parameters characterizing any particular

NLC sample have been put aside. Therefore, one may

hope that all static con�guration of the NLC can be re-

duced to a line of corresponding states[10], described by

the universal (free from material parameters) equation

@2�x� � � + 2h2u0(�) = 0: (14)

Figure 3. Measured points of (2d=�)2 vs the reduced mag-
netic �eld h = H=Hc. � is the length of the walls periodicity
as observed in the microscope and d is the thickness of the
slab.

When the scaling laws, Eq. (5), were applied to ex-

perimental data of di�erent samples it was veri�ed that,

indeed, all measured points extended along the same

universal line[22]. In Fig. 3 we show the measured

points for some di�erent experimental data. It was used

rationalized units for the magnetic �eld in order to ob-

tain the same scale. Observe that the points are spread

and there is not any evident correlation among them.

But, when the relations given in Eq. (5) are used the

result shown in Fig. 4 is found. The continuous line is

to be considered only as an eye's guiding.

These �ndings are unexpected. Only the elastic

parameter were used in the scaling given in Eq. (5),

and these properties are not the sole responsible by the

emergence and geometry of the walls. As shown in the

preceding section the walls resulted from the combined

action of the external �eld on the director and the mat-

ter movement. Therefore, it may expected that some

dynamical parameters, such as the viscosity coe�cients,

will contribute to the determination of the geometrical

properties of the walls. Even being the measurements

of the walls parameters made in a static condition, the

constants of integration of Eq. (14) are �xed during the


uid 
ow that gives rise to the walls. Therefore, it is



expected to �nd in the walls geometry some informa-

tion about the physical conditions prevailing in its ori-

gin. Nevertheless, as it is observed in Fig. 4, the static

parameters, through the appropriate scaling presented

above, are enough to put the experimental data along

a single curve. The success of the scaling laws in reduc-

ing these experimental data to a universal line seems to

indicate that there is also some unknown universality

in the dynamical motion that built the walls. Below, a

sketch of this demonstration will be given (see ref.[11]

for details).

Figure 4. The points of Fig. 3 scaled in such a way that
all of them stay along the same line. As demonstrated in
the text, contrarily to the expected, the parameters of the
scaling only depend on the elastic constants.

In order to accomplish this task, we look for some

parameters characterizing the NLC media and use them

in Eq. (6). These NLC compounds, their viscosities

coe�cients, and the references from where they were

obtained are displayed in Table 1.

To each of these compounds the values of ~k2 as func-

tion of � that makes Eq. (14) maximum have been nu-

merically found. These are the preferred ~k2. A remark-

able aspect of this result, shown in Fig. 5, is that for

samples as distinct as the ones shown in the Table 1

the curves of the preferred ~k2 as a function of � are

not so di�erent. Only the elastic constant have been

scaled and the viscosity coe�cients, that are explicitly

present in Eq. (14) seemto play a not important role in

this picture. Therefore, it remains to explain why the

viscosity coe�cients become absent in the preferred ~k2

curve.

Figure 5. ~k2 = (2�=�)2 vs the walls amplitude. To obtain
this picture only the elastic coe�cients have been scaled.
The viscosity coe�cients are the ones reported in the NLC
literature. Notice that the selected wave length is e�ectively
independent of these coe�cients. The reduced magnetic
�eld was �xed at h2 = 5.

Temp. (C) �1 �2 �3 �12 
1 K33=K22 References
MBBA 25 103 23.2 39.6 6 74.6 2.5 [23, 24]
CBOOA 100 21.2 5.81 8 10.9 15.41 3.7 [25, 26]
HBAB 80 43.3 9.4 14.6 6 32.5 3(?) [23]
PAA 122 9.3 2.3 3.4 4 6.6 3.1 [20, 24]
MIXTURE 80 65.1 13.4 22 5 48.5 3(?) [23]
5CB 3(?) 86 17.6 33 ? 63.6 2.3 [27, 28]

Table 1: Viscosities in 10�3kgm�1s, the ratioK33=K22; and the references from where these data were
obtained for several NLC compounds. The symbol \?" means that the corresponding value is unknown
by the authors. The values of the K33=K22 accompanied by (?) are attributed. The compound named
as \mixture " was found in ref. [23] and is a 1:1:1 molar mixture of HBAB with p-n- butoxybenzylidene
-p- aminobenzonitrile and p-n-octanoyloxybeziledene -p- aminobenzonitrile.



First of all, observe that the viscosity coe�cients

appear, in Eq. (14), in the factor R(~k2; �i; 
; �) which,

with some labour can be rewritten as

c
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2 + K33
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1)� (��1n2x + ��2n2y)

; (16)

and ��1 = �1=�3; ��2 = �2=�3; ��12 = �12=�3; �
1 = 
1=�3 are reduced viscosities. Table 2 shows the values of these

reduced parameters.

��1 ��2 ��12 �
1
��1+��2��
1
��2���1��
1

1

��2���1��
1

MBBA 2.60 0.58 0.15 1.88 -0.33 -0.51
CBOOA 2.65 0.72 1.36 1.92 -0.38 -0.52
HBAB 2.96 0.64 0.41 2.23 -0.30 -0.44
PAA 2.73 0.67 1.18 1.94 -0.36 -0.50
MIXTURE 2.95 0.61 0.23 2.20 -0.30 -0.44
5CB 2.60 0.53 ? 1.92 -0.30 -0.50

Table 2: Reduced values of the viscosities ��i = �i=�3(i = 1; 2; 3); ��12 = �12=�3; and �
1 = 
1=�3; for

several NLC compounds. The symbol \?" means that the value is unknown.

d

The reason for the coincidence of the preferred �k2

curves become clear in Eqs. (15), (16), and Table 2. It

is not the absolute values of these viscosity coe�cients

that are important, but the relative ones. When com-

pared with the dispersion of the Table 1, the relative

values of the Table 2 are much more coincident. For

example, in Table 1 the values for �1 range from 9:3

to 103 10�3kgm�1s: Meanwhile, in Table 2 ��1 ranges

from 2:60 to 2:96. The small variation of the relative

values of the viscosity coe�cients is the responsible for

the corresponding states of the NLC walls.

It is important to emphasize that although the rel-

ative values of the viscosity coe�cients are much more

coincident than the absolute ones, they are not exactly

the same (see table 2). Therefore, one can expect to �nd

the presence of the viscosity coe�cients in the macro-

scopic walls parameters through a little e�ect. How-

ever, the present data for the walls periodicity � are not

su�cient to reveal it and we can a�rm that, if observed,

such e�ect will be very small. It should be noticed that

even being not determined at the moment at which the

matter 
ow begins, the value of � must be �xed when

the bending of the director is small. When this condi-

tion is placed in Eq. (16) the parameters determining

the preferred �k2 curve are given by that presented in

the last two columns of Table 2.

Therefore, we observe that the key to understand

the law of the corresponding states in the nematic state

is the existence of an approximate constant ratio be-

tween the viscosity coe�cients. As far as we know, the

�rst report of such constant relation between the viscos-

ity coe�cients is found in the work of Kneppe et al.[12].

They found, examining their experimental data, some

ad hoc laws connecting the values of the Miesowicz vis-



cosity coe�cients. They do not give any justi�cation for

the existence of this constant ratio. We believe that, as

in the seminal work of Helfrich[29], it is related with

the anisotropic shape of the nematic micelle.

IV The collapse of the magnetic

walls

As it is well known, for magnetic �elds far above the

Fr�eedericksz threshold the walls tend to disappear[30,

31]. The basic mechanism for their destruction is the

instability beginning at the moment in which the 
ux

of matter[3] that gives rise to them stops. At this mo-

ment the extremely harmonic and periodic walls pat-

tern begins an unstable phase after which all its one-

dimensional and periodic regularity is lost.

Habitually unstable con�gurations are found in

physical systems after the action of some transient force

operating during a �nite time interval[32, 33]. While

the transient action is working, the system goes to a

con�guration that, as soon as it vanishes, no longer has

the least energy. In the walls case the transient force

is given by the initial 
ux of the nematic material [3].

Of course, the fact that the walls do not have the least

energy is a necessary, but not su�cient, condition to

promote their instability. In fact, the 
uid 
ow leads

the system to a con�guration that is an extremum of

the energy but, as a simple elastic argument shows, it

is not the con�guration with the least energy[34]. But

even not being in the ground state, the walls could be

in a local minimum at which the system might remain

inde�nitely. We have shown that, as the experiments

con�rm, the walls con�guration is indeed a local free en-

ergy maximum. In order to prove it, the second func-

tional derivative of the free energy, around the walls

con�guration, was studied and it was shown that it is

negative[13]. Nothing more than the oscillatory and

one-dimensional character of the walls were assumed

along that demonstration.

In order to fully appreciate the details of the walls

wasting process, a wall pro�le, in which their geomet-

rical parameters were shown, was constructed and ex-

hibited in Fig. 6. This pro�le is described by three pa-

rameters: the walls amplitude 'o, the walls length �,

and the walls form factor �. The parameter �; changing

between 0 and 1; controls the form of the wall. The

wall has two distinct regions[8]. In one of them (the w

region) the director bends its orientation from one con-

�guration to the symmetric one. The other region (the

� region) describes a saturated portion of the director.

The � value gives the fraction of each portion. When

� ! 1; the wall becomes a single sine function. On the

other hand, when � ! 0 the saturated region assumes

the entire wall. One observes from Fig. 6 that �; given

by

� = �� w = �(1� �); (17)

is a measure of the saturated portion of the wall. Fur-

thermore, Eq. (14) has a conserved quantity [8,22,35]

C =
1

2
(@x�)

2 �
1

2
�2 + 2h2u(�); (18)

which re
ects the homogeneity of the system along the

~ex direction. C is a �xed number that exists only as

long as the system remains one-dimensional. Therefore,

its value at the point where � = 0 can be compared with

its value at the region where @x� = 0; giving

1

2
'2o(

2�

���
)2 = �

1

2
'2o + 2h2u('o); (19)

which shows that as long as the system in one-

dimensional the parameters �; �; and 'o are not in-

dependent.

Figure 6. Graphic representation of a typical wall. It is
explicitly shown the saturated portion �=2, the bending
portion ��=2, and the amplitude 'o. The irreversible expo-
nential growing 
uctuations act in such a way to reduce the
amplitude 'o and the saturated portion � [13].

As we have already remarked, the cornerstone of the

instability is the one-dimensional and oscillatory char-

acter of the walls. Therefore, the starting point of the

walls decay is strongly connected to the breakdown of

this character. The system has to abandon the one-

dimensionality. The collapse of the walls begins with

the destruction of this connection and these parame-

ters evolve independently.



The collapse of the walls is dominated by the ran-

dom 
uctuations around it. The 
uctuations com-

manding this unstable process are the ones with grasps

the least energy. This principle will lead to an inde-

pendent development of �, �, and 'o and it is easy,

for example, to obtain the force between two neighbor

walls[13] and to show that it is repulsive and decays

with the inverse of the square of the wall's portion,

w = � � �, where there is the director bending (see

Figs. 2 and 6). That is, shorter is the bend portion,

more repulsive is the force between the wall. Finally,

the minimization of the 
uctuations' energy led us to

a similar conclusion for the wall's saturated portion �

and amplitude 'o: they become shorter and shorter

with time.

Since the sample is composed by a large number of

walls, the repulsive force between them may be coun-

terbalanced and the net result may be an equilibrium

situation. However, there is no way to get a counter-

balanced e�ect in the reduction of the walls saturated

portion � or in the reduction of the walls amplitude

'o. Therefore the reduction in � and 'o starts the

destruction of the walls.

V Concluding remarks

In conclusion, let us stress some important points aris-

ing in our analysis of the physical properties of the

walls. First of all we have shown that the family of pe-

riodic walls appearing above the Fr�eedericksz threshold

can be reduced to a single physical situation through

a law of corresponding states. This law is obtained by

means of an appropriate choice of scale regarding the

elastic constants and the critical �eld.

In a second moment we demonstrate that the phys-

ical reason for law of corresponding states lies in the

behavior of the Miesowicz's viscosity coe�cients. In

fact, we observe that the key to understand this law in

the nematic medium is the existence of an approximate

constant ratio between the viscosity coe�cients.

Finally, we would like to point out that our expla-

nation for the collapse of the walls only takes care of

the beginning of this process. It is experimentally ob-

served that the walls evolve to closed structures having

elliptical shape. Furthermore, it has to be stressed that

even these closed elliptical walls are not stable. Fre-

quently they disappear of the NLC sample. In fact, the

minimization of the energy of the 
uctuations leads to

the destruction of the walls regular pattern by means of

three mechanisms: a) a repulsive interaction; b) the re-

duction of the walls saturated portion; c) the reduction

of the walls' amplitude. We believe that we have pre-

sented an important step towards a better understand-

ing of these rich and complex non-linear phenomena in

the NLC physics.
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