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The time dependent current in disordered systems under a step applied voltage for a planar sym-
metry is deduced according to the continuous time random walk approximation. Known dielectric
response functions like Cole-Cole, Davidson-Cole, Havriliak-Negami and a few others are used as
hopping time distribution functions in order to generate conductive responses. A theoretical re-
lation exists between the dielectric and the conductive response which is the same one prevailing
between the time derivative of the creep and the relaxation function, as found long ago by Gross
(J.Appl.Phys.,18, 212 (1947)). A truncated version of the Widder method, in connection with
MapleTM software facilities, was employed to obtain graphical primitives of Laplace transforms.

I Introduction

In the opening talk \Electret Research - Stages in its

Development" [1] of the 5th International Symposium

on Electret, ISE 5, held at Heidelberg, honoring his

80th birthday, Prof Gross reviewed the electret research

at its very early stages. This testimony is particularly

relevant on account of the role Prof Gross played in

the development of the �eld. He succeeded experimen-

tally in distinguishing between hetero and homocharges

appearing in poled dielectrics [2]. Heterocharge is the

charge with opposite polarity to that residing on the

nearby electrode, while the homocharge has the same

sign. The former is attributed to polarization and the

latter to space charge injection. Polarization in most

cases is a linear e�ect while space charge is not. See

also [3], and for the latest developments in this topic,

see [4].

In dielectrics, polarization obeys a superposition

principle [1,5], by which the material presents a delayed

response to changes of the poling electric �eld. The

simplest response of the polarization to a step varia-

tion in the electric �eld is characterized by an exponen-

tial increase (the so called Debye response), but this

is rarely observed experimentally. Anyway the delayed

response of the polarization to an alternating applied

voltage gives rise to dielectric losses. In this kind of

measurement the real and the imaginary components

are related through the Kramers-Kronig [3] relations.

To these relations Prof. Gross arrived working inde-

pendently [6].

Here we will be concerned with a new type of de-

layed response: that a�orded by current 
owing in dis-

ordered materials. That is, absorption currents appear

not only due to dipoles during the localized orientation

process but also to the unbound motion of a drifting

carrier in a disordered medium.

The theoretical study of transport in a disordered

medium was considerably advanced in a series of works

which culminated with the famous article by Scher and

Montroll (SM ) [7-10], using the Continuous Time Ran-

dom Walk approach (CTRW). In this treatment, the

carrier performs a random walk in a regular lattice, bi-

ased by an electric �eld, and the disordered character

of the medium re
ects itself in the hopping time dis-

tribution function (HTDF), which now deviates from a

simple exponential. For time dependent electric �elds

the SM approach leads to a result [11] that does not

agree with the Kubo 
uctuation theorem as mentioned

by Dyre [12]. This latter author then introduced a cor-

rection within the CTRW approach [12] and obtained

results which were shown to be close to the e�ective

medium alternative treatment (despite previous criti-

cism on the accuracy of the CTRW approximation ,

see [12], section V and [13]). We stick to the CTRW in

the following. A phenomenological attack to the prob-

lem has been carried out by J.R.Macdonald [14-16] and

in [17]. See also [18,19].

In the CTRW description, the important quantity

is the HTDF , a decaying function of the time, which is

the negative of the time derivative for the probability
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of the carrier to remain in the same site for some time

after its arrival in it. The e�ect of disorder is to intro-

duce hereditariness which makes the current to depend

on past values of the electric �eld through a function

related to the HTDF. This is very akin to the dielectric

case in which the HTDF, as a waiting time distribu-

tion function for localized motions, is itself the hered-

itary function. Since dielectric theory has produced

a bunch of such functions which re
ect the prevailing

order-disorder, it seems worthwhile to consider them

as possible HTDF for conductive processes. Therefore

Cole-Cole, Davidson-Cole, Havriliak-Negami, and a few

other distributions will be used for obtaining conductive

responses. In this aspect our approach is phenomeno-

logical.

We start from Dyre's analysis of the CTRW approx-

imation [12] presented in a somewhat di�erent manner

[20], as shown next.

II Theoretical background

The SM result for the current density, ic(x; t), due to

the space charge density �(x; t), moving in a constant

electric �eld E0 in a planar symmetry is

ic(x; t) = aE0

Z t

0

�(t� t0)�(x; t0)dt0 (1)

where �(t) is a function related to the HTDF, 	(t),

as will be given shortly. a is a constant with dimen-

sion of mobility/time. A generalization of Eq.1 to time

(and space) dependent electric �elds [11] maintains the

electric �eld outside the integral and this makes the

result to disagree with Kubo's current-current 
uctu-

ation theorem, [12], for which 
uxes correlate in time.

The main result of Dyre's analysis, which was origi-

nally devoted to ac processes (see Eq.17 of [12] and the

paragraph below Eq.8 in the following), is, in the time

domain, to transfer the electric �eld inside the integral

in Eq.1. If additionally the mobile space charge density

in a compensate system is assumed to be constant { as

if the material was endowed with a conductivity { Eq.1

becomes

ic(t) = A

Z t

0

�(t� t0)E(t0)dt0 (2)

A in Eq.2 is a constant with the dimension of conductiv-

ity/time. If the transport happens in a non-disordered

medium, �(t) is the product of a frequency w and a

delta function and Eq.2 becomes

ic(t) = AwE(t) (3)

with the product Aw de�ning the conductivity �. For

hopping transport � is [21]

� = enwd (4)

where e is the electronic charge, n is the density of mo-

bile charges, and d the mean hopping distance for a unit

electric �eld.

The function �(t) is related to the HTDF, 	(t), in

the Laplace space, through the following relation [10]

��(s) =
s	�(s)

1�	�(s)
(5)

where ��(s) and 	�(s) mean the Laplace Transforms

(LT) of �(t) and 	(t), respectively. That is, for in-

stance

	�(s) =

Z 1

0

e�st	(t)dt (6)

For a given 	(t), �(t) will be known after inversion of

Eq.5.

The HTDF is related to the probability for the car-

rier to remain for a time t after arriving at a site, �(t),

through

	(t) = �d�
dt

(7)

or in the Laplace space

	�(s) = 1� s��(s) (8)

In Eq.8 we have used the condition �(0) = 1: If the

medium is ordered, �(t) becomes an exponential, viz.

e�wt, and after inversion, �(t) comes out as w�(t) as

already asserted. Eq.2 tells us that the conduction cur-

rent is exactly in phase with the applied �eld. To make

a connection with the Dyre work, it is he L.T. of �(t)

that corresponds to the mean appearing in Eq.17 of [12]

for the ac case, with s ! i!, ! being the angular ac

frequency.

The merit of the Dyres analysis is to provide a sin-

gle formalism for treating dc as well as ac responses as

they both follow from Eq.2. See [22] for a di�erent view

of this topic.

III The delayed response of

conductive systems

III.1 Generating conductive responses

The delayed current density response of a pure di-

electric (that is, without a conductivity), id(t), has 	(t)
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itself, de�ned in Eq.7, as the hereditary function. But

the process is now localized and 	(t) becomes the wait-

ing time distribution function of the process

id(t) = C

Z t

0

	(t � t0)
dE(t0)

dt0
dt0 (9)

where C is a constant with the dimension of conduc-

tivity/time. In a microscopic model 	(t) results either

from a distribution of relaxation times (here, against

tradition, relaxation frequencies will be used instead)

or from non-Debye processes (see the end of section 3-

4). According to Eq.9, the current density depends on

the superposed e�ects of all the past variations of the

electric �eld, E(t). In Eq.9 we take E(0) = 0. The

generating function 	(t) will be called the dielectric re-

sponse function (DRF) when referring to a dielectric re-

sponse. But it may also generate formally a conductive

response as a HTDF, see Eqs.2 and 5. The conductive

current density response, ic(t), would then be found us-

ing Eq.2, after an adequate inversion of Eq.5. In order

to �nd a theoretical relationship between dielectric and

conductive responses we now consider Eqs.2 and 9. We

note �rst that Eq.2 and Eq.9 are di�erently related to

the electric �eld. In order to put the two response func-

tions on the same footing we will change Eq.2 to look

like Eq.9. We therefore write ic(t) as

ic(t) = A

Z t

0

F (t� t0)
dE(t0)

dt0
dt0 (10)

and endeavor to �nd F (t). For this let us carry a LT of

both equations, Eq.2 and 10.

��E� = sF �E�: (11)

Therefore we get

sF � = �� (12)

or �nally

F �(s) =
��(s)

s
(13)

Let us digress on this result. If we put�
dF (t)

dt

��
= sF � � F (0) (14)

we conclude from Eqs.12 and 14 that

dF (t)

dt
= �(t)� F (0)�(t): (15)

This equation indicates that �(t) always incorporates a

delta function. Indeed, using Eq.5 and �nding the limit

for s!1 of s�� we get

�(0) = lim
s!1

s��(s) = lim
s!1

s
s	�(s)

1 �	�(s)
= 	(0)s!1

(16)

since the limit of s	�(s) for s ! 1 is 	(0),

which is �nite for well behaved 	(t); additionally

lims!1	�(s) ! 0 and Eq.15 follows. In Section IV-2

we shall show that F (0) = 	(0). Eq.14 then means

that the time derivative of F (t) equals the regular part

of the function �(t).

Returning to Eq.13 and writing F �(s) in terms of

	�(s) using Eq.5, we get

F �(s) =
	�(s)

1�	�(s)
(17)

F (t) will be called the conductive response function

(CRF), or else, the conductivity ignoring for short the

constant factor A in Eq.10. It is also convenient to sep-

arate from F (t) the part containing the ultimate con-

ductivity �. The LT of the resulting function, F �t (s),

is

F �t (s) =
	�(s)

1�	�(s)
� �

s
(18)

with � = 	�(0)=(1�	�(0)): Fig.1 illustrates the contri-
butions of F (t), Ft(t) and for unit electric �eld applied

at t = 0 and for a long time, followed by a short circuit

from t0. In Eq.10 there will appear two delta functions

in the time derivative of the �eld, one for t = 0, positive

and the other, negative, for t = t0, due to the two steps

in the electric �eld (see Fig.1). Therefore, besides the

initial decaying current, a return current appears for

t � t0, as in the dielectric case. For su�cient large t0
the returning current is�Ft(t�t0). We observe that the

superposition of a independent conduction mechanism

on the pure dielectric response, Eq.9, makes it di�cult

to distinguish between DRF with a conductivity and a

CRF.

Figure 1. Schematic representation of the conductive cur-
rent (upper) following the application of a unit electric �eld
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at t = 0 and its discontinuation after a long time t = t0, ac-
cording to the Superposition Principle. For the meaning of
the symbols see the text. Note the return current appearing
after t0.

A direct comparison between a DRF and CRF de-

rived from a single HTDF by means of Eq.17 does not

seem realistic inasmuch as the parameters by means of

which they are determined are not expected to be the

same (referring to localized and non-localized motion,

respectively). In particular we expect the return cur-

rent in Fig.1 to be of short duration when compared

with the dielectric ones, and therefore the same must

be true for the corresponding absorption currents. But

we carry on comparing DRF and CRF in order to make

connection with the work of Prof. Gross in Viscoelastic-

ity and with other areas in which a similar relationship

between two related functions appears. The reader not

interested on these analogies should skip the next sec-

tion, returning to the text below Eq.25.

III.3 Analogy with pure dielectric re-
sponses

Viscoelastic e�ects are accessed through two kinds

of experiments, creep and relaxation [5,23,24]. In the

former the material creeps under constant force while in

the latter the force relaxes under constant creep. The

obtained creep and relaxation functions are interrelated

through their LTs, as shown in [23]. In dielectric theory

a single function, 	(t), is in use but it is easy to create

its counterpart as in viscoelasticity. For this we recog-

nize that what Maxwell (properly) called the displace-

ment, D(t), is the analogue of creep while the electric

�eld, E(t), is the analogue of force. We then write, as

for the viscoelastic case [23], the equations based on the

Superposition Principle

D(t) = �

�
E(t) +

Z
KE (t� t0)

dE

dt0
dt0
�

(19)

and

E(t) =
1

�

�
D(t) �

Z
KD(t � t0)

dD

dt0
dt0
�

(20)

where KE(t) andKD(t) de�ne the retarded response for

changing electric �eld and for changing displacement,

respectively. Note the positive sign in front of the inte-

gral in Eq.19 in contrast to the negative one appearing

in Eq.20.

Direct access to KD(t) is possible through experi-

ments with a constant current source or a constant cur-

rent triode [25-27]. Fig.2 shows how to obtain KD(t).

On the other hand it is not di�cult to see that the neg-

ative of the time derivative of KE(t) is just 	(t), Eq.9.

Then operating with Eqs.19 and 20 in the Laplace space

we �nd that

	� =

�
�dKE

dt

��
=

sK�
D

1� sK�
D

(21)

Fig.2 shows that KD(0) = 0 and therefore sK�
D is the

LT of dKD=dt. Going back to Eq.17 we see that sK�
D

is to 	� as 	� is to F �. It may be seen that if 	 is an

exponential like we�wt, dKD=dt is also an exponential

but going as we�2wt.

Figure 2. Experimental determination of the retarded re-
sponse KD(t), Eq.20, by means of source of constant current
J0. is the high frequency dielectric constant.

III.4 Relation between the spectra of 	

and F

The function 	(t) is a decaying function of time and

therefore may be considered the LT of a positive func-

tion, g	(w), of the relaxation frequency, or, for short,

of the frequency w [28]

	(t) =

Z 1

0

e�wtg	(w)dw (22)

Eq.22 shows that d	=dt is indeed negative for positive

g	(w):

On physical grounds let us assume that the CRFs

are also decaying functions of time, or at least non-

increasing ones. Therefore they may also be expressed

as the LT of a positive spectrum gF (w),

F (t) =

Z 1

0

e�wtgF (w)dw (23)

For 	(t) = w0e�w
0t, gF (w) turns out to be w0�(w),

giving rise to a pure conductive response.

We may pro�t now from the previous work of Prof.

Gross on Viscoelasticity [29,23] in order to derive a re-

lation between g	(w) and gF (w). It is found that

gF (w) =
g	(w)

(1� P	(w))2 + �2g2	(w)
(24)
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where P	(w) is the Cauchy principal value of the inte-

gral [29]

P	(w) =

Z 1

0

g	(�)d�

� �w
(25)

By Eq.24, gF (w) is also positive and F (t) is indeed a

non-increasing function of the time.

The frequency spectrum may contain lines in which

case g	 will be a discrete sum containing one or more

delta functions. As we expect Eq.24 to remain formally

valid, squares and products of delta functions will ap-

pear; this aspect was explored by Gross and Pelzer [31]

and Gross [32,33]. In a private conversation with one

of us (GFLF) Prof. Gross expressed the opinion that

insu�cient attention has been given to this subject by

the mathematically skilled community.

As we have seen the assignment of a spectrum to

DRF and to CRF raises interesting mathematical prob-

lems. Whether such distributions have an ultimate

physical reality { that is whether they may be justi�ed

microscopically {, is a di�erent question (see introduc-

tory remarks in [33], by Prof. Gross). Some authors

suggest that non-Debye processes exist on their own

[9,35-38] while others think the opposite [14-16,11,39].

Williams and Watts [40] assign a distribution for the �

relaxation in polymers having dipoles attached to side

groups and attribute a non-Debye process for the � re-

laxation occurring at the glass transition temperature.

For our formal approach the question is not relevant.

III.5 The amplitude of the CRF

A point of interest is to compare the amplitude of

Fc(t) with that of F (t), at t = 0, the latter including

the dc component according to Eq.17. First, it may be

shown that Fc(0) = 	(0). Indeed we have

lim
s!1

s	�(s) = 	(0) and lim
s!1

sFc(s) = Fc(0) (26)

Therefore

Fc(0) = lim
s!1

s	�c (s) = lim
s!1

sF �(s)

1�	�(s)
= 	(0) (27)

since 	�(1) = 0, according to the well known property

of the LT.

On the other hand, when t!1, we have 	(1) = 0

while Fc(1) tends to �, Eq.18. Therefore, we conclude

that the CRF, Fc(t), decays less than the DRF, 	(t)

which generates it. This is in accord with our intuition

in that we expect a stronger decay in a dielectric than

in a conductive system. A few examples will be shown

later.

IV Obtaining CRF from its

generating DRF

IV.1 System with two line frequencies

As an introduction to the study of CRFs derived

from distributions, let us suppose that the generating

DRF has two frequencies, w1 and w2, with probabilities

a and 1� a. That is, 	(t) is given by

	(t) = a1w1e
�w1t + (1� a)w2e

�w2t (28)

As a HTDF it generates the CRF, F (t), which after a

somewhat lengthy inversion of Eq.17 gives

c

F (t) =
a(1� a)(w1 �w2)

2

w1(1� a) + aw2
e�[w1(1�a)+w2a]t +

w1w2

w1(1� a) + aw2
(29)

It is interesting to interpret this result. If we assign

to two resistors, R1 and R2, resistance values propor-

tional to 1=w1 and 1=w2, respectively, the conductance

at t = 0, R�1(0), is given by the weighted sum of the

two resistors in parallel

R�1(0) =
a

R1
+
1� a

R2
/ aw1 + (1� a)w2 (30)

as may be veri�ed from Eq.29. On the other hand, for

t!1, the resistance R(1) results from the weighted

combination of the resistors in series

R(1) = aR1 + (1� a)R2 / a

w1
+
1� a

w2
(31)

The combinations resulting in R(0) and R(1) are

shown in Fig.3. We then see that if R2 is much greater

than R1 and a � 1=2, the fastest routes prevail for short



352 G.F.Leal Ferreira and S.C. Costa

times, (R�1(0) � 1=2R1) while the slowest prevail for

long times (R(1) = R2=2).

Figure 3. a) weighted parallel combination of resistors,
R1 /� 1=w1 and R2 / 1=w2, giving the initial conduc-
tance; b) weighted series combination of resistors giving the
dc conductivity.

IV.2 Highly dispersive response

A CRF deprived of a dc component will be called

highly dispersive (HDCRF). A HTDF with an asymp-

totic hyperbolic behavior is a common ingredient for

obtaining such responses. Let us denote it, as usual,

as 	(t). When the asymptotic behavior is hyperbolic

	�(s) for s! 0, or t!1, is expressed as

lim
s!0

s	�(s) � s(1 � sm); for 0 � m � 1 (32)

from which the following temporal behavior derives

[23,41]

	(t)t!1 � �
t�m�1

�(�m)
(33)

where �(�m) is the gamma function of the negative

argument obeying [42]

�(�m)�(m) = � �

m sin�m
(34)

This concerns the DRF. For the CRF, the asymptotic

behavior is readily found with Eqs.17 and 32

lim
s!0

sFc(s) = lim
s!0

s	�(s)

1�	�(s)
=

s(1� sm)

sm
= s1�m � s

(35)

According to well known rules [23,43,44] this gives

F (t)t!1 � t�(1�m)

�(m)
(36)

Let us compare the two asymptotic behaviors, Eqs.33

and 36. We see that DRF decays more steepely, with

exponent �(m + 1), while the CRF decays with an ex-

ponent -(m-1). The exponents add to -2, a kind of

universality similar to the one obtained by SM [10] for

current traces in certain disordered materials excited

by a light pulse. As already commented upon the uni-

versality found here between DRF and CRF is at most

of mathematical interest.

IV.3 Normal dispersive conductive re-
sponses

In the previous sub-section we have treated the

highly dispersive CRF. Normal dispersive CRFs (ND-

CRF) are those showing relaxation as well as a dc con-

ductivity for t ! 1. The two barrier system of sub-

section IV.3, the Davidson-Cole generated CRF and

the random free energy barriers of Macdonald [14] and

Dyre [12] exemplify this case (see later). Stretched-

exponentials also give rise to normal dispersive re-

sponses

IV.4- The inversion of the LT

Whenever possible we have used tables [43,44] for

handling inverse LTs. When numerical analysis be-

came necessary, we have employed a truncated version

of Widder's method [45], in which the primitive f(t) is

obtained from its LT f�(s) through the algorithm

fk(t) =
(�)k
k!

�
k

t

�k+1
f�(k)

�
k

t

�
(37)

in the limit k !1. The superscript (k) on f� indicates
the kth order derivative. We have found that in many

cases a relatively low k makes the graphical represen-

tation of gk(t) and of gk+1(t) to coincide under visual

inspection. We took this to mean that a su�ciently

good approximation was achieved. In he calculations

the 5th version of the MapleTM software facilities was

used. In the following a few examples of the use of this

truncated Widder method are given. Results with the

LT 1=
p
s, whose primitive is 1=

p
�t, are shown in Fig.4

for k=2,3, and the exact one. In Fig.5, we present the

inversion of 1=(1 + s3=4), with no available primitive,

for k=2,6 and 10, the last one being already the cor-

rect solution according to visual inspection. In Fig.6

the inversion of e�
p
s is shown for k=30 and 50 as well

as the exact solution (e�1=(4t)=2
p
�t3). We see that

the convergence becomes slower near the maximumand

therefore it seems that the method is better suited to

functions whose primitives are decaying functions of the

time, such as DRF and CRF. Hyperbolic decay makes

convergence easier. See also Fig.12 later.
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Figure 4. Approximated primitives of 1=
p
s using truncated

Widder's formula, Eq.37, for k=2 and 3, and the exact prim-
itive. The k=3 is scarcely seen between the k=2 curve and
the exact result.

Figure 5. Approximated primitives of 1=(1 + s3=4) for k=2,
6 and 10, using the truncated Widder method. The last one
may be considered visually exact.

Figure 6. Approximated primitives of e�
p
s, using Eq.37,

for k= 30, 50 and the analytical primitive.

V Derivation of CRFs in spe-

ci�c cases

V.1 Preparation

In the following we obtain CRFs, from DRFs act-

ing as HTDFs, with the use of Eq.17. Most of the

DRFs originated from ac measurements and were in-

ferred from attempts to �t results plotted in a Cole-

Cole diagram [3,19,46], involving the real and the imag-

inary part of the complex susceptibility. By means of

either Eq.9 [49] or through generalizations performed

upon the pure Debye ac response, it may be shown

that the complex susceptibility is proportional to the

LT (through a factor C in Eq.9) of the DRF when

making s ! i!, with i =
p�1 and ! being the an-

gular frequency. For instance, the Cole-Cole complex

susceptibility derives from

	�CC(i!) =
1

1 + (i!)1��
; 0 � � � 1 (38)

and the DRF is just 	�CC(i! ! s). Therefore, the

task of �nding the CRF through Eq.17 is greatly simpli-

�ed for the other dielectric functions having similar ori-

gin (like the Davidson- Cole and the Havriliak-Negami

functions; this is not the case with Jonscher's Universal

response [18,35,36], which for this reason will not be

considered here).

Some care is necessary when analyzing in the time

domain a derived CRF. For instance, it is easily seen

that s	�CC(s) in Eq.38 diverges for s!1. Therefore,

	CC(t ! 0) ! 1 and this shows that the Cole-Cole

DRF works only for su�ciently large t. However this

time is in many cases small in relation to the experi-

mental time scale employed, and therefore we will take

such responses as meaningful over essentially the whole

time scale. The same may be said of the stretched-

exponentials, as explained below.

While presenting the results we keep the nomencla-

ture of time dependent conductivities when referring to

F or Ft. Of course true conductivities include a factor

A as in Eq.10.

V.2 Speci�c highly dispersive responses

The CRF generated by the common dielec-

tric responses will be considered . Starting with

the HDCRF case, we will consider the Cole-Cole
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DRFs [3,19,24,39,46,48], which constitute a one-

parameter family of functions, and the Havriliak-

Negami [19,46,48,49]ones, which is a two parameter dis-

tribution function. For the latter, no analytical result

could be derived [49] and so only the short and the

long time behavior are given. For the former it so hap-

pens that a very simple expression results for the HD-

CRF. These distributions have indeed one additional

parameter, the fundamental frequency w (which is, in

general, temperature dependent), �xing its time scale.

But this new parameter is easily handled. Take, for

instance, the Debye case. The DRF is we�wt and its

LT is 1=(1 + w=s). For the Cole-Cole DRF the term

s=w is now raised to a power less than one, (s=w)1��.

Therefore, de�ning in the general case

G�(s0) = F �(s); with s0 = s=w (39)

by a well known property of the LT, we have that

F (t) = wG(wt) (40)

Nevertheless, in order to avoid the creation of new sym-

bols in the following, the same one will be used for both

in Eq.39. That is, we will write F �(s0) for G�(s0), as

commonly done. But we have to remember that in

order to retrieve the real time behavior the transforma-

tion in Eq.40 must be accomplished. We start with the

Cole-Cole DRF, generating the corresponding CRF.

V-2.1 The Cole-Cole CRF

The LT of the Cole-Cole DRF, 	�cc(s
0), is

[3,18,39,46,48]

	�cc(s
0) =

1

1 + s01�� (41)

with s0 = s=w: By Eq.17, as the LT of the correspond-

ing HTDF, it generates for the Cole- Cole HDCRF the

very simple result, FCC(t)),

FCC(t) =
w(wt)��

�(1� �)
(42)

This is the well known Curie-von Schweidler law

[47,23,31]. It contains two divergencies, one at t = 0,

which was commented upon in the previous section.

The other comes from the in�nite charge (time inte-

gral of the current) it generates for t ! 1. Di�erent

approaches have been proposed to cope with this lat-

ter divergence in dielectric theory [18,36,50]. In order

to improve it in the present conductive case we should

rather improve its HTDF (or DRF), which, according

to [23], is related to the Mittag-Le�er function. We

further add that the Cole-Cole DRF generates, as a

HTDF, analytical results for all the values of the expo-

nent � between 0 and 1 when used in the SM treatment

of the dispersive photo- current signals. In the original

work only the value 1/2 could be fully worked out [9].

V.2-2 The Havriliak-Negami CRF

The LT of the Havriliak-Negami DRF, [46,48,49],

	�HN (s
0), is

	�HN (s
0) =

1

(1 + s01��)�
with 0 � �; � � 1 (43)

In a recent work on aging e�ects in high density

polyethylene, some criticism has been directed at this

distribution due to the ability both parameters have of

simultaneously in
uencing the low as well as the high

frequency region of the spectrum [48]. This feature ap-

pears in the following limiting behavior for the HDCRF,

FHN (t),

FHN (t) � w(wt)�(1��(1��))

�(�(1 � �))
for t! 0 (44)

and

FHN (t) � w(wt)��

��(1� �)
for t!1 (45)

The point raised in [48] is interesting but perhaps not

completely justi�ed according to the following reason-

ing: Davidson-Cole and Cole-Cole distribution func-

tions result from di�erent deformations imposed upon

the simple Debye response, causing, respectively, asym-

metry and broadening. The Havriliak-Negami distribu-

tion combines those two deformations and it does seem

reasonable for the combined deformations to reach both

extremes of the frequency spectrum inasmuch as they

do that when acting independently.

Returning to our subject, we have obtained by the

truncated Widder method of section IV-5, with k not

larger than 8, the primitives FHN (t) for � =0.25, 0.50,

and 0.75 and, in each case, for �=0.25, 0.50 and 0.75.

They are shown in Figs.7,8 and 9, respectively, in a log-

log plot. It is seen that while the asymptotic behavior,

Eq.45, was already reached for t0 � 100, the short time

behavior, Eq.44, is not attained for times (t0) of the

order of 10�2. The deviation is higher for smaller �.
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Figure.7 log FHN � logt0 for � = 0:25 and � = 0:25, 0.50
and 0.75.

Figure.8 The same as in Fig.7, for �=0.50.

Figure 9. The same as in Figs.7 and 8 but for �=0.75.

V.2 Normal Dispersive Responses

The distinctive character of a NDCRF is to present

conductivity. As for the HDCRFs, the LT of the re-

sponses, F � and F �t , are more easily analyzed with the

variable s0 = s=w and in order to �nd F �t , the long time

behavior of F �, that is, lims0!0 s
0F �, must be found.

Let it be a. Therefore F �t (s
0) is

F �t (s
0) = F �(s0) � a

s0
(46)

Now, in the variable s, related to the true time in the

LT, there corresponds the limiting behavior aw, which

is the value of the true conductivity (not considering the

factor A in Eq.10, as already mentioned at the end of

Section V-1). Nevertheless a will be called conductivity

for short, but the true value will also be mentioned.

V.2-1 The random free energy barrier model

Macdonald [14] and Dyre [12] have considered the

random free energy barrier model for conductive sys-

tems (for the dielectric case the model was �rst pro-

posed by Gevers and Du Pr�e [53]). In a microscopic

description [12] the hopping carrier �nds (free) energy

barriers of heights varying randomly in space but uni-

formly in energy from a minimumUmin to a maximum

value Umax. The probability of a carrier to remain for a

time t at a site is given by the function �(t) introduced

in Eq.7. Generalizing the two energy barriers treatment

in Sec.IV.2, for which �(t) = ae�w1t+(1�a)e�w2 t, and

noting that Eq.28 is the time derivative of this equa-

tion, as required by Eq.7, we �nally get the following

expression for �(t), after performing a change of the

integration variable,

�(t) =
1

ln 
max

min

Z 
max


min

e�
d




(47)

where


max = 
0e
�Umin=kT and 
min = 
0e

�Umax=kT (48)

and 
0 is the attempt to escape frequency, common to

all barriers, k is the Boltzmann constant and T the ab-

solute temperature. Finding the LT of Eq.47 and then

using Eq.8, there results the-Macdonald-Dyre DRF,

��DM(s) = 1� 1

ln 
max

min

ln
1 + s=
max
1 + s=
min

(49)
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Note that here the Laplace variable at the moment is s

and not s0 as in the previous section. Dyre [12] makes

a further assumption, that the low barriers are in the

infrared energy region, while the high ones are of the or-

der of eV (see however [16]). Therefore 
max >> 
min

and 	�DM (s) becomes 	�D(s) given by

	�D(s) = 1� 1

�
ln

�
1 +

s


min

�
(50)

with � = ln(
max=
min. With this simpli�cation Dyre

is able to explain regularities observed in ac measure-

ments in the conductive response, to which we now turn

our attention. It is found to lead, by Eq.17, to the LT,

F �D)s
0), now again in a reduced variable s0, s0 = s=
min;

F �D(s
0) =

�

ln(1 + s0)
� 1 (51)

The conductivity is easily found to be � (or bet-

ter 
min�) and by Eqs.46,40 and 51, the primitive


minFtD(t0) with t0 = 
mint may be found. For 
max �
1 eV and 
min � :025 eV, we have � = 4. Fig.10 shows

log FtD as a function of t0 for � = 2; 4 and 6. In the

present case log 	D is also shown for comparison. A

rather subtle behavior is observed between FtD and 	D
concerning the variation of �: for � = 2, 	D is higher

than FtD; for � = 4 the same trend remains for short

times, but for longer times the di�erences almost dis-

appear. Finally, for � = 6, 	D becomes smaller than

FtD over the whole time scale.

Figure 10. The Dyre random free energy barrier model, log
FtD� t0 and log FtD� t0 and log  D� logt0 for �=2, 4, and
6. FtD is smaller than  D for � =2 and 4, although already
almost equal to it at large times; for � = 6, FtD becomes
greater than  D.

One of the referees called our attention aboutrecent

developments aimed at improving the random free en-

ergy model [49,50].

V.2-2 The Davidson-Cole CRF

The LT of the Davidson-Cole DRF, 	�DC(s
0), is

[3,19,24,39,46,48,52,54]

	�DC(s
0) =

1

(1 + s0)�
(52)

with s0 = s=w: Its CRF, F �DC(s
0), is

F �DC(s
0) =

1

(1 + s0)� � 1
(53)

and it is found to lead to a non-zero conductivity 1=�

(the real one is w=�). By Eq.46 we get the LT of its de-

caying component, F �tDC(s
0). For short times FtDC(t0)

behaves as

FtDC(t) � wt
0��1

�(�)
; t0 = wt (54)

which is close to the exact DRF, 	DC(t), for short times

which is

	DC(t) =
wt

0��1e�t
0

�(�)
; t0 = wt (55)

In Fig.11 we plot log FtDC as a function of t0 af-

ter an inversion by the truncated Widder method for

� = 0:25; 0:50 and 0.75. An exponential like decay,

independent of the � value, is observed for long times.

Figure 11. The Davidson-Cole NCRF, FtDC, in a plot of
log FtDC as a function of t0.

V.2-3 The one- half- stretched- exponential

The Kohlrausch-Williams-Watts stretched exponen-

tial [1,37,52,54,55] corresponds to the function �(t), de-

�ned in Eqs. 7 and 8, that is, the probability the carrier

has of staying at the same site for a time t after arrival,
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�(t) = e�(wt)
�

(56)

We know that in order to have quick access to the CRFs

we need the LT of 	(t), the negative of the time deriva-

tive of �(t). The only available LT of �(t) in Eq.56 is

for � = 1=2 and now we stick to this particular case.

The CRF, F �KWW (s0); with s0 = s=w, is found to be

F �KWW (s0) =

p
�=2s0e1=4s

0

Erfc(1=2
p
s0

1�
p
�=4s0e1=4s0Erfc(1=2

p
s0)

(57)

where Erfc(z) is the complementary error function

of the argument z [42]. The conductivity is 1/2 (the

true one is w=2) and the decaying part of FKWW (t0),

FtKWW (t0), is then found. Fig.12 shows log FtKWW

as a function of
p
t0 obtained by the truncated Widder

method with k = 6 and 8. Some instability occurs forp
t0 � 10, that is, t0 � 100. Anyway an e�

p
t0 behavior

holds for su�ciently long times.

Figure 12. The NCRF 1/2 stretched exponential decay, log

FtKWW as a function of
p
t0, for k=6 and 8. Instability in

the deconvoluted curve is observed for high values of
p
t0;

t0 � 100.

Extensive analysis of previous work and new results

on the stretched exponential response appear in [53].

V.2-4 Master Curves

We have seen in Eq.40 that in the cases considered

here, F (t) may be put in the following form of

F (t) = wG(wt) (54)

where w becomes 
min for the Dyre CRF of Section V-

2-1. As already mentionedw is usually a function of the

temperature and therefore Eq.54 becomes an instance

of the time- temperature superposition principle [55].

As is well known, a master curve may be drawn from

a set of functions after appropriated re-scaling of the

quantities involved [39,57,58,59]. From the dielectric

theory, it is known that Eq.54 results from a distribu-

tion of relaxation times with a single activation energy.

The present analysis dealt with non-Debye conductive

responses leading however to the same general result.

VI Concluding Remarks

The existence of a structured ac response in disordered

materials is a well known fact [12,13,22]. Therefore

a time dependent conductivity is expected to appear

when a step voltage is applied to them in planar sym-

metry. In Dyre's approach [12] the time dependent as

well as the stationary conductivity are derived from a

single function in a quite consistent scheme so that rea-

sonable results come out of the calculations for well

behaved HTDFs (decreasing functions of time). A be-

havior similar to that observed in a poled dielectric

material is predicted, including return currents after a

short. But while simple explanations may be advanced

for time dependent currents in dielectric systems, they

are far less intuitive in the conductive case. In the for-

mer we say that the populations of dipoles pointing

in the same and in the opposite direction as that of

the electric �eld are perturbed and the observed cur-

rents arise from the changing dipole con�guration. In

the conductive case dipoles are formed by the motion

of the mobile charge with respect to its �xed partner.

But, the existence of conductive return currents of long

duration, as usually found in the dielectric case, seems

to go against our intuition and therefore, on this basis,

we expect them to decay faster than the dipolar ones.

Of course the same would be true for the correspond-

ing conductive absorption current. For the phenomeno-

logical approach [14,16,17,11] the conductive system is

considered as a series distribution of di�erential resis-

tors and capacitors in parallel. The return current is

easily explained and its energetics understood by the

inhomogeneous charging of the system during poling.

From the experimental point of view, a thorough

analysis of conduction in the planar symmetry requires

the knowledge of the role played by the electrodes and

their charge exchange with the sample. These processes

might create space-charge layers near the electrodes,

perturbing the bulk current. AC experiments do not

present such di�culty.

Another point concerns thin samples. The mea-

sured external current of a conductive system provides
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a mean value of the property inside the sample. But

as noticed in [60] truly random systems require in�-

nite samples and therefore we expect somewhat non-

reproducible results when dealing with especially thin

samples. Quantitative analysis is missing.

We have seen in sub-section V-2 and subsequent

ones that the distributions are de�ned in terms of a

frequency which is, in general, temperature dependent.

Therefore a common dependence on temperature of the

time dependent and as well as of the steady state cur-

rent might be an indication that the system under study

presents a conductive rather than a dielectric behavior.

Some glasses belong to this class [61,12]. A similar be-

havior was found in �-PVDF [62], although in this case

the return current was of long duration and, therefore,

might not be of the conductive type, according to what

has been said before.
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