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Squeezed Displaced Number States of the light were introduced in the recent literature. They
exhibit various nonclassical properties as sub-Poissonian statistics, squeezing and oscillations
in the photon-number distribution. Here we investigate other properties of these �elds, as
waiting-time and photoelectron-counting distributions. We considerably simplify previous
calculations in the literature while showing that these states constitute a uni�ed approach
for number, coherent, and squeezed states.
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I Introduction

In recent years, many authors have investigated new

quantum states of the electromagnetic �eld. The

squeezed state can be considered as one of the most

studied state [1]. It is characterized by the fact that

the indetermination in one of the two quadrature-

components of the electromagnetic �eld is smaller than

in the usual coherent states. It is of great importance,

as in optical communication and interferometry [2].

Special attention is given to three classes of squeezed

states: (i) squeezed vacuum states, (ii) squeezed coher-

ent states and (iii) squeezed number states.

Here we will study a new class of squeezed states,

called Squeezed Displaced Number State [SDNS], re-

cently introduced in the literature [3]. We show that

this class contains, as particular cases, various states

already studied in the literature, such as the squeezed

coherent states [4], squeezed number states [5], dis-

placed number states [6], including the coherent state

and number states. The photoelectron-counting dis-

tribution P (m;T ) and the distribution of waiting-time

intervals !(� ); between the arrivals of successive pho-

tons, are analyzed as a function of various parameters.

Depending on the values of the parameters characteriz-

ing a particular realization of the SDNS, it may exhibit

sub-Poissonian or super-Poissonian statistics, which is

analyzed in terms of Mandel's Q -parameter. As a con-

sequence, it exhibits photon bunching or photon anti-

bunching, which is analyzed in terms of the distribution

!(� ).

This paper is organized as follows: In Section II we

introduce the SDNS and analyze the photon number

distribution P (j), including variances of number oper-

ator n̂ = â+â and quadrature operators bX1 = (â+ây)=2

and bX2 = (â � ây)=2i, where ây(â) is the creation (an-

nihilation) operator for photons in a single-mode state.

In Section III we analyze the photoelectron-counting

distribution P (m;T ) and in Section IV we discuss the

behavior of waiting-time distribution !(� ): Finally, Sec-

tion V contains a summary of results and conclusion.

II Squeezed Displaced Number

State

The squeezed displaced number state jn; �; zi is ob-
tained by the application of the squeeze operator bS(z)
followed by the displaced operator bD(�), on the number

state jni,
�E-mail: cdantas@�s.ufg.br
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jn; �; zi � bD(�)bS(z)jni; (2:1)

where bD(�) and bS(z) are the displacement and squeeze

operators, given respectively by

bD(�) = exp(�â+ � ��â); (2:2)

bS(z) = exp[(zâ+2 � z�â2)=2]; (2:3)

where � is the coherence parameter, � = j�j ei�, and z

is the squeeze parameter, z = r ei�:

Alternatively, the equation (2.1) can be written as

jn; z; �i = bS(z) bD(�)jni (2:4)

with

� = ��+ ��� (2:5)

where � = cosh(r) and � = ei� sinh(r): The

Eqs.(2.1)-(2.4) are connected, via the unitary trans-

formation, bD(�) = bS+(z) bD(�)bS(z) with bS+(z)bS(z) =bS(z)bS+(z) = 1.

The coe�cients Cj for the SDNS in the Fock repre-

sentation are de�ned as

Cj � hjjbS(z) bD(�)jni = hjjn; z; �i; (2:6)

and the application of the completeness relation of the

number states fjmig, in the Eq.(2.6), gives

Cj =
1X

m=0

hjjbS(z)jmihmj bD(�)jni

=
1X

m=0

Sjm �Dmn; (2:7)

where Sjm , Dmn are respectively the coe�cients of

the squeezed number state [5] (with � = 0) and the

displaced number state [6], given by

c

Sjm =

p
m!j!

(cosh r)j+1=2
�
�
1

2
tanh r

�(m�j)=2

F (r;m; j) � cos2(j �m)
�

2
(2:8)

with

F (r;m; j) =

1

2
jX

k= 1

2
(j�m)

(�1)k(2�1 sinh r)2k
k!(j � 2k)![k+ (m � j)=2]!

(2:9)

and

Dmn =

�
n!

m!

�1

2

�m�ne�
1

2
j�j2L(m�n)

n (j�j2) (2:10)

d

where � is given in Eq.(2.5) and L(m�n)
n (j�j2) is the as-

sociate Laguerre polynomial. As we can see in Eq.(2.7),

the coe�cients of the SDNS are a sum of products

of the coe�cients of Displaced Number State and the

Squeezed Number State. These coe�cients Cj are sim-

ilar to those reported in Ref.[3], but de�ned here in a

more simpli�ed way. Computer manipulations involv-

ing the sum in Eq.(2.7) employs a truncation procedure,

namely,
1P

j;m=0
(:::)!

J;MP
j;m=0

(:::). This procedure requires

a rapid convergence of this series in the interval j 2 [0; J ]

and m 2 [0;M ], a property obeyed in our plots, with

the condition that
JP
j=0

P (j) = 1.

Next, the photon number distribution correspond-

ing to the SDNS and representing the probability of

�nding j photons in the SDNS is easily obtained as



464 Brazilian Journal of Physics, vol. 28, no. 4, December, 1998

P (j) � jhjjn; �; zij2 =
������
1X

m=n

q
n!j!(12 tanh r)

(m�j)=2

(cosh r)j+1=2
�m�ne�

1

2
j�j2L(m�n)

n (j�j2)F (r;m; j) cos2(j �m)
�

2

������
2

: (2:11)

d

Figure 1. Photon number distribution P (j) for the SDNS,
for r = 1; � = 5; � = � = 0 and (a) n = 0; (b) n = 1; (c)
n = 2; (d) n = 3.

Fig. 1 shows plots of P (j) as function of j; for � = 5,

r = 1 and n = 0; 1; 2; 3. Note that the distribution of

photons shows oscillations which increase when n in-

creases. P (j) is near zero around j = 32; 38; 42 in

Fig.(1a); j = 28; 35; 40; 44 in Fig.(2b); j = 26; 30; 38;

41; 43; 45; 47 in Fig.(1c) and j = 25; 32; 39; 44; 48;

52 in Fig.(1d). These oscillations may be interpreted

using the phase-space interference concept, introduced

by Schleich and Wheeler [7]. According to Eq.(2.11)

the photon number distribution P (j) is given by the

projection of the SDNS in the state jji. The pictoric

representation of the states jji and jn; �; zi in the phase
space is shown in Fig.(2), discussed below. When n = 0

[Fig.1(a)], we obtain the Squeezed Coherent State [4],

being one of the various particular cases of the SDNS.

Other particular cases occur when r = 0; � 6= 0 and

� = 0; r 6= 0: in the �rst case, bS(z) given in Eq.(2.3) be-
comes the unity and our SDNS coincides with the Dis-

placed Number States [6], whose coe�cients are given

in Eq.(2.10); in the second case, bD(�) given in Eq.(2.2)

becomes the unity and the SDNS now coincides with

the Squeezed Number State [5], whose coe�cients are

given in Eq.(2.8).

The elipses in Figs(2a) and (2b) represent the

squeezed-number state and the SDNS, respectively,

whereas the shadowed region in Fig.(2c) stands for the

intersections among the SDNS (elipses) and the number

states (circles). For example, the intersection between

the SDNS and a number state jji gives the probability
P (j) to �nd j photons in the SDNS. Interference comes

from these intersections in the phase space, for this rea-

son being named \interference in the phase space".

Next, the mean photon number and the photon

number variance for the SDNS are given respectively

by

hĵi = j�j2 + (2n+ 1) sinh2(r) + n (2:12)

and

c

h�ĵ2i � hĵ2i � hĵi2 = j�j2 (2n+ 1)

�
e2r cos2

�
� � �

2

�
+ e�2r sin2

�
� � �

2

��
+
�
n2 + n+ 1

�
2 sinh2(r) cosh2(r):

(2:13)
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Finding the Mandel's Q�parameter is now a straightforward calculation. We have,

Q � h�ĵ2i � hĵi
hĵi =

j�j2 (2n+ 1)
�
e2r cos2

�
� � '

2

�
+ e�2r sin2

�
� � '

2

��
+ 2 sinh2(r) cosh2(r)

�
n2 + n+ 1

�
j�j2 + sinh2(r) (2n+ 1) + n

� 1

(2:14)

which gives the departure from the Poissonian statis-

tics: for positive, zero or negative values of Q the statis-

tics are super-Poissonian, Poissonian or sub-Poissonian,

respectively. For n = 0 it corresponds to the squeezed

coherent state [3], in which the statistics is sub or super-

Poissonian, depending on the values of parameters �; '

and r:

Figure 2. Pictoric representation of: (a) squeezed number
states, (b) squeezed displaced number states, and (c) in-
tersection of squeezed displaced number states and number
states.

Fig.(3) shows plots of Mandel's Q - parameter as

function of r, for � = 5, � = ' = 0 and n = 0; 1; 2; 3.

When n = 0, for negative, zero and positive values of

the squeezing parameter r, we have that Q < 0; Q = 0

and Q > 0, and it is sub-Poissonian, Poissonian and

super-Poissonian, respectively. When n � 1, the statis-

tics becomes di�erent from that for squeezed coherent

states and the sub-Poissonian e�ect disappears..

The variances � bX1 and � bX2 of the quadrature op-

erators bX1 and bX2; when calculated in the SDNS, result

respectively ( with � bX2
i = h bX2

i i � h bXii2; i = 1; 2 ),

Figure 3. Mandel's Q-parameter as a function of r for the
SDNS, for � = � = 0, � = 5 and (a) n = 0; (b) n = 1; (c)
n = 2; (d) n = 3:

c

� bX2
1 =

1

4

�
e2r cos2

�

2
+ e�2r sin2

�

2

�
+ n

�
e2r cos2

�

2
+ e�2r sin2

�

2

�
; (2:15)

� bX2
2 =

1

4

�
e2r sin2

�

2
+ e�2r cos2

�

2

�
+ n

�
e2r sin2

�

2
+ e�2r cos2

�

2

�
: (2:16)

d
Squeezing occurs when � bXi <

1
2 , i = 1 or 2. De-

pending on the signal of the squeeze parameter r, the

e�ect occurs in the quadrature � bX1 or � bX2.

Fig.(4) shows plots of � bX2
1 as function of r; for

� = 5; � = � = 0 and n = 0; 1; 2; 3. For n = 0;
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� bX2
1 shows squeezing for negative values of r (the op-

posite occurs for � bX2
2 as we can see by comparing the

Eqs.(2.15) and (2.16) ). When n increases the squeezing

e�ect disappears.

Figure 4. Variance in quadratures � bXi as a function of r
for the SDNS, for � = 0 and (a) n = 0; (b) n = 1; (c) n = 2;
(d) n = 3:

III Photon-Counting Distribu-

tion

The probability G(T ) of detecting no photons in an

arbitrary state, with photon number distribution P (j);

is given by [8]

G(T ) =
1X
r=0

(���T )r
r!

1X
j=0

hjjâ+rar jjiP (j)

=
1X
j=0

P (j) [1� ��T ]
j
; (3:1)

valid for small counting-time separation between suc-

cessive photodetections, where � is the e�ciency of the

detector. The quasimonochromatic �eld at the detec-

tor is described by the photon-
ux operator bI (t) and

� is a factor converting the photon number operator

ĵ = â+â into a photon 
ux operator Î and the mean

photoelectron counting rate is �hbI(t)i: For a small time

intervals (��T << 1) we can write:

Z T

0

bI(t)dt = ÎT = �T n̂: (3:2)

By introducing an adjustment parameter s in the

Eq.(3.1), in the following manner:

G(T; s) =
1X
j=0

P (j) [1� s��T ]j (3:3)

we can calculate the photon-counting distribution

P (m;T ); which gives the probability of detecting m

photons in the (small) interval [0 � T ], according to

Ref.[8]:

c

P (m;T ) =
(�1)m
m!

dm

dsm
G(s; T )js=1

=
1X

j=m

j!

m!(j �m)!
(
T )m [1� 
T ]j�m P (j); (3:4)

d

where we put 
 = ��. It coincides with the photon-

number distribution P (j), when quantum e�ciency is

unity, 
T = 1. In practice quantum e�ciency is less

than unity and the photon-counting distribution is only

related to P (j), as in Eq.(3.4).

Fig.(5) shows plots of P (m;T ) as function of m for

r = 1; � = 5; � = ' = 0, �T = 0:8 and various val-

ues of n. Note that it di�ers from the photon number

distribution P (j) (dashed curve). The di�erence be-

tween them increases when n increases, as can be seen

in Figs.(5a)-(5d).

Fig.(6) Same as in Fig.(5), for � = 5; r = 1

and n = 1 and various values of quantum e�ciency


T . Note again that P (m;T ) di�ers from P (j), this

di�erence disappearing when 
T ! 1 (ideal photo-

detection).
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Figure 5. Photon-counting distribution P (m;T ) for the
SDNS, for r = 1; � = 5; � = � = 0, �T = 0:8 and (a)
n = 0; (b) n = 1; (c) n = 2; (d)n = 3, in comparison with
the photon number distribution P (j) (dashed curves).

Figure 6. Same as in Fig.(4), for r = 1; � = 5; � = � = 0;
n = 1 and (a) �T = 0:8 (b) �T = 0:9, (c) �T = 0:95, (d)
�T = 0:99, in comparison with the photon number distri-
bution P (j) (dashed curves).

IV Waiting-Time Distribution

The waiting-time distribution !(T ), which denotes

the probability of detecting the next photon at time T ,

given that a photon was detected at time T = 0; can be

written in terms of G(� ) given in Eq.( 3.1). We have

[8],

!(T ) =
1

�hÎi
d2G(T )

dT 2

=



�

1X
j=2

j(j � 1)

hĵi2 (1� 
T )j�2P (j); (4:1)

where � and 
 concern to the quantum e�ciency. Us-

ing a scaled time de�ned by � = 
T hĵi; and considering
� = 
 = 1, we can write the Eq.(4.1) in the form

!(� ) =
1X
j=2

j(j � 1)

hĵi2
�
1� �

hĵi

�j�2

P (j): (4:2)

So, the photon sequence in time can be written in terms

of !(� ) [8]. For a coherent state, the waiting-time dis-

tribution !(� ) results

!c(� ) = e�� ; (4:3)

which comes from the substitution of the photon-

number distribution P (j) for a coherent state, given

by

P (j) = e�j�j
2 j�j2j

j!
; (4:4)

in Eq.(4.2), with subsequent evaluation of the sum. For

� = 0, we have !c(0) = 1: So, when !(0) < 1 the light

�eld has a photon sequence antibunching, whereas for

!(0) > 1 it shows a photon sequence bunching. Con-

sidering a �eld in the SDNS and substituting its

photon-number distribution given by Eq.(2.11), in

Eq.(4.2), we can evaluate numerically this sum to ob-

tain the waiting-time distribution !(� ) for the SDNS.
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Figure 7. Waiting-time distribution !(�) for the SDNS as
a function of �; for � = 1; � = � = 0 and (a) r = 0; 4; n = 0
(b) r = 1; n = 3 (c) r = 2; n = 1 (d) r = 2; n = 2, in com-
parison with !(�) of the coherent state (dashed curves) [cf.
Eq.(4.3)] and thermal state (dotted curves) [cf. Eq.(4.5)].

Fig.(7) shows the waiting-time distribution !(� ) as

function of � , for � = 1; � = ' = 0 and di�erent val-

ues of r and n characterizing the SDNS (solid curves).

Note that depending on the parameters r and n, the

SDNS shows antibunching e�ect, !(0) < 1, as we can

see in Figs.(7a), (7c) and (7d), and also bunching e�ect,

!(0) > 1, shown in Fig.(7b). For comparison, we have

also plotted !(� ) for a coherent state (dashed curves),

given in Eq.(4.3), and thermal �eld (dotted curves),

given by [8]

!(� ) =
2

(1 + � )3
� (4:5)

V Conclusion

We have studied statistical properties of the

Squeezed Displaced Number State. It was shown that

the photon number distribution of SDNS is a sum of

the product of the coe�cients of Displaced Number

State and the Squeezed Number State [cf. Eq.(2.7)],

resulting in one of them in appropriated limits. The

photon-counting distribution P (m;T ) and waiting-time

distribution !(� ) were also analyzed. The antibunch-

ing e�ect, which measures photon sequence in time, was

analyzed in terms of !(� ):We have shown that, for con-

venient choice on parameters distinguishing the SDNS

from others in the literature, the photon-number dis-

tribution P (j) exhibits oscillations which are stronger

than those found in particular states obtained in this

scheme, as mentioned before. Concerning to some as-

pects [See Eqs.(2.7)-(2.10) ] the present approach sim-

pli�es considerably the calculations, in comparison with

others in the literature [3]. Finally, it is worth stressing

that since the SDNS contains various particular states

studied in the literature (e.g., number state, coherent

state, squeezed number state, displaced number state,

etc.), then it permits an uni�ed approach incorporating

all these states, and their properties, as special cases.

So, it constitutes a theoretical tool allowing us to get a

compact treatment including various important states

of the literature, as well as furnishing a new interpolat-

ing state [9] alternative to the binomial state by Stoler

et al.[10]. Concerning to its generation, a method �rst

suggested by Glauber [11] and Louisell [12], when ap-

plied to a �eld initially in a number state jni leads it to a
displaced-number state j�; ni [13]. Subsequent squeez-
ing generated by the variation of a cavity-parameter

[14] would lead the state j�; ni to the SDNS. Alterna-

tive procedure, generating similar states can be seen in

Ref.[15].
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