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We obtain an analytic representation for the pro�le of the surge wave in the sea, due to a tropical
storm at a low latitude. The results reproduce the known experimental data adequately. In the
calculations we take into account the in
uence of Rossby's second parameter and we analyse its
contribution to the surge wave, which is proved to be su�ciently small to be neglected in higher
latitudes. The obtained analytical solution allows us to study in detail the surge wave formation in
the presence of such a storm. To solve the problem, Laplace method and Green functions are used.
This allows us to improve previous results obtained by Evsa in 1989.

I Introduction

In the last years the interest of studying non-periodic

oscillations of sea level has grown. In particular, it is of

interest the study of those oscillations excited by pres-

sure �elds and strong winds in the tropical storm. It is

possible to �nd previous information about this theme

in the work of Jelesniansky [1] and more recently, Johns

et al. [2], Fandry et al. [3], Jerome et al. [4], Signorini

[5], Davies et al. [6] and Lardner et al. [7] and [8]. The

majority of these papers employ numerical methods or

qualitative analysis of the solution of the mathematical

model. In the present paper we obtain an analytic so-

lution of the problem, similar to the one formulated by

Evsa [9]. In this work, there is an incorrect expresion

for the Green function of the problem. Therefore, for

the analytic solution, Evsa does not take account of the

multi-valuated character of the complex variable func-

tion in the path integrations. In the present paper we

make correct use of the Green function method and the

integral transform techniques. We also analyze the in-


uence of Rossby's second parameter, which is usually

neglected at high latitudes by other authors because of

its smallness with respect to Rossby's �rst parameter

and because it allows to simplify the calculation. We

check that Rossby's second parameter is small enough

to be neglected at low latitudes.

II Formulation of the problem

Let us consider a tropical cyclone (TC) which causes

a perturbation of the sea surface in an ocean region

distant from any coast. The interaction region has a

characteristic deepness less than the storm horizontal

size by two orders of magnitude. Therefore, we can use

the shalow water approximation. We also consider a

quasistationary regime for the storm, in order to keep

a �xed coordinate center. Due to the axial symmetry of

this problem, we use a cylindrical system of coordinates

with center on the axis of the cyclone.

The Navier-Stokes equations in the cilindrical sys-

tem of coordinates including the Coriolis terms are

given by

c

@u

@t
+ u

@u

@r
+
v

r

@u

@'
+ w

@u

@z
� v2

r
= f v � f� w � 1

�

@Pa
@r

+
1

�

@�rz
@z

; (1)



394 A. Am�ezaga-Hechavarr��a et al.

@v

@t
+ u

@v

@r
+
v

r

@v

@'
+ w

@v

@z
� u v

r
= �f u� 1

�

1

r

@Pa
@'

+
1

�

@�'z
@z

; (2)

@w

@t
+ u

@w

@r
+
v

r

@w

@'
+w

@w

@z
= f� u� 1

�

@Pa
@z

� g; (3)

d

with u = vr , v = v', w = vz, f = 2
 sin�, f� =

2
 cos�. Here 
 is the angular Earth velocity and � is

the latitude of the region under consideration.

In these equations the term of the divergence of the

stress tensor contains only the vertical stress forces be-

cause they are much larger than the rest of the internal

friction e�ects. In equation (3), all the stress e�ects

are neglected in comparison with the vertical pressure

gradient and with the gravity acceleration.

The equation of continuity in cylindrical coordinates

is
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The bondary conditions are: in the botton, the ad-

herence condition; at the sea surface, the kinematic con-

dition (wjz=� = d�
dt
� u@�

@r
+ v

r
@�
@'

+ @�
@t
).

The Oz axis coincides with the external normal vec-

tor to the Earth surface. We also suppose the integra-

tion time in these equations is much smaller than the

cyclone displacement characteristic time. Therefore, we

take into account the time derivatives, although we con-

sider the TC static.

By integration of equation (1)-(3) along the z direc-

tion, we obtain the following system, for the shallow

water approximation, in dimensionless form,

c

St�1
@u

@t
+ (� + h)

@Pa
@r

+ Fr�1(� + h)
@�

@r
� Ro�1v + Ro��1

�Z
�h

wdz = � sr � � fr ; (5)

St�1
@v

@t
+

(� + h)

r

@Pa
@'

+ Fr�1
(� + h)

r

@�

@'
+Ro�1u = � s' � � f' ; (6)

St�1
@�

@t
+
@u

@r
+

1

r

@v

@'
+
u

r
= 0 : (7)

d

We neglect the convective acceleration terms, be-

cause the absence of coasts implies that the velocity

gradients are very small in the considered region. In

the above equations � is the sea perturbation average

level; h is the non-perturbed sea deepness; Pa is the

atmospheric pressure �eld originated by the TC; � si
are the surface stresses produced by the TC winds and

� si are the bottom stresses (i = r; '); �0 is the water

density; H is the characteristic deepness of the region;

St = (U0T )=L is the Struhal's number; Fr = U2
0 =(gH)

is Froude's number; R0 = U0=(fL) is Rossby's �rst pa-

rameter and R�0 = U0=(f
�H) is Rossby's second param-

eter; U0 is the characteristic velocity; L is the charac-

teristic size on the horizontal ocean surface plane. We

take � � 5� because the contribution of f� is bigger at

very low latitudes. This is precisely the interest of our

study, maintaining f not equal to zero in the model.

In the following calculation we neglect � bi because

the processes are essentially super�cial and therefore

the bottom does not matter. Also, we consider �+h �
h = 1 because in the problem � � h and that the prob-

lem is axisymmetric so that @[::]
@' � 0. The presence of

Rossby's second parameter in equation (5) makes it im-

possible to use the two-dimensional approach employed

by other authors. To avoid this problem, we assume

an exponential dependence of the horizontal velocities

with respect to the vertical coordinate,

u(r; '; z; t) = u0(r; '; t)exp [�a(� � z)] ;
v(r; '; z; t) = v0(r; '; t)exp [�a(� � z)] :

(8)
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We take an exponential dependence because, in many


uid problems, that is the law of variation of the hori-

zontal velocities with respect to the deepness and con-

sidering the gravity constant in the studied region. This

assumption is consistent with our model, in which Fr

is constant:

With this dependence we have that, at the surface

z = �; velocities are u0 and v0. The parameter a con-

trols the decrease of the velocities with z. Expressions

(8), using (4), allow us to obtain
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We have neglected the convective derivative of � in the �rst term because the calculations are made in open

sea [10], [11] and also because we only consider the long wave generated by TC. Hence (H = 1, the dimensionless

formulation)
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Then, system (1)� (3) takes the form
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To solve this system we consider homogeneous ini-

tial conditions and the following boundary conditions,

ujr!1 = vjr!1 = �jr!1 = 0; �jr=0 < M :

(14)

To accomplish the calculations we take, following

Johns et al. [2], � sr = �0 sin��
2(r), � s' = �0 cos��

2(r),

where �0 = �1

2
1W

2
0 and �(r) = 2(r=R)=[1 + (r=R)2].

Here �1 is the density of the air, 
1 is the drag coe�-

cient, Wo is the wind velocity in the radius R of the

greatest winds, and � is the 
uency angle of the wind

in the TC. We take the following dependence for the at-

mospheric pressure Pa(r) = P1 ��P=[1 + (r=R)2]1=2

in correspondence with the common assumption in the

studies of surge in tropical storms (see, for instance,

[1, 11]).

III Calculation

In the system of equations (11)-(13), " � (Ro�)�1 � 1.

Hence, we assume an analytic dependence of the solu-

tion u, v, � (see e.g. [12]),

u(r; '; t) =
1P
n=0

un(r; '; t)"n ; (15)

v(r; '; t) =
1P
n=0

vn(r; '; t)"
n ; (16)

�(r; '; t) =
1P
n=0

�n(r; '; t)"n: (17)

Substituting (15) � (16) into equations (11) � (13)

and taking only the two �rst terms of the sequence u0,

v0, �0, and u1, v1, �1, we obtain the following systems:

1If directly we shall take a linear variation of the vertical velocity, for instance, w = (1 + z=H) (d�=dt), it simply shall give another
numerical value of the coe�cient in (10).
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In our case, it is su�cient to take the solution at �rst order in perturbation theory, because the small parameter

" in (11) is multipliying a term which is of a very small order, due to the smoothness of the used model. This

fact leads to a non-singular perturbation problem. Hence, (15)� (17) are, not only asymptotic, but also monotonic

expansions. We apply the Laplace transform to system (18) � (20). For E0(r; p) = L f�0(r; t)g we obtain the

following equation
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is the Green function of the operator of equation (24), which satis�es the boundary conditions G(r; s)jr=0 < M ;

G(r; s)jr!1 = 0; R1; R1 is the TC external radius.

The inverse Laplace transform gives
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A1(s) = Fr�0 sin��(s) [2@�(s)=@s � �(s)=s] +
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Usual techniques of the theory of functions of complex variables allow us to calculate the contour integrals in
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In similar form we apply the Laplace transform to system (21)-(23) and obtain for E1(r; p) = L f�1(r; t)g the

equation
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We proceeded as in the above zero order case in order to obtain �1(r; t). The results are
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where Aj
i and Bj

i are given in the appendix.
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IV Results and Discussion

We have obtained an analytic representation for the

pro�le of the surge wave in the sea due to a TC at low

latitude, given by

�(r; t) = �0(r; t) + " �1(r; t) ; (38)

where �0 and �1 are given by (29) and (37), respectively.

As it can be seen, these expresions present di�-

culties to analyse the main properties of the solution.

However, they allow checking the analitical dependence

with respect to model input parameters. The obtained

dependence shows that the expression is stable with re-

spect to any continued variation of the corresponding

parameter.

We have numerically calculated the integrals in-

volved in (38) in order to verify the correspondence
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between the obtained solution and the experimental

data. The values of the parameters are the following:

t = 0:5; 1; :::; 4 hours, R = 50 Km, W0 = 38 m/s, 
1 =

0:0025, �p = 55 mBar, � = 10�, � = 1:293 Kg=m3,

St = 0:01, R0 = 0:79, � = 0:14 and Fr = 0:0001. We

elaborate graphs of sea excitation vs. TC radius.

From Figs. 1, 2 and 3, it can be seen the dynamics

of the surge wave formation. The plots show that the

solution qualitatively maintains its form during time

and that it smooth.
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Figure 1. Pro�les of the surge wave for t=0.5, 1.0 and 1.5 hours.

Figure 2. Pro�les of the surge wave for t=2.0, 2.5 and 3.0 hours.
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Figure 3. Pro�les of the surge wave for t=3.5 and 4.0 hours.
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Figure 4. Evolution in time of the surface excitation in r=0.

Table 1. Contribution of the second Rossby parameter to the surface excitation in r=0 for several times.

Excitation (r = 0) t = 1 h t = 2 h t = 3 h t = 4 h
�0 (m) 0:255 0:510 0:764 1:020

� = �0 + " �1 (m) 0:257 0:512 0:766 1:023

In Fig. 4 a second experiment shows that the so-

lution tends to a bounded oscillatory expression as the

time t increases. It is necessary to say that the limit

values of the excitation in this case do not correspond

to the real values, because, with the increasing of time,

the validity of the quasistationary model does not hold.

Nevertheless, this experiment assures that our formal

solution does not diverge in time.
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In Table 1, we show the result of another experiment

in which it can be seen the real contribution of Rossby's

second parameter, i.e. the contribution to the surface

excitation, due to the horizontal streams caused by the

de
ection of the vertical internal streams into the sea

as a result of the Earth rotation.

It can be seen that this contribution is small, due

to the fact that the vertical streams are quite small

in comparison with the horizontal streams induced by

the wind of the TC. Moreover, the relative increase of

the term in the equation containing Rossby's second pa-

rameter with respect to the term that contains Rossby's

�rst parameter is due to the abrupt decrease of the lat-

ter. Hence, it is possible to neglect the contribution of

Rossby's streams even at low latitudes.

We have obtained an analytical expression of the

excitation of the sea level in the presence of a tropi-

cal cyclone, whose results are similar to those obtained

by numerical methods. The analytical solution allows

us to study in detail the surge wave formation in the

presence of a tropical cyclone. It is possible to see

that a non-periodical wave is obtained which tends to

some stationary state. It is interesting to highlight that

the contribution of Rossby's second parameter is quite

small even in low latitudes. This result justi�es the di-

rect use of the two-dimensional system of order zero to

calculate the surge.
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Appendix

Expresions for the coe�cients Aj
i and Bj

i in formula (37).

A1
1 =

rZ
0

sZ
0

�Z
0

G1(s)G2(r)
G2(s)

s
G1(y)A1(y) cos (�t) d�dyds (39)

A2
1 =

rZ
0

sZ
0

�Z
0

G1(s)G2(r)
@G2(s)

@s
G1(y)A1(y) cos(�t) d�dyds (40)

A3
1 =

rZ
0

R1Z
s

�Z
0

G2(r)G1(s)
G1(s)

s
G2(y)A1(y) cos(�t) d�dyds (41)

A4
1 =

rZ
0

R1Z
s

�Z
0

G2(r)G1(s)
@G1(s)

@s
G2(y)A1(y) cos(�t) d�dyds (42)

B1
1 =

R1Z
r

sZ
0

�Z
0

G1(r)G2(s)
G2(s)

s
G1(y)A1(y) cos(�t) d�dyds (43)

B2
1 =

R1Z
r

sZ
0

�Z
0

G1(r)G2(s)
@G2(s)

@s
G1(y)A1(y) cos(�t) d�dyds (44)

B3
1 =

R1Z
r

R1Z
s

�Z
0

G1(r)G2(s)
G1(s)

s
G2(y)A1(y) cos(�t) d�dyds (45)

B4
1 =

R1Z
r

R1Z
s

�Z
0

G1(r)G2(s)
@G1(s)

@s
G2(y)A1(y) cos(�t) d�dyds (46)

A1
2 =

rZ
0

sZ
0

�Z
0

G1(s)G2(r)
G2(s)

s
G1(y)A2(y)

sin(�t)

�
d�dyds (47)



Brazilian Journal of Physics, vol. 29, no. 2, June, 1999 401

A2
2 =

rZ
0

sZ
0

�Z
0

G1(s)G2(r)
@G2(s)

@s
G1(y)A2(y)

sin(�t)

�
d�dyds (48)

A3
2 =

rZ
0

R1Z
s

�Z
0

G1(s)G2(r)
G1(s)

s
G2(y)A2(y)

sin(�t)

�
d�dyds (49)

A4
2 =

rZ
0

R1Z
s

�Z
0

G1(s)G2(r)G1(s)G2(y)A2(y)
sin(�t)

�
d�dyds (50)

B1
2 =

R1Z
r

sZ
0

�Z
0

G1(r)G2(s)
G2(s)

s
G1(y)A2(y)

sin(�t)

�
d�dyds (51)

B2
2 =

R1Z
r

sZ
0

�Z
0

G1(r)G2(s)
@G2(s)

@s
G1(y)A2(y)

sin(�t)

�
d�dyds (52)

B3
2 =

R1Z
r

R1Z
s

�Z
0

G1(r)G2(s)
G1(s)

s
G2(y)A2(y)

sin(�t)

�
d�dyds (53)

B4
2 =

R1Z
r

R1Z
s

�Z
0

G1(r)G2(s)
@G1(s)

@s
G2(y)A2(y)

sin(�t)

�
d�dyds (54)

and

G1(x) = I0(x
p
�2 � �2) (55)

G2(x) = K0(x
p
�2 � �2)� K0(R1

p
�2 � �2)

I0(R1

p
�2 � �2)

I0(x
p
�2 � �2) (56)

A1(y) =

�
H

Fr2

aSt

��
�0 sin��(y)

�
�(y)

y
� 2

@�(y)

@y

�
+

�
@2Pa

@y2
� 1

y

@Pa

@y

��
(57)

A2(y) =

�
H St2

a

�
�0 cos��(y)

�
2
@�(y)

@y
� �(y)

y

�
; (58)

where a = 100 and H = 1.
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